Jan Jiirjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 105

Are “Non-functional” Requirements really Non-functional?
An Investigation of Non-functional Requirements in Practice

Jonas Eckhardt', Andreas Vogelsang?, Daniel Méndez Ferndndez!

Abstract: Non-functional requirements (NFRs) are commonly distinguished from functional re-
quirements (FRs) by differentiating sow the system shall do something in contrast to what the system
shall do. This distinction is not only prevalent in research, but also influences how requirements are
handled in practice. NFRs are usually documented separately from FRs, without quantitative mea-
sures, and with relatively vague descriptions. As a result, they remain difficult to analyze and test.
Several authors argue, however, that many so-called NFRs actually describe behavioral properties
and may be treated the same way as FRs. In this paper, we empirically investigate this point of view
and aim to increase our understanding on the nature of NFRs addressing system properties. Our re-
sults suggest that most “non-functional” requirements are not non-functional as they describe behav-
ior of a system. Consequently, we argue that many so-called NFRs can be handled similarly to FRs.

Keywords: Non-functional requirements, classification, model-based, empirical studies

1 Summary

Although the importance of NFRs for software and systems development is widely ac-
cepted, the discourse about how to handle NFRs is still dominated by how to differenti-
ate them exactly from FRs [Br16, G107]. One point of view is that the distinction is an
artificial one and we should rather differentiate between behavior (e.g., response times)
and representation (e.g., programming languages). The underlying argument is that most
NFRs actually describe behavioral properties [G107] and should be treated the same way as
FRs in the software development process [Br16]. Behavioral properties subsume classical
FRs, such as “the user must be able to remove articles from the shopping basket” as well
as NFRs which describe behavior such as “the system must react on every input within
10ms”. Representational properties include NFRs that determine how a system shall be
syntactically or technically represented, such as “the software must be implemented in the
programming language Java” [Br16]. In this paper, we empirically investigate this point
of view and aim to increase our understanding on the nature of NFRs addressing system
properties. To this end, we classify 530 NFRs extracted from 11 industrial requirements
specifications with respect to their kind. Our results show that 75% of the requirements
labeled as “non-functional” in the considered industrial specifications describe system be-
havior and only 25% describe the representation of the system. As behavior has many
facets, we further classify behavioral NFRs according to the system view they address (in-
terface, architecture, or state), and the behavior theory used to express them (syntactic,

! Technische Universitit Miinchen, Institut fiir Informatik, {eckharjo,mendezfe} @in.tum.de
2 Technische Universitit Berlin, DCAITI, andreas.vogelsang @tu-berlin.de



106 Jonas Eckhardt, Andreas Vogelsang und Daniel Méndez Ferndndez
logical, probabilistic, or timed) [Br16]. Based on this fine-grained classification, we dis-
cuss the implications we see on handling NFRs in the software engineering disciplines,
e.g., testing or design. The full paper can be found in [EVMF16].

2 Results & Conclusion in a Nutshell

Fig. 1 shows how many NFRs describe system behavior and Fig. 2 shows which system
views behavioral NFRs address. The tables show the distribution of behavioral and rep-
resentational NFRs (Fig. 1) and the distribution of NFRs with respect to the system view
they address (Fig. 2). The bar charts show these distributions with respect to the quality
characteristics of the ISO 9126.

Behavioral vs. Representational count % System view count %
Behavioral 396 74.7% Interface 273 68.9%
— Black-box 273 51.5% Architecture 85 21.5%
— Glass-box 123 23.2% State 38 9.6%
Representational 134 25.3%
Functionality Functionality -
Usability Usability -
Reliability Reliability -
Security - Security -
Efficiency - Efficiency -
Maintainability -4 Maintainability -
Portability Portability -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Fig. 1: Black-box (black), glass-box (dark gray), Fig.2: Interface (black), architecture (dark gray),
and representational (light gray). and state (light gray).

Based on our results, we furthermore discuss that FRs were often labeled as NFRs, NFRs
are often specified by reference to standards, and that only few NFRs deal with architec-
tural aspects. Finally, we conclude that most “non-functional” requirements are mislead-
ingly declared as such because they actually describe behavior of the system. This in turn
means that many so-called NFRs can be handled similarly to FRs.

References

[Br16] Broy, M.: Rethinking Nonfunctional Software Requirements: A Novel Approach Cat-
egorizing System and Software Requirements. In: Software Technology: 10 Years of
Innovation in IEEE Computer. 2016.

[EVMF16] Eckhardt, J.; Vogelsang, A.; Méndez Fernandez, D.: Are “non-functional” requirements
really non-functional? In: ICSE. 2016.

[G107] Glinz, M.: On non-functional requirements. In: RE. 2007.





