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Abstract: Web browsers and web applications have become common tools in bioin-
formatics over the past decades. Many existing web applications revolve around
server-client interaction, where heavy computational tasks are often outsourced to the
server and the presentation is handled on the the client-side. However more recent
additions to the web browser technology embrace the capability of handling more
complex operations on the client-side itself, cutting out most of the server-client inter-
action except for data loading.
This paper contributes to the exploration of the potential of approaches to implement
and speed up computational expensive tasks, like image cluster analysis, within a
client-side web browser environment. The experimental results, incorporating the well
known k-means algorithm which serves as a platform for various parallelization ap-
proaches, indicate the possibility to achieve real time image clustering. Especially
for the available MALDI-MSI data set the results look promising. Despite good re-
sults of multithreading approaches, algorithmic approaches appear to be relevant too.
Therefore advancements in accelerating the k-means algorithm itself are considered.

1 Introduction

Imaging systems have become a relevant factor in biological disciplines. Especially so-

phisticated imaging methods such as Matrix-Assisted Laser Desorption/Ionization Mass

Spectrometry Imaging (MALDI-MSI) or Raman imaging, but also the enhancement of

traditional optical light microscopic methods through fluorescence microscopy, provide

the possibility of visual analysis of biological specimen on a cellular and subcellular level.

MALDI-MSI and Raman imaging in particular not only provide high fidelity molecular

compound analysis but also acquire regiospecific molecular measurements, which allows

a visual representation of tissue biology on the basis of specific molecules, e.g., proteins,

metabolites or peptides [NC13].

Although modern imaging techniques are able to give deeper insight into the biological

system of an analyzed specimen and greatly contribute to the understanding of biologi-
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cal molecules, the evaluation and analysis of such generated data sets can be complex.

Multivariate images generated by biological imaging methods usually contain hundreds

(multi-spectral) to several thousands (hyper-spectral) images, depending on the complex-

ity of a probed sample and the chosen imaging method [F+13].

To provide the required computational resources for the analysis of complex data sets and

to make the results easily available to researchers in different settings, modern analysis and

visualization methods often involve server-client applications. The server side of an ap-

plication handles expensive computational tasks for multivariate data analysis, employing

either computing clusters or cloud computing solutions to ensure reasonably fast compu-

tation. The client side of such applications handles the visualization of the computational

results and offers an interface to the analysis methods. The drawback of server-client ap-

plications is asynchronous processing, since it is not ensured that a task submitted to a

server is computed immediately. This prevents server-client applications from true inter-

activity, which is desired especially in the context of data mining and exploratory data

analysis [L+11] [HLN11].

Modern desktop computers are able to use extensive computational resources. Due to

technological advancements, multi-core processors as well as powerful graphic cards are

common assets. Furthermore, advancements in web browser technology enable them to

use the provided resources even from within a standard web browser. Modern web browser

implementations provide multithreading capabilities and also allow accelerated 3D graph-

ics support by accessing graphic cards. As a result, client side applications with access to

more and more computational capabilities of current desktop computers, which are also

easy to access and update, are possible.

In the following, the focus is laid on achieving real-time cluster analysis of spectral image

data within a client-side web browser environment. This aims at interactive exploration of

high dimensional data sets, with respect to different clustering parameters, e.g., number

of prototypes, or varying input, e.g., subsets of the data, for visual display of different

clustering results (clustermaps) [K+12]. Therefore, it is investigated how much speedup,

if any, can be achieved for k-means using the current multithreading capabilities of web

browsers. To better evaluate the effects of multithreading and further accelerate the analy-

sis, several established algorithmic enhancements of k-means were considered in addition

to a standard implementation. For convenience, a short introduction into the clustering

problem with k-means and a definition of the data structure is given in Section 2. Sec-

tion 3 introduces two approaches to accelerate the k-means algorithm, whereas the first

approach is based on using so called web workers1 for parallel execution and the second

approach refers to the strategy to reduce the amount of distance calculations needed, by

applying the triangle inequality [Elk03]. The experimental results of these approaches

are presented in Section 4 and discussed in Section 5. Section 6 summarizes the findings

and gives an outlook on improvements for parallel computation using future web browser

features.

1http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
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2 Data- and Problem Definition

This section presents the clustering problem with the k-means algorithm on multivariate

images. Therefore definitions are given for high dimensional image datasets and the k-

means algorithm.

2.1 Data definition

d

x

y

X1 Xi Xd

Figure 1: Multivariate image X with dimensionality d. In the context of imaging d is often re-
ferred to as the number of channels. Each channel represents one image Xi ∈ X1, · · · , Xd, with
dimensions x× y.

