
Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

What is Needed in a MetaCASE Environment? 25

Steven Kelly, Matti Rossi, Juha-Pekka Tolvanen

What is Needed in a MetaCASE
Environment?

In this paper we look at ways of effectively implementing software development environments through
metaCASE tools. MetaCASE tools offer fast and economical means of supporting tailored or homegrown systems
development methods, yet they have not been taken into use widely due to their perceived complexity and the
lack of development process maturity in most organisations. We offer a list of generic requirements for these tools
and demonstrate their use through evaluating the MetaEdit+ tool against these requirements. The requirements
are gathered from existing literature on method engineering.

1 Introduction

Customisation of software is not a new idea: many
application domains, such as ERP software or
telecom switches, apply it. Having a customised tool
makes users more productive, shortens learning
curves, and reduces errors. In software engineering,
customisation of modelling and code generation
tools is not done extensively due to the high costs
and expertise required. Having metamodelling
facilities, e.g. MOF or its Eclipse implementation
EMF, and frameworks for CASE-style graphical
editors, e.g. Eclipse’s GEF, does help, but still the
costs can be prohibitive. For example, with Eclipse it
takes about 5000 man-days, roughly 25 man-years,
to implement support for UML [Strö05].

A true metaCASE environment can offer major
reductions in these costs. For instance, with a
metaCASE environment it takes less than 5 man-
days to implement support for UML; for another
metamodel, the difference was a factor of 2000
[Kell04]. Perhaps the defining feature of such a
metaCASE environment is that the user should
merely specify the desired modelling language,
without having to program either it or any tool
functionality to support it.

In this paper we look at the functionality of a
metaCASE environment that goes beyond plain
metamodelling into tool construction, modelling
language evolution, model and metamodel sharing
etc. As such, it extends current research on
specifying evaluation criteria and comparing

metaCASE tools [MRTL93; MaHR96; IsLa97]. In the
next section we look at general requirements for
tools for modelling language definition and use. The
third section applies these to MetaEdit+ environment
to demonstrate their application. In the last section
we provide conclusions and future research.

2 Requirements for MetaCASE
Enviroments

Many researchers and practitioners have presented
wish lists for metaCASE environments. The literature
also uses terms such as method engineering tools,
CAME (Computer Aided Method Engineering) tools,
CASE-shells, metamodelling tools or meta tools to
denote environments where modelling support can
be defined by the user. Some of these only handle
either definition of new modelling languages or
support for modelling in those languages; a
metaCASE environment includes both.

We surveyed the literature on tool proposals and
tool comparisons to identify common requirements
for metaCASE environments. As a basis of our
synthesis we have used a few key articles from
previous metaCASE research [KoKo84; SoTM88;
KuWe92; MLR+92; KaSc93; MRTL93]. These were
among the first articles to enumerate specific tool
requirement or capability lists. As pointed out in
Leppänen’s recent survey of the area [Lepp05],
these articles still present the state-of-the-art in the
field.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

26 Steven Kelly, Matti Rossi, Juha-Pekka Tolvanen

2.1 Definition of modelling languages

The first obvious requirement is that a metaCASE
environment can specify the concepts, rules, and
symbols of individual modelling languages as well as
their interconnection rules. Moreover, the modelling
language definitions should be as complete as
possible, and should be relatively easy and fast to
make, as far away from programming a CASE tool as
possible.

The cornerstone when defining a modelling language
into a CASE environment is the definition language
i.e. metamodelling language [TMHY80]. A powerful
metamodelling language guarantees that a
modelling language can be successfully defined, but
trying to support all possible cases can lead to the
language can become very time consuming and
complicated to use for most cases. The expressive
power of the metamodel should thus be maximized,
but without introducing undue complexity: language
definition must be efficient [Klin93].

