
Improving Knowledge Sharing in Distributed Teams by
Capturing and Recommending Informal Knowledge1

Hans-Jörg Happel

FZI Forschungszentrum Informatik
Karlsruhe, Germany

happel@fzi.de

Walid Maalej

Technische Universität München
Munich, Germany

maalejw@in.tum.de

Due to an increasingly distributed workforce, teams are often separated by or-
ganizational, geographical or temporal boundaries, which cause substantial col-
laboration and knowledge exchange problems. Accordingly, tool-support for
collaboration and knowledge sharing is particularly important for distributed
teams. In this paper, we discuss how knowledge exchange in the domain of
software development can be improved by capturing informal knowledge and
recommending to share or access it.

1 Introduction

The development and maintenance of large and complex systems, which exceed the
abilities of a single human worker, led to the concept of division of labor: decompos-
ing a system into smaller modules creates manageable units of work. Decomposition
introduces dependencies among the modules and thus requires coordination to create
an integrated system in the end. Since an increasing number of projects are carried out
in a distributed fashion, an effective and efficient coordination and knowledge sharing
is considered a major success factor for such organizations [Cum04, Han99].
In this paper, we introduce our position on how to improve knowledge sharing in
distributed teams. First we characterize coordination and knowledge sharing in distri-
buted work settings. Then we discuss means for supporting knowledge sharing in a
collaborative software development environment.

2 Coordination and knowledge sharing in distributed teams

Distributed work has become popular in recent years due to several reasons such as
cost reduction, availability of human resources or intra-organizational collaboration
[Ols00]. The modularization of complex artifacts is thus often mirrored by a modula-
rization of the project teams, which produce these artifacts [KM06].

1 This work has been partly supported by the TEAM project, which is funded the EU-IST pro-
gram under grant FP6-35111 and the BMBF-funded project WAVES.

341



Many distributed and outsourced projects suffer from coordination problems since the
overall coordination capacity is lower due to a reduced communication bandwidth
[Ols00]. Since distributed teams are less efficient than collocated ones, collaboration
research is focusing on tool-support for creating “virtual 30 meters” [HM03]. Core
challenges in realizing these virtual 30 meters are coordination and knowledge shar-
ing among the team members.
The need for coordination stems from the modularity of the artifacts under develop-
ment. The decomposition of artifacts creates dependencies, which require coordina-
tion. Coordination can thus be defined as “the process of managing dependencies
between activities” [MC94]. Accordingly, most coordination requirements can be
traced back to explicit dependencies among the subsystems of artifacts. Coordination
issues are central to collaboration research, which e.g. analyzes suitable coordination
mechanisms for different kinds of dependencies [Tho67] and tools for supporting
communication, awareness and workflow management.
While coordination problems in distributed settings are understood and supported in a
considerable way, we argue that further support for knowledge sharing is required.
Knowledge sharing can be defined as the ”dual problem of searching for (looking for
and identifying) and transferring (moving and incorporating) knowledge across orga-
nizational subunits” [Han99].
In contrast to coordination, knowledge sharing is not directly rooted in explicit de-
pendencies of technical artifacts, but in dependencies among organizational entities.
The modularity of the organizational subsystem has a deep impact on the communica-
tion patterns of an organization since it forms channels and filters along organization-
al interfaces, to reduce complexity by selecting relevant information [HC90]. Howev-
er, this has negative impact on knowledge sharing across organizational units, since
the average information flow runs dry with increasing organizational or geographical
distance. Additionally, distributed work settings amplify barriers for knowledge shar-
ing such as reduced motivation and trust [CC02, Des03]. The allocation of knowledge
can thus be inefficient when collaboratively developing a system in a distributed or-
ganization.

3 Supporting knowledge sharing in distributed software teams

Due to the popularity of Open Source and offshoring development models, software
development is one of the most distributed and knowledge intensive businesses, in
which people with different backgrounds and expertise levels collaborate. The crucial
impact of coordination on the efficiency of software development projects is well-
known [Ols00] and empirical studies have shown that technically driven design deci-
sions influence coordination and knowledge sharing in development teams, which can
in turn decrease productivity [HM03].
While collaboration support gets increasingly integrated into software development
tools [CS+04], the exchange of knowledge and expertise in development teams re-
mains largely unsupported beyond basic communication and document sharing tools.
Most work on knowledge support is focused on supporting knowledge access. Exam-
ples are systems like Hipikat [CSB05] that help developers to access reusable know-

342



ledge artifacts such as documents or source code. However, these approaches assume
an existing repository of knowledge artifacts and do not discuss how these reposito-
ries are built and maintained. The Experience Factory [BCR94] (EF) describes a
framework for building repositories of reusable knowledge. However, an EF requires
costly knowledge extraction and refinement processes to create high-quality reusable
assets, as well as centralized organizational responsibility in order to maintain the
knowledge repository.
Finally, the mentioned approaches fail to support sharing of small pieces of expe-
rience, which are usually exchanged during informal communication in collocated
settings. For example, during a coffee break, team members share activities they have
carried out to resolve a certain bug, lessons learned on configuring a particular com-
ponent before reusing it, the name of an expert on a particular technology, or a know-
ledge source such as a Web site to answer development questions.
A notable approach in the direction of sharing such small pieces of informal know-
ledge is the mylyn project [KM06], which monitors interactions inside an IDE, while
developers carry out their tasks. Based on these interactions, mylyn computes a relev-
ance value for artifacts in a given task and hides or blurs them in the user interface
when they are deemed not relevant for the current task. This approach is called “Task-
Focused User Interface”. Mylyn is implemented as a plug-in for the Eclipse Integrated
Development Environment (IDE) and allows sharing the gathered information with
other developers.

