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Abstract: The transformation of sequential legacy code to parallel applications is
hard, especially when timing requirements have to be met. There exists a systematic
parallelization approach dealing with this topic. Based on practical experience, we
extend it and present our modifications. Our extensions comprise an additional phase
dealing with implementation details and another one for quality assurance. Its results
may be used to further improve the parallel program. Moreover, we propose tool
support which further facilitates the parallelization process.

1 Introduction

It is hard to parallelize a sequential legacy program [MBCI11]], especially when it has to
meet hard real-time requirements. These programs have to finish their execution within
a specific time interval (deadline). This is assured by estimating the worst case execution
time (WCETf] [WEE™08].

The parallelization approach by Jahr et al. [JGU13b,JGU13a] was developed for the par-
allelization of legacy sequential hard real-time applications. It was applied on several
industrial applications in the parMERASA project [UBG™ 13, [UBG™ 15]. Following this
experience, we extend the approach. Our modifications are an additional phase for im-
plementation and another one for checking functional and timing constraints. Since Jahr
et al. do not describe any supporting tools and it seems that everything has to be done
manually, we give a brief overview on existing and planned tools we propose for assisting
the parallelization.

The structure of this paper is as follows: the next section presents related work and
the original approach. In section [3] we describe our extensions. Supporting tools are
characterized in section 4 Finally, the paper is concluded and an outlook is given in
section[3l

The execution time which might occur when running the longest possible path in the program. For applications
without real-time requirements, the execution time is also an applicable measure.
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2 Related Work and the Original Approach

Well-known parallelization approaches in high-performance computing are the parallel
pattern language by Mattson et al. [MSM04, MMSO99] and the PCAM approach by Fos-
ter [Fos95]]. Inspired by those, Jahr et al. introduced a pattern-supported parallelization
approach [JGU13b|, which we focus on. It is platform independent and applicable for hard
real-time systems [JGU13a]. In the remainder, we will refer to it as Jahr-approach.

This approach mainly consists of two phases which are called Reveal Parallelism and Opti-
mize Parallelism. In the first phase (Reveal Parallelism), the transition from the existing
source code to a model takes place, which is an extended UML2 activity diagram called
activity and pattern diagram (APD). The phase is characterized by extracting segments for
parallel execution and creating an APD with a high degree of parallelism. Thereby, the
usage of the operators fork and join is not allowed anymore. Instead, an additional type of
activity node is provided which represents parallel design patterns (PDPsﬂ These PDPs
are the only way to introduce parallelism to the program. They are taken from a pattern cat-
alogue. In the parMERASA project, a pattern catalogue containing only timing-analysable
PDPs was assembled [[GJU13|]. Thereby, if the sequential program is timing-analysable and
only these timing-analysable PDPs are utilized to introduce parallelism to the program, the
resulting parallel program will also be timing-analysableﬂ [JGU™14]. As a further basis for
the second phase, the WCETSs of the individual segments have to be determined and the
dependencies between them are collected.

The goal of the second phase (Optimize Parallelism) is to optimize the APD for the target
platform and implement the changes in the source code. At the optimization, several
optimized APDs form a Pareto front in terms of minimizing their overall WCET and
number of threads as well as the number of shared variables to be synchronized. Thereby,
the overall WCET estimation is composed of WCET estimations of the code segments
extracted in the first phase. These segments represent sequential sections in the input APD.
The optimized APDs are generated by re-arranging the segments. Synchronization between
the segments may only be estimated. One of the APDs from the Pareto front has to be
chosen and is basis for implementing the parallel code. An example of a generated Pareto
front can be seen in Figure|l} It shows the relation between several APDs in terms of their
overall WCET and the number of applied threads. While the Jahr-approach does not go
into detail at the implementation, we extended the approach with a third phase dealing with
the implementation, see details in section E}

In the parMERASA project [UBGT 13|, the Jahr-approach was applied successfully in
automotive, avionics [PQnZ™ 14| and construction machinery [JEG™ 14| JEGU14] domains.
Four legacy hard real-time applications were considered: motor injection, collision avoid-
ance, stereo navigation and the control program of a foundation crane. All of these appli-
cations were written in C. Parallelization results including WCET speedups are provided
in [UBG™15].

An alternative to our parallelization approach could be automatic parallelization. It is

2PDPs are a textual description of situations where parallelism could be applied.
3The targeted multi-core platform and its corresponding system software has to be timing-analysable, too.
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Figure 1: Optimization for minimal approximated WCET and minimal number of threads. Each x
represents an APD and o are optimal APDs belonging to the Pareto front.

researched e.g. by Cordes et al. [CMMI10] or Kempf et al. [KVP11]. However, these
approaches are limited to specific situations the tools are able to detect automatically.
Situations fitting only roughly will not be taken into account. Therefore, chances for
parallel execution may be missed. However, these tools may be utilized as assistance when
trying to find situations for parallelism in the first phase.