The simplicity and ease of use [KoKo84; SoTM88] of
the metamodel definition facilities are vital. The
system is intended to provide a platform for
developing CASE tools and the tool developers are
assumed to be experts in the domain of the
modelling language, not database or tool
implementation experts [KuWe92]. To speed up
modelling language development, there should be
frameworks or “starter kits” with reuse support
tools. The system should be able to catch and flag
common errors in environment definition.

2.2 Metamodelling process and
metamodel management

An important part of ease of use is being able to see
the results of actions immediately. This calls for the
possibility to incrementally test parts of the
metamodel implemented so far [SoTM88; Ka Sc93].
This can be seen as prototyping of modelling
languages, where parts of the modelling language
can be tested and refined while developing the
overall metamodel.

Support for incremental metamodelling also requires
that the models made with previous versions of the
modelling language are automatically updated to
reflect the changes, whenever possible [KeTa94].
Modelling languages, and especially their usage,
usually evolve as time goes by and there is thus a
corresponding need to change their definitions in the
tool. Experience shows that the most common
changes are the addition of new metamodel
elements and the removal or deprecation of old
metamodel elements. Also, rules are more often

relaxed than tightened, whereas the changeability of
symbols appears to vary widely from case to case.

A metaCASE environment should provide
functionality for metamodel management similar to
a CASE tool’s functions for model management. This
includes browsers, documentation tools, libraries for
metamodels, and setting of access rights for editing
metamodels.

2.3 Creation of modelling tools

Based on the modelling language definitions, a
metaCASE environment should provide the
necessary modelling tools to support systems design
tasks with the given language. These include
different kinds of editors, toolbars, dialogs, online
help, etc. The creation of these tools should be
automatic, based on the metamodels. Although
many current modelling tools focus on creating
graphical editors, also other types of model
representations should be supported, like matrixes,
tables, text etc [KeLR96].

Whilst one way to create the tools is to generate the
necessary code, in general it is better that the
environment already includes generic tools, and
these configure themselves based on the
metamodel. This makes language development and
maintenance safer and easier for the method
engineer. This approach allows the separation of
parts that change infrequently (base tool behaviour
such as object selection and movement) from parts
that change more frequently (the metamodel and its
symbols). The same separation is also found when
considering the different core competences of the
metaCASE tool provider and the metamodeller, or
the commonalities and variabilities between different
modelling tools made with the same metaCASE tool.

2.4 Repository

Model data differs from traditional single user
applications in that there are often multiple users
who need to interact simultaneously, and from
traditional multi-user database applications in that
the data elements may be reused at a fine level of
granularity to form a complex network.

Both models and metamodels should be stored in a
multi-user repository and be accessible to
developers. This offers an effective way to share the
metamodels and update them during modelling
language evolution: a customised tool must evolve.

Vessey and Sravanapudi [VeSr95] provide an
extensive set of references and motivation on the
requirements for multi-user CASE. They divide the
needed functionality into taskware (basic CASE

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

What is Needed in a MetaCASE Environment? 27

functionality, no communication necessary),
teamware (CASE information sharing, access control
and monitoring), and groupware (non-CASE
communication, time and meeting management).
We agree with them that the most prominent needs
are for teamware, in particular the ability to share
information, with concurrency control ‘to resolve
conflict and support tightly coupled group activities’.
They perceive groups as working most frequently in
an asynchronous mode, but also sometimes needing
to access shared resources at the same time.

The ability to identify not only the models, but also
their components such as individual objects, and
possibly even individual properties, is important for
later reuse of parts of the models and for effective
manipulation of models [KoKo84]. The resulting
highly interlinked network has been seen as a major
departure from relational models in the repository
support of the CASE tool [SoTM88]. Typically, the
data in CASE repository is made out of small
objects, which have complex dependencies and
internal structure, so their efficient management
becomes a focal issue.

2.5 Code generation and reports

In addition to the model editing and storing, a
metaCASE environment should allow the definition of
code generators, various model analyses, and model
documentation reports. Reports to check models are
also needed: although a good metamodel includes
all the rules of the modelling language, checking
them cannot be fully automatic: some rules should
be checked only after models are considered
complete.