Biological multivariate images generated with, e.g., MALDI-MSI or Raman Imaging com-

bine information on molecular composition and position and thereby enable localization

of molecular compounds. The underlying concept is to fixate a biological specimen or a

section of one and probe it in a regular order (rasterisation), acquiring a spectrum of infor-

mation per sampled position. This not only allows the correlation of identified features to

a specific location within the sample, but also visualization.

A multivariate image X contains an ordered set of greyscale images {X1, ..., Xd} (see

Figure 1) where each image Xi = (xd) is a x × y matrix of intensity values. Each image

Xi visually represents the spatial distribution of a selected feature i in the original sample.

Concatenating all intensity values for a fixed x, y coordinate over all images Xi recovers

the original spectrum.

2.2 k-means

The k-means algorithm is one of the most famous unsupervised learning algorithms for

cluster analysis [W+08] [Jai10]. Since its publication in the middle of the 20th century,

several variations were developed. Lloyd’s algorithm is often referred to as the standard

k-means algorithm [Llo82].

46



The goal of k-means is to partition a set X = x1, x2, ..., xn into k subsets (k < N ). Each

subset is represented through a prototype µk. These subsets are referred to as clusters C =
c1, c2, ..., ck with their respective prototypes µk. To partition a set X into k subsets the

algorithm locates similarities by minimizing J(C) (see equation 1), the sum-of-squared

errors, between each datapoint xi and its corresponding prototype µk of a cluster ck.

J(C) =
K∑

k=1

∑

xi∈ck

‖xi − µk‖
2 (1)

To achieve a local minimum J(C), the algorithm cycles through two steps which can be

described as:

1. Find the closest prototype

2. Update prototypes

The runtime of the k-means algorithm is thereby primarily influenced by the distance

calculations, which are performed to find the closest prototype µk to a datapoint xi. Since

this action needs to be performed for each datapoint xi, the runtime is denoted as Θ(n·k·d),
where d depicts the dimensionality of the datapoint and the prototype. The recalculation

of the centroids is the second factor in the k-means algorithm. The runtime of this step

is denoted as Θ(n · k · d). However these two parts do not increase cardinality. Thus,

the overall runtime of the k-means algorithm is linear in all its factors and is described as

Θ(n · k · d · i), where i denotes the number of iterations.

3 Methods

This section introduces the approaches which were considered to achieve real time clus-

tering in a client-side web browser environment.

3.1 Multithreading in web browsers

Modern web browsers allow JavaScript (JS) web applications to spawn operating system

level threads via the Web Worker-interface, which enables actual concurrent computing.

Applications can thus execute time consuming operations in the background without in-

terfering with user interfaces. Threads invoked by the application execute a JS script,

which is called a worker. Each worker operates in its own global scope, thus does not

share any resources with other threads. Communication, e.g., messaging or data transfer,

between threads is done in a Message Passing Interface (MPI)2 like manner and allows

bidirectional messaging between parent and child threads. Transferring data can be done

2http://www.mcs.anl.gov/research/projects/mpi/
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in in either two ways. The first way is structural cloning, where objects can be cloned and

copied to other threads. The second way is transferable objects. Incorporating another

more recent feature of modern web browsers in the form of typed arrays3, this technique

passes a reference to the buffer of an object to other threads. Generally workers can be

separated into two different categories, depending on their way to communicate with other

threads [Fla11].

Dedicated worker is the standard worker which is implemented by all modern browsers.

The dedicated worker can send to and receive from one parent thread, but is not able

to send messages sideways. Thus the dedicated worker can’t interact with other worker

threads.

Shared worker is an implementation which is not communicating via messages alone,

but each worker also has specific ports it listens to. The shared worker can receive mes-

sages from more than one application and allows worker-threads to communicate with

each other.

Thus, the actual parallelization scheme becomes similar to approaches using MPI. The idea

for dedicated workers is to distribute data evenly between the worker-threads. Speedup is

gained, since each thread has to do less calculations:

#Parent thread:

Distribute data evenly between the child threads.

Repeat until convergence:

#Child threads:

Calculate the best matching unit.

Return indices.

#Parent thread:

Calculate new prototypes.