3 Extended Parallelization Approach

Following the practical experience made in the parMERASA project, we extended the
Jahr-approach. Thereby, our goal is to remain platform independent and our extended
approach may also be applied on industrial embedded real-time applications.

Figure|2]illustrates how the extended parallelization approach works: Phase I (Revealing
Parallelism) proceeds like described in the Jahr-approach, which exposes PDPs to facilitate
timing analysis. Therefore, the code has to be analysed according to its data dependencies
and control flow. Based on these analyses, parallel segments of code can be determined
and PDPs applied to build an APD. Furthermore, the parallel segments in code have to be
annotated to get a connection between code and model level.

In the Jahr-approach, the optimization as well as the implementation take place in phase
II (Optimizing Parallelism). For a clear separation of concerns, we split this phase into
optimization (phase II) and implementation (phase III) to focus on their specific issues.
Now, phase II represents the model level, taking the APD of phase I, the WCETsS of the
segments and the list of dependencies as input and computing a set of optimized APDs.
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Figure 2: The four phases of the extended parallelization approach are I. Revealing Parallelism,
II. Optimizing Parallelism, III. Implementation and I'V. Quality Assurance. There is also a refinement
loop with a feedback path from Quality Assurance to Optimizing Parallelism which is utilized to
perform further optimization. Existing tools are underlined and ideas for future tools appear in
parentheses.

Thereby, several variations of APDs are built. The basis for each of them is the input APD,
which obtains a high degree of parallelism. The generation of the models takes place by
turning on and off some of the PDPs of the basis APD. Afterwards, the generated APDs
are evaluated using the estimated WCETs. The results are compared to find an optimal
trade-off between minimizing the overall WCET, the synchronization effort and the applied
number of threads. Finally, one APD variation is chosen from the resulting Pareto front for
the implementation in phase III.

We share the opinion that the implementation is not trivial and should be considered as extra
phase requiring own tool-support. In concrete, this new phase III includes the integration of
synchronization and parallel execution in code. It takes the optimized APD of phase II and
modifies the sequential legacy code according to this model. Therefore, the location of each
PDP in the APD must be identified in the sequential code utilizing the annotations of phase
I. The corresponding code is replaced by an implementation for parallel execution of these
segments. Additionally, all synchronization points have to be identified and implemented
in code. The result is source code executable on a parallel platform. Phase III leads to a
clear separation of the model and code level.

In the original Jahr-approach, there is neither a check whether the deadlines hold in the
parallel program, nor one for the functional correctness. Thus, we see the need of an
additional phase IV called Quality Assurance considering these aspects and to adapt the
parallel program if neccessary. The validation of functional correctness takes place by
comparing the results and a defined set of variables of the sequential and parallel execution.
Thereby, the code coverage is observed to ensure sufficient testing. If functional failures
occur, one has to check phase I and phase III looking for possible mistake The evaluation

“4In phase I, it is only decided which program parts (defined by PDPs) will be executed in parallel. Therefore,
no functional failures may occur.
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of the parallel code’s timing behavior is done by an WCET analysis, which concretely
considers the overhead caused by the interaction of the parallel segments. The new results
can be compared to the timing requirements.

In addition to the four phases there is a refinement loop to enable the optimization of the
parallel code based on the results of phase IV. It enables the step back to model level
(phase II) if the numbers do not meet the expectations (e.g. the WCET is too high). This
loop involves the phases Optimize Parallelism, Implementation and Quality Assurance and
utilizes the quality assurance numbers (mainly the calculated WCET) to gain a more realistic
estimation of the overall WCETs in phase II. Therefore, the WCET and synchronization
estimations of phase II may be updated applying the results of phase I'V. This leads to a
closer estimation of the WCET and possibly some new variations of APDs are suitable for
parallelization. Thus, a new Pareto front can be calculated. Afterwards, an APD with more
realistic estimations can be chosen and implemented.

4 Tool Support

Jahr et al. neither describe any tools assisting the parallelization process, nor how the steps
may be done efficiently. Therefore, we give a brief overview on some tools that support
our extended parallelization approach in this section. The original Jahr-approach as well as
our approach are model-based and therefore platform and language independent. However,
in this section, we focus on tools for the programming language C. Other tools may be
utilized for other programming languages, but also for C. Most of the following proposals
were developed or extended during the parMERASA project [UBG™13]. In all phases,
standard UML tools may be used to handle the APD. Furthermore, the APD is additionally
represented in XML to facilitate the modification of a particular model.

4.1 Tools for Phase I

Several tools were developed by Rapita Systems in their Rapita Verification SuiteE] (RVS)
during parMERASA project, e.g. they provide a dependency tool. It utilizes a trace of a
program execution to show all accesses to shared variables and the order of these accesses.
Additionally, it supports a static mode to just make a list of all occurrences of shared
variables.