2.6 Several levels of modifiability

As there are multiple roles associated with modelling
language and IS development, there are several
different views on the needed modifiability [KaSc93;
MRTL93]. At the organizational level there is a need
to develop a common language, or a reference
model, for ISD, whereas at the individual project
level there are contingencies that force the users to
adapt the modelling language to the situation at
hand. At the user level there are usually individual
preferences about the way of interacting with the
CASE tool.

2.7 Interchange format for metamodel
and model definitions

The resulting CASE tool should provide importing
and exporting of both models and metamodels.
Importing should be incremental: previously
imported data from the same exporter should be

updated automatically, rather than creating
duplicates.

Part of the reason for an interchange format is to
support multiple users working in the same tool. In
tools without a multi-user repository, this will
normally be the main file format, although support
for sharing smaller collections of model elements is
also useful. The other reason for an interchange
format, at least in theory, is to allow data
interchange with different modelling tools or other
tools. The history of attempts at such interchange
formats is not encouraging. The suggested
standards have generally been poor even on paper,
implementations supporting them rare, and the
chance of finding two different tools between which
interchange works negligible.

The most recent attempt at an interchange format is
XMI. The OMG has XMI versions 1.0, 1.1, 1.2 and
2.0, with 2.1 under development. According to
Google at the time of writing there are 865 XMI files
on the web using version 1.0, 78 for 1.1, 64 for 1.2,
and 34 for 2.0 (released in 2003). Those figures give
some indication of the adoption of XMI as a format,
and discussions with researchers bear out the
negative impression. It seems everybody was
interested in XMI when it first came out, but most
who actually tried to use it found it lacking.
Subsequent versions have certainly not improved
the situation.

An interchange format between modelling tools
should in any case only be used as a one-shot
transformation: trying to maintain the same models
or metamodels in two tools is generally not a good
idea.

3 Solutions in MetaEdit+

MetaEdit+ is a customizable CASE environment that
supports both CASE and metaCASE functionality for
multiple users within the same environment. It
supports and integrates multiple modelling
languages and includes multiple editing tools for
diagrams, matrices and tables. It was developed in
the MetaPHOR project, which had earlier developed
the single user MetaEdit metaCASE tool [KeLR96].
Figure 1 shows the architecture of MetaEdit+, which
is a client-server with the server containing the
repository and a thin server process to communicate
with clients and handle locking etc. Each client
containing a central MetaEngine and various tools,
through each of which a user can view and edit
design objects in a particular way. The MetaEngine is
a service layer which presents a public interface to
the models and metamodels in the repository.
Software tools request services of the MetaEngine in

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

28 Steven Kelly, Matti Rossi, Juha-Pekka Tolvanen

Figure 1: MetaEdit+ architecture

accessing and manipulating repository data. This
design choice allows flexible integration of new tools,
each only responsible for its own view (including
operations) on the same underlying repository data.
A tool can be for example a diagram, matrix, or
table editor or report generator.

The adoption of full object orientation enables
flexible organization and reuse of software
components in the environment and a high level of
interoperability between tools. MetaEdit+ supports
Data independence as defined in traditional data
base theory i.e. tools operate on design information
without “knowledge” of its physical organization, or
logical access structure. Representation
independence forms a continuum with data
independence and it allows conceptual design
objects to exist independently of their alternative
representations as text, matrix or graphical
representations [SLTM91]. This principle allows
flexible addition of new tools, each one only
responsible for its own paradigmatically different
view on the same underlying data.

In the rest of this section, we answer the questions
raised in Section 2. The following subsections are
organized as answers to the questions raised above.