3.2 Accelerated k-means through geometric reasoning

A focus of research concerning k-means is acceleration by using additional information

available at runtime through geometric reasoning [PM99]. The central concept is to avoid

unnecessary distance calculations by using the triangle inequality. For any three points x,

y and z the following equation applies:

d(x, z) ≤ d(x, y) + d(y, z) (2)

Especially in later iterations Lloyd’s algorithm tends to undergo unnecessary distance cal-

culations when cluster centers are almost settled. This is particularly time consuming for

higher dimensional datasets. Furthermore, it is not necessary to know the exact distance

from a datapoint xi to its corresponding center cj , as long as the triangle inequality holds

true.

3https://www.khronos.org/registry/typedarray/specs/latest/
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Additional information is passed from one iteration to the next iteration in the form of up-

per bounds and lower bounds. The upper bound u(x) denotes the distance of a datapoint

xi to its closest corresponding center cj . The lower bound l(x, c′) denotes the distance of

a datapoint xi to each centroid c′, where cj ,= c′ [Elk03].

Obtaining useful lower bounds that help to skip unnecessary distance calculations will

not be discussed here, detailed information can be found in C. Elkan’s paper “Using the

Triangle Inequality to Accelerate k-means” [Elk03]. Elkan proposes to utilize the trian-

gle inequality by computing an upper bound u(x) and keeps track of k − 1 lower bounds

l(x, c′) for each datapoint xi. Although the algorithm achieves massive speedup compared

to the standard k-means algorithm, it needs additional memory for lower bounds, which is

used to keep track of the distances of a datapoint xi to each centroid c′ (where c′ ,= c and

c denotes the closest center).

Variations of the accelerated k-means algorithm proposed by G. Hamerly and Drake &

Hamerly’s adaptive k-means algorithm show that it is possible to skip most of the distance

computations by keeping track of fewer lower bounds. Hamerly’s algorithm keeps track

of only one upper bound and one lower bound [Ham10]. The adaptive k-means algorithm

keeps track of a variable number b of useful lower bounds, which are considered for dis-

tance computations. Generally good runtime of the algorithm is achieved for an interval

of k
8
≤ b ≤ k

4
[DH12]. Thus, both variations have a much lower memory profile but ex-

ceed Elkan’s algorithm for lower (Hamerly’s algorithm) to mid range (adaptive k-means)

dimensional datasets [DH12].

Adaptive k-means is used here as an algorithmic approach to faster execution and was

implemented in JavaScript. Additionally, a threaded version using web workers was de-

veloped.

4 Experimental Results

This section presents the observations made during the experiments with the different k-

means implementations. All results were produced with an Intel Core i7-3632 QM @

2.20 ×4 CPU and 8GB Memory. As web browsers Mozilla Firefox version 27 and Google

Chrome version 32 were used. The experimental set up primarily considers multithread-

ing approaches with dedicated workers and algorithmic enhancements using adaptive k-

means.

Table 1: Different versions of accelerated k-means clustering applied in our study.

Algorithm Description

standard-kmeans Standard k-means implementation

worker-kmeans standard-kmeans executed from a web worker script

threaded-kmeans Threaded k-means implementation employing web workers

trans-thread-kmeans threaded-kmeans modified to use transferable objects

adapt-kmeans k-means implementation based on the adaptive k-means algorithm

thread-adapt-kmeans Threaded version of adapt-kmeans
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1 2 3

Figure 2: Sample images for three different datasets: 1. A 500× 500 multivariate image of random
intensity images ranging from 0 to 255 and dimensions of d = 30 and d = 60. 2. A 300× 300 tiled
constructed multivariate image containing 9 clusters plus background and dimensions of d = 30

and d = 60. The tiles vary their intensities between −5 and +5 of their average. 3. A 120 × 50

MALDI-MSI dataset from a study on barley seed germination [Gor13] with dimensions of d = 54

and d = 94.

In the following, the different versions will be referenced to as shown in Table 1. The

algorithms are considered to reach convergence if 90% of the centroids do not differ in

the distance of an ε - environment of 1 · 10−7 to the centroids of the previous iteration.

If no convergence occurs the process is terminated after 1000 iterations. For the experi-

ments three different datasets were employed to verify performance in terms of runtime

(Figure 2.1), accuracy (Figure 2.2) and behavior on real MALDI-MSI data (Figure 2.3).

The runtime of the different implementations listed in Table 1 depends on the web browser

used. Overall Chrome achieved better execution times than Firefox for the single threaded

versions, i.e., standard-kmeans and adapt-kmeans. In particular the standard-kmeans method

showed the best results for runtime on the datasets using Chrome, but good runtime re-

sults can also be observed using Firefox (see Figure 3). The second single threaded k-

means version, i.e., adapt-kmeans, showed high variance in its runtime performance. The

obtained runtime results for the Firefox browser show that the algorithmic enhancement

achieved slightly better performance for the constructed and the MALDI-MSI dataset (see

Figure 3 (c) and (e)), however, particularly for the Chrome browser the adapt-kmeans al-

gorithm performs worse than standard-kmeans (see right column of Figure 3).