A measurement-based WCET tool like RapiTime or a static timing analysis tool like
OTAWA [BCRS11] has to be employed to determine the WCET of the different program
segments.

Unfortunately, until now the code has to be analyzed manually to find situations where PDPs
could be applied. We are currently discussing how this could work semi-automatically. A

SHomepage: |http: //www.rapitasystems.com/ Licence: proprietary; tools for parallel analysis may
not have been released yet. RVS includes e.g. RapiTime, RapiCheck, RapiTask and RapiCover.
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first step could be the segmentation of code into different pieces based on the obtained data
dependencies and existing control structures (conditional blocks, loops, etc.). The extracted
segments, combined with the data dependencies, can be applied to suggest parallel sections.

Furthermore, tools for automatic parallelization may be utilized in an assisting role to find
situations for parallel execution, see [KVP11,|[CMM10] for examples.

4.2 Tools for Phase I1

To facilitate phase II, a speedup approximation and APD optimization tool has been
developed, which is described in [JSK™14]. It is open source and can be downloaded on
GitHulfl The tool takes a XML file (representing an APD), a list of functions and all global
variables accessed by the passed functions. During execution, it applies a genetic algorithm
to find optimized APDs. Finally, we get the Pareto front (cf. section[2).

4.3 Tools for Phase II1

At the implementation, we see potential to generate code (semi-)automatically: First, for
the synchronization of shared variables, mutator methods (get -/ set—functions) may
be automatically generated including the necessary synchronization like e.g. locks or
non-blocking functions (see [Her91, HLMO3]).

Second, we developed a library composed of timing-analysable algorithmic skeletons
(TAS) [SEJU15], which implement PDPs applicable for hard real-time systems [GJU13]].
Thereby, these PDPs are the same as the ones usable in APDs. The library is open source{?]>
a detailed description how to use it can be found in [JSK™14].

Combining the APD (in XML format) with our timing-analysable algorithmic skeletons
(TAS), we have the idea that the skeletons could be automatically placed in code where
PDPs are applied. Therefore, we plan to use the annotations of phase I, which tag the
location of possible parallelisms. Applying the results of phase II, the PDPs may be
switched on or off and a tool replaces the corresponding source code with code calling our
library. Hence, the skeleton library can be seen as basis for a tool that provides support for
implementing parallelization.

4.4 Tools for Phase IV

In this new phase, the functional and timing correctness of the parallel program is analysed.
The static analysis tool OTAWA and the measurement-based tool RapiTime were extended

SHomepage: https://www.github.com/parmerasa-uau/parallelism-optimization/
Licence: GNU LGPL v3
"Homepage: https://www.github.com/parmerasa—-uau/tas/ Licence: GNU LGPL v3
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for the timing analysis of parallel code. These extensions are described in detail in [par14].
Here, we give a short overview on further extensions, which are described in the same
deliverable: RapiCheck allows to check the functional equivalency between the parallel
and sequential program and thus to verify if the parallelization was performed correctly. In
case of a discovered functional failure, the trace viewing tool RapiTask may help to locate
it and therefore to determine the step of the parallelization process where the failure occurs.
Finally, RapiCover provides code coverage functionality to expose how thoroughly the
code is tested. All these tools enable analysis of the resulting code of phase III and can be
applied for measuring the quality of the implemented parallelization (i.e. speedups, holding
the deadlines, constraint checking and code coverage).

The results determined with these tools show the real behaviour of the parallelized program
on the parallel platform. Therefore, they form a good basis for an improved optimization in
phase II.

5 Conclusion and Outlook

We presented an extension of the pattern-based parallelization approach which was origi-
nally introduced by Jahr et al. [JGU13bl, JGU13al]. With the introduction of phase III, more
attention is spent to the implementation. The additional phase for quality assurance checks
the functional and timing correctness. Its results may be employed to iteratively improve
the parallel program.

Although there is not yet a tool available to fully automate the parallelization process or the
revealing of potential parallelism, we gave an overview over several assisting tools:

For phase I, there is a tool finding dependencies and creating a XML file of them. Further
tools exist for timing analysis. We developed a tool for phase II which takes a highly
parallel APD together with the WCETs of the program segments and a list of dependencies
to find optimal APDs. At the implementation in phase III, we suggest using a code
generator for the synchronization functions. Additionally, our algorithmic skeleton library
eases the implementation of PDPs in the source code. We plan a tool to automate this
process. In phase IV, a timing analysis of the parallel program is done which may lead to
further improvements starting from phase II.

Altogether, we plan to further improve our tools and to develop some more tools to enable
a (semi-)automated parallelization with our extended parallelization approach.
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