3.1 Definition of modelling languages

The core constructs of MetaEdit+ are in its
conceptual meta-metamodel called GOPRR [SLTM91,
KeLR96]. The top-level GOPRR concept is the Graph.
A Graph can contain Objects, which are linked
together via bindings. The centre of each binding is
a Relationship and it may have two or more Roles,
allowing n-ary relationships. One Role leads out to

each Object involved, either connecting directly to it
or via a Port on the Object. A Graph can also specify
explosions from each Object, Role or Relationship to
possibly multiple Graphs, and each Object can also
specify a single decomposition sub-Graph.

All of these concepts can have Properties, whose
values can be simple (string, number, Boolean, text
etc.) or complex: references to another concept or
collection of concepts. This allows arbitrarily deep
nesting and complex networks of objects, e.g. a
UML-like ‘Class’ object could have an ‘Attributes’
property containing a collection of ‘Attribute’ objects,
each specifying strings ‘Name’ and ‘Data type’, a
Boolean ‘Derived?’ etc. String properties can also be
restricted to be from a list, e.g. an Attribute could
have a string property, ‘Visibility’, which could only
take values of “public”, “private” or “protected”.

Metamodels are defined through form-based tools,
one for each concept. Figure 2 shows the definition
of UML’s Attribute in an Object tool, and of its
Visibility property in a Property tool.

Most rules and constraints in metamodels are to be
found in the definition of Graph types. In GOPRR, an
Object type does not specify which Relationship
types it may take part in, nor vice versa. This is not
a feature of an Object itself, but of a particular
Graph type where that Object is used: specifying it
in the Object type would severely restrict the ability
to reuse the same Object type in different Graph
types. A Graph type thus specifies the legal bindings
of Objects, Relationships, Roles and Ports, including
the cardinality of the Roles: how many times may a
given Role repeat within a single binding, e.g. an
inheritance relationship may have only one

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

What is Needed in a MetaCASE Environment? 29

Figure 2: Metamodelling tools for UML Attribute and Access level

Generalization role to the superclass, but the
Specialization role may occur 1..N times. Bindings
thus handle the expression of most of the rules
about how objects may be connected together,
expressing the rules in a simple format that is easier
to understand and manipulate than other
approaches such as set theory, predicate logic or
scripting languages like OCL.

In addition to bindings, other constraints can be
expressed, including connectivity and port
constraints. Figure 3 shows the constraints list for a
UML State diagram and the form for specifying the
highlighted connectivity constraint. It also shows a
form specifying a Port constraint for an example
metamodel of electrical circuits: each object there
has ports that specify their voltage, direction (in or
out), and type (analogue or digital), and the
constraint thus specifies that only ports specifying
the same voltage can be connected. Similar
constraints for different direction and the same type
would also be specified. Again, the specification of
the constraints is simple and requires no
programming. The set of possible constraints is
based on those that are found in real modelling
languages, both standard and domain-specific.
Whilst this cannot of course cover all constraints it is
possible to invent, our experience is that those
provided have been sufficient. Indeed, frequently
metamodellers are initially enthusiastic about
creating constraints, but feedback from modellers

soon convinces them to allow richer models, and
extend code generation to supply the required
semantics.

The GOPRR data model makes a distinction between
the representational and the conceptual aspects of a
modelling language to allow for multiple different
representations of the same concept. This approach
allows the CASE environment to support a wide
range of modelling languages and visualisations. The
GOPRR model is object-oriented. It includes both
abstract and concrete inheritance of structure and
behaviour, polymorphism, overloading, and
class/object paradigm. The true object oriented
nature of the design and implementation of GOPRR
allows fine-grained identification of the units (which
we call components), as both the types and
instances can be identified into the property level
regardless of their values. The Graph and Project, as
well as Property’s ability to contain other types allow
versatile support for modelling complex objects and
recursive structures.