Firefox performs consistently better for threaded k-means versions such as threaded-kmeans,

trans-thread-kmeans and adapt-thread-kmeans (see Figure 3). In the case of the threaded

version of the adaptive k-means the runtime experiments had to be terminated. Due to

extensive memory usage the test runs could not be finished (see Figure 3 (a) and (b)). Also

the threaded k-means method using transferable objects, i.e., trans-thread-kmeans, was

outperformed by the version using structural cloning, i.e., threaded-kmeans, in most cases

(see Figure 3). The threaded-kmeans method achieves runtime performance comparable

to standard-kmeans (see Figure 3 (c) and (e)) and also exceeds the runtime performance

of the single threaded standard-kmeans version (see Figure 3 (a)). In addition, it could be

observed that the single threaded k-means version pushed into a background thread, i.e.,

worker-kmeans, overall performed worse than the standard-kmeans version (see Figure 3).
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(a) Random image dataset with Firefox (b) Random image dataset with Chrome
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(e) MALDI-MSI dataset with Firefox (f) MALDI-MSI dataset with Chrome

Figure 3: Runtime results of the employed datasets for the Firefox browser (left column) and the
Chrome browser (right column). Figures (a) and (b) Runtime results of the employed k-means
versions for k = 15, 50 and 100 on the random image dataset. Figures (c) and (d) Runtime results
of the employed k-means versions for d = 30 and 60 on the constructed image dataset. Figures (e)
and (f) Runtime results of the employed k-means versions for d = 54 and 94 on the MALDI-MSI
image dataset.
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5 Discussion

On the one hand, the results show that both Firefox and Chrome are able to perform com-

plex tasks such as clustering multi-spectral image data in a client-side environment. The

standard single threaded k-means version overall shows good performance on any of the

datasets and delivers reasonable fast results even for huge datasets (see Figure 1.1 and

Figure 3). On the other hand, the runtime experiments show unexpected variability in

the performance of the algorithmic enhancement approaches and the threaded versions

of the k-means algorithm. One possible reason for the adaptive k-means methods to not

deliver the expected performance boost might be that the termination criterion does not

fit and other criteria might show better results. The high memory usage observed for the

threaded version of the adaptive k-means can partly be explained by the characteristics of

web workers, since a web worker has high memory usage.

For the threaded approaches in general, the overhead for worker start-up and communi-

cation between the threads likely predominates the effects from parallel execution and no

speedup can be measured. Another unexpected observation was made regarding the use

of transferable objects and structural cloning. Transferable objects are a reference that is

passed to a worker-thread. As a consequence the communication delay becomes smaller

and a one to two orders of magnitude faster data transfer rate, than with structural cloning,

can be achieved. Despite faster transfer rates the trans-thread-kmeans method overall took

longer to finish, which is likely caused by the usage of native arrays and thus achieving

higher precision in the distance computation and recalculation of the k-means prototypes.

6 Conclusion and Outlook

With respect to the initially formulated question, if it is possible to achieve online real time

clustering of high dimensional datasets within a client-side web browser environment, the

experimental results show that this goal could be successfully achieved for multi-spectral

image datasets. The second question, whether or not it is feasible to accelerate heavy

computational tasks, like clustering, with either computational approaches or algorithmic

enhancements needs to be investigated further. At least for the current browser versions,

trying to accelerate k-means with mutithreading or by using the adaptive version actually

performs slower than the standard implementation.

Regardless of problems concerning the multithreaded versions of the k-means algorithm,

the runtime experiment results show, that online real time clustering of multi-spectral

datasets is possible. This enables new visualizations, e.g., a user can cluster a hyper-

spectral image, de-select single channels of it and get a new clustering result directly.

Thereby, interactive exploration of datasets with the help of cluster analysis becomes pos-

sible.

Both web browsers achieve good performance and respond with a new clustering result in

less than three seconds for either of the datasets and with all channels selected.

It remains to be seen if the threading approaches get more potential with future features for

web browsers. With broader support across all browsers the shared worker API might be a
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possible candidate for concurrency computing models in a web browser environment. Up

until now, single threaded approaches seem to be superior to concurrency models. With

later iterations of the Web Worker interface and optimized approaches for concurrency

computing in a web browser environment, client-side web browser solutions can become

a viable addition to current approaches for the analysis of high dimensional image datasets.
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