We envision an advanced approach to support knowledge sharing in distributed soft-
ware teams. It is based on the following assumptions:

• A lot of useful information and pieces of experiences are implicit and not
formally captured by the developers, in form of documentation.

• Developers have private explicit knowledge, which is not shared with colla-
borators (especially in distributed work settings).

We aim to support both the capturing of implicit knowledge and the diffusion of ex-
isting private knowledge in distributed software development teams. Basic enablers
for our approach are the observation of developer’s activities and the exchange of
such data among the developers in a team. Observation leads in particular to sessio-
nizing the developer’s workday into problem-solution cycles, recognizing problem
situations (such as information needs or program errors) and capturing information
accessed to solve such problems. In our prototypical implementation, this is realized
by a context observation framework, which records developer’s interactions with his
tools such as the IDE, the web browser and the collaboration and communication
tools. These interactions are further processed, aggregated and then persisted in an
ontology-based, distributed metadata infrastructure (c.f. [MH08]).
Regarding the diffusion of existing knowledge, we aim to incentivize developers to
share knowledge, by recommending not only the information to share but also other
team members to whom such information is valuable. Therefore, our approach ana-
lyzes the overall information behavior within the working group, mainly based on
query logs (c.f. [Hap08]). Query logs are also used to identify sought information,
which is not yet available for a team. Complemented by context observation data, we

343



are able to find out developers with expertise on a certain topic. We then recommend
them to capture particular information. As an example, developers fixing a bug will
be asked to document their solution, if the system knows that other collaborating
developers faced the same or similar issues.

4 Conclusion

In this paper, we described the problem of coordination and knowledge sharing in
distributed teams, and argued that existing work focuses on coordination, while know-
ledge sharing is still neglected – especially in software development. Based on this,
we discussed existing work in collaborative software development and sketched our
approach for fostering knowledge sharing and capture. Capturing and formalizing
small pieces of developers’ experiences, as well as recommending to sharing private
information to other colleagues who need it are the mail enablers. We are currently
working on the implementation and evaluation on these concepts in several projects.

5 Literature

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experience Factory. In
John J. Marciniak (ed.), Encyclopedia of Software Engineering, John Wiley & Sons,
1994.

[CC02] Angel Cabrera and Elizabeth F. Cabrera. Knowledge-sharing dilemmas. Organization
Studies, 23:687–710, 2002.

[CD+04] Li-Te Cheng, Cleidson R.B. de Souza, Susanne Hupfer, John Patterson, and Steven
Ross. Building collaboration into IDEs. Queue, 1(9):40–50, 2004.

[CSB05] Davor Cubranic, Janice Singer, and Kellogg S. Booth. Hipikat: A project memory for
software development. IEEE Trans. Softw. Eng., 31(6):446–465, 2005.

[Cum04] Jonathan N. Cummings. Work groups, structural diversity, and knowledge sharing.
Management Science, 50(3):352–364, 2004.

[Des03] Kevin C. Desouza. Barriers to effective use of knowledge management systems in
software engineering. Commun. ACM, 46(1):99–101, 2003.

[Han99] Hansen, M.T.: The search-transfer problem: The role of weak ties in sharing know-
ledge across organization subunits. Administrative Science Quarterly, 44:82–111,
1999.

[Hap08] Hans-Jörg Happel: Closing information gaps with inverse search. In 7th International
Conference on Practical Aspects of Knowledge Management, LNCS. Springer, 2008.

[HC90] Henderson, Rebecca M.; Clark, Kim B.: Architectural innovation: the reconfiguration
of existing product technologies and the failure of established firms. In: Administra-
tive Science Quarterly 35 (1990), p. 9-30.

[HM03] Herbsleb, James D. ; Mockus, Audris: Formulation and preliminary test of an empiri-
cal theory of coordination in software engineering. In: Proceedings of the 9th Euro-
pean software engineering conference. ACM Press, 2003, p. 138-137

[KM06] Mik Kersten and Gail C. Murphy. Using task context to improve programmer produc-
tivity. In SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, p. 1–11, NY, USA, 2006.
ACM.

344



[KS95] Kraut, Robert E. ; Streeter, Lynn A.: Coordination in Software Development. In:
Commun. ACM 38 (1995), March, No. 3, p. 69-81

[MH08] Walid Maalej, Hans-Jörg Happel: A Lightweight Approach for Knowledge Sharing in
Distributed Software Teams. PAKM 2008, LNCS. Springer, 2008

[MC94] Malone, T. W. & Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys, 1994 (March), 26 (1), 87-119.

[Ols00] Gary M. Olson and Judith S. Olson. Distance matters. Human-Computer Interaction,
15(2/3):139–178, 2000.

[Tho67] Thompson, James D.: Organizations in Action. McGraw-Hill, New York, 1967

345