MetaEdit+ is designed from its information model up
to provide strong support for reuse. All GOPRR
components can be reused, on both type and
instance levels. In particular, graphs display a type-
free interface to components, allowing them to be
reused across different modelling languages, but still
supporting the linking of interface relationships of an
object in a higher level graph to the objects within

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

30 Steven Kelly, Matti Rossi, Juha-Pekka Tolvanen

Figure 3: Constraints list, Connectivity and Port Constraint Definers

the lower level decomposition graph. This allows
graphs to be reused in a similar way to components
in CAD, including both black-box and white-box
reuse.

3.2 Metamodelling process and
metamodel management

As MetaEdit+ allows incremental specification of
modelling languages, it must allow for incomplete
metamodels, while allowing users to model by using
these partial specifications. Method engineers can
change components of a metamodel even while
system developers are working with older versions
of the metamodel. The modelling language can be
developed and simultaneously tested on the method
engineer’s workstation in much the same way as
described in [Hedi92]. As the method engineer
commits his changes to the database, the other
users’ models update to the new modelling language
specification (see [KeTa94; KeLR96] for discussion
about the locking implementation, which is critical
for this kind of modifiability to work).

Data continuity, i.e. that existing models remain
usable even after metamodel changes, is confirmed
by a number of checkings and limitations to the
metamodel evolution possibilities. The idea is that
the user can always be guaranteed data continuity
while working with partial metamodels. In cases
where old descriptions are in conflict with new
modelling language definitions, the old data remains
intact. For example if types are removed from a
metamodel, the models can still have instances of
the deleted types, but there is no possibility to add
new instances of the deleted types. The old models
are automatically updated to refer to the new

metamodel version at the next transaction boundary
after the modification.

Metamodels can be managed with a variety of tools
showing individual metamodel elements, browsers
showing trees and lists of how the elements are
related, and management tools for importing,
exporting and deleting metamodel elements. The
management tools all work at a high level, allowing
users to choose Graph types to operate on, rather
than having to select the individual types that will be
exported or deleted. This prevents the user from
exporting a Graph type but missing a Property type
needed in one of its Object types, or conversely
stops him deleting a Property type that is still used
by some Object type. All these tools also allow the
user to see which types are used by the selected
type, and which types use the selected type.

3.3 Creation of modelling tools

MetaEdit+ includes a comprehensive set of generic
modelling tools which adapt themselves to the
metamodel currently being used. The tools’
behavior, menus, toolbars and dialogs all change to
reflect the metamodel, without any work on the part
of the metamodeler. This allows the metamodeler to
concentrate on the metamodel, not its
implementation in code, and provides the largest
savings in the costs of building a new modelling
language and tool support for it.

Tool support for reuse is built into the MetaEngine,
and is thus available in all editors, browsers etc. This
includes the ability to select graphs, objects,
relationships, roles and properties for reuse,
selecting them based on their type or via another
component that already uses them. In addition,

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

What is Needed in a MetaCASE Environment? 31

browsers offer wildcard string-based queries against
type and identifying property.

3.4 Repository

The heart of the MetaEdit+ environment is the
Object Repository. The repository is implemented as
a database running in a central server: clients
communicate only through shared data and state in
the server. All information in MetaEdit+ is stored in
the Object Repository, including metamodels,
diagrams, matrices, objects, properties, and even
font selections. Hence, modification of models or
modelling languages in one MetaEdit+ client is
automatically reflected to other clients on
transaction boundaries, guaranteeing consistent and
up-to-date information.

The Object Repository itself is designed to be mostly
invisible to users, allowing collaborative teamwork
with the minimum of distractions. The use of the
repository is visible only when a user starts or exits
MetaEdit+, opens or closes projects, and commits or
abandons transactions. A repository is composed of
projects, each of which contains a set of graphs that
describe a particular system, and possibly some
metamodels. Opening a project reads all the models
in that project and their top level objects, so they
are visible to users e.g. in browsers. However, not
all fine-grained components (i.e. individual sub-
objects, properties etc.) are read: these are only
read as they are needed, e.g. when they are being
displayed in a model which the user opens. If all
data were loaded immediately, start-up times would
be too long for large repositories: in some projects
MetaEdit+ is used in there are hundreds of users
and tens of gigabytes of models. Loading
incrementally in this way has been found to provide
a good compromise: the initial start-up time is a few
or several seconds, and loading a cluster of data
subsequently – e.g. all the fine-grained components
needed when opening a model for the first time –
takes less than a second.

3.5 Code generation and reports

Code generation, documentation generation and
model-checking reports are all performed in
MetaEdit+ by running reports. Reports access
information in the repository and transform it into
various text-based outputs. Reports can also output
information in various graphical formats, call
subreports, query information from the user with a
dialog, or call external programs and commands.

MetaEdit+ includes a number of generic reports that
will work with any metamodel, such as generating
documentation in HTML, RTF or Word formats, or
performing elementary checks on models. The
library of existing metamodels that accompanies
MetaEdit+ also includes appropriate code
generators, e.g. for SQL from ER diagrams or for
C++, Smalltalk, Java and other object-oriented
languages from Class Diagrams and similar
metamodels. With the Report Browser users can
view and edit these, and most importantly make
their own new reports and queries on the repository.

The MetaEdit+ reporting language is a domain-
specific language, designed specifically for the task
of transforming the object structure of a model into
text. Whilst existing languages were considered,
none seemed to fit the task well: there were
languages for processing one text stream into
another text stream (e.g. Perl), or for processing
one object structure into another (e.g. any object-
oriented language), but not for navigating an object
structure and outputting text.

The syntax is vaguely C-like (curly brackets and
semicolons), with common keywords based on
pseudo code (if..then..else..endif, dowhile, foreach
etc.). Two key areas in the language are its support
for navigation around the model structures and its
extensive use of streams. All output from report
commands goes to the current default output
stream: for instance, the simplest command is any
single quoted string, which is copied to the output
stream (e.g. line 1 in Listing 1). Loop structures
combine the normal control function of a loop with
model navigation, e.g. line 2 below will run the block
of lines 3–11 once for each State object in the
current model: we can consider that we navigate so
that we are ‘in’ the State, run the block, navigate to
another State and so on. Thus references to
properties like :Name in line 4 will refer to the Name
property of the then current State.

Line 7 shows another example of navigation: "do
~From~To.State". Starting from the outer loop's
current State, it says to crawl along any From role
and its To role into the next State. That one line
replaces twelve lines that would be necessary if C#
would have been used as the reporting language.
This kind of pattern is very common in any code
generation or reporting on a model. Users of other
tools whose reporting languages are standard 3GLs
will thus quickly find their code full of similar blocks
of 12 lines of code: ironic in tools intended to save
developers from such unproductive code duplication.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

32 Steven Kelly, Matti Rossi, Juha-Pekka Tolvanen

Figure 4: The Report Browser with its report and concept lists

1 '<h2>States</h2>';
2 foreach .State
3 {
4 '<h3>State Name: '; :Name; '</h3>';
5 '<h4>Outgoing links:</h4>';
6
7 do ~From~To.State
8 {
9 '<p>Refers to: '; :Name; '</p>';
10 }
11 }

Listing 1: Report to generate a list of States and
their successors

In the report above, the only outputs were of fixed
strings or property values, and all went to the
default output stream: a text window opened after
the report has run. Whilst that is useful for checking
reports, often we want to have the output going to a
file. For instance, we could enclose the lines above
inside a filename; … write; … close; structure as in
Listing 2:

0 filename; :ModelName; '.html'; write
 ... lines 1-11 above ...
12 close;

Listing 2: Sending output to a file named after the
graph’s ModelName property

The first thing to note here is that all of the HTML
from Listing 1 will now be output to a file called
<ModelName>.html, where <ModelName> is the
name property of the model the report is run on. In
other words, the output stream for lines 1–11 has
been redirected to a file. Interestingly, the same
approach is used in line 0 to form the name of the
file. The “filename” command opens a new,
temporary stream. :ModelName writes the name of
the model on that stream, and ‘.html’ writes those
five characters on the stream, together forming the
file name. Then the “write” command closes that
temporary stream, reads its contents, creates a file
of that name, and redirects subsequent output into
that file. This use of streams has also been found to
be appropriate when building command strings to
run in the operating system shell, e.g. to compile
the generated files, and when building the name of a
subreport to call, e.g. calling a different subreport
for each type of object found. The latter saves
writing “if type = ‘foo’ then subreport; ‘foo’; run;
endif; if type = ‘bar’ then subreport; ‘bar’; run;
endif;”, replacing it with just “subreport; type; run;”
– the “type” command outputs the name of the type
of the current element, which is then taken as the
name of the subreport to call. This can of course be

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

What is Needed in a MetaCASE Environment? 33

extended arbitrarily to allow the reporting language
equivalent of double dispatch or multimethods.

As well as providing a domain-specific language for
the task of generating code and reports from
models, MetaEdit+ offers a directed editor for editing
reports (Figure 4). The list on the left shows the
reports defined for this Graph type, whilst on the
right is a list of the types present in the modelling
language. The selection in the middle list determines
whether the right hand list shows object types,
relationship types etc., or then various command
templates of the reporting language should as
if…then…else…endif. Double-clicking an entry on the
right inserts the selected type, property or template,
allowing reports to be built easily even for new
users. In the current development version there is
also a full debugger that allows users to step
through reports and follow the stacks of objects,
outputs and subreport calls.

3.6 Several levels of modifiability

MetaEdit+ supports several levels of modification of
the modelling language definitions based on GOPRR
types. The core types of a modelling language are
defined at the repository level (e.g. its GOPRR
types). This can been seen as the development of a
domain ontology [JPW+98]. At the metamodel level
we can define how these components look to the
user, (e.g. definition of the dialogs and symbols,
which are used for inserting the concept instances
into the repository). At the user level sub-views can
be defined to support individual looks of the
components and own styles of interaction (for
example, systems analysts can just look at the high
level descriptions of attributes and system
developers can see the implementation details as
well).

The repository definitions form the base on which
the other modifications are built, while data in the
repository remains consistent with the repository
schema. Even if users have defined different sub-
views on the models, or use different tools to access
and modify the data, consistency is guaranteed.

3.7 Interchange format for metamodel
and model definitions

Because MetaEdit+ uses a multi-user repository,
there is less need for an interchange format between
MetaEdit+ users. However, for the benefit of the
single user version, MetaEdit+ offers a binary
import/export file format for metamodels and/or
models. Importing is incremental: previously
imported data from the same exporter is updated
automatically, rather than creating duplicates. Also,

new data from the same exporter is linked in to
previously imported data from that exporter,
maintaining model consistency and reuse.

XMI suffers from the same problems as MOF, e.g. no
support for n-ary relationships and too much
dependence on UML. For those reasons it was not
sufficiently powerful or flexible for use as the
import/export format for MetaEdit+. Instead, we
used GXL [Wint02]. GXL is significantly better than
XMI in both architecture and schema details, and is
supported by an broad mix of tools. Unfortunately, it
is not yet supported by other major vendors: for
their purposes it seems to have been thought wiser
to quote XMI compliance and provide an XMI
implementation that is incompatible with other
vendors.

As MetaEdit+ 4.0 added the concept of Port, which is
not yet present in GXL, we are currently forced to
use our own extended version of GXL – further
proving the difficulty of achieving a working
interchange format. At the end of the day, though,
all XMI and GXL versions are simply XML documents
containing sufficient information describing models.
As such, there are two ways to get data from XMI
into MetaEdit+. One way is by transforming the XMI
file into the MetaEdit+ GXL format, e.g. using XSLT.
The other way is to have a program read the XMI file
and make calls into MetaEdit+ to create
corresponding objects etc. The MetaEdit+ API uses
SOAP as its protocol, and so can be easily called
from almost any client OS or programming
language.

4 Conclusions and future
research

We have demonstrated that a metaCASE
environment can address the call put forth by the
previous research. The environment provides a
simple yet powerful meta-metamodel and advanced
tools to develop and modify methods. The
metamodelling tools guide the method developers in
their tasks and immediately deliver a running
environment for the modelling language. The
incremental definition of modelling languages and
support for data continuity allow an evolutionary
approach to modelling language development. The
first version of the modelling language can be
defined quickly, then incrementally experimented
with and modified at will until a satisfactory solution
has been found. In the ultimate case, the system
developers can to a certain degree modify or extend
the modelling language while they work and thus
tailor it to the task at hand, while preserving the
integrity of the data with the other team members.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

34 Steven Kelly, Matti Rossi, Juha-Pekka Tolvanen

To summarize, the key architectural and
implementation principles behind MetaEdit+
environment and tools are:

• the ease of use of the modelling language
definition languages and tools,

• an integrated environment for modelling
language definition and use,

• incremental development and testing of the
new method components, and

• support for reuse at both type and instance
levels

The MetaEdit+ environment has been successfully
used for developing support environments for over
100 modelling languages, with commercial
customers in twenty countries. We claim that the
environment now provides most of the functionality
expected from a full-blown modelling tool, while still
supporting flexible and easy to use modelling
language modification. With the support of a
reusable library of textbook modelling languages,
there is a possibility for supporting local needs and
new innovative systems development practices with
a modest effort. Most importantly, creating new
modelling languages does not require specialized
MetaEdit+ consultants to implement the modelling
language into their proprietary tool. Researchers and
innovative users can create variants of existing
methods and combine available methods in new
ways. As we expect to see more revolutionary and
“standard” methods appear, this can be a cost
effective and a low risk way to test and support
them.

In the future, our aim is to carry out further
empirical studies on the use of metaCASE
environments in practice, as in the study of 23 cases
by [LuKT04]. Another research area is at the tool
level: we need to investigate effective means of
cataloguing and searching modelling language
components, i.e. to provide more comprehensive
tools to support reuse in modelling language
development. We have started an effort to develop a
categorization framework and the development of
advanced retrieval tools for modelling language
components [Zhan00].

In 1995 we concluded a paper on requirements for
metaCASE tools as follows: "The future CASE
environment, in our opinion, can be described better
as an evolving organizational knowledge base
(design information system) rather than a passive
data store for system descriptions. This implies that
future environments must have a set of tools to
handle the elicitation of ISD specifications and to
guide the users in gathering information about the

IS, as well as tools to co-ordinate their action during
the development processes. The environment should
also offer a seamless integration of the development
steps and different types of tools. Finally, the
environment should offer users enough flexibility so
that when they demand changes, the environment
can easily accommodate these changes" [MLR+95].
We see this work as taking steps towards that
direction.

References

[Hedi92] Hedin, G: Incremental Semantic Analysis.
Department of Computer Sciences. Lund, Lund
University, 1992.

[IsLa97] Isazadeh, H.; D. Lamb: A Comparative Review of
MetaCASE Tools. In: Systems Development Methods
for the Next Century. Wojtkowski, Plenum Press, 1997.

[JPW+98] Jarke, M.; K. Pohl; K. Weidenhaupt; K. Lyytinen;
P. Marttiin; J.-P. Tolvanen; M. Papazoglou: Meta
Modeling: A Formal Basis for Interoperability and
Adaptability. In: Information Systems Interoperability.
B. Krämer ; M. Papazoglou, John Wiley Research
Science Press, 1998, pp. 229-263.

[KaSc93] Karrer, A.; W. Scacchi: Meta-Environments for
Software Production. In: International Journal of
Software Engineering and Data Engineering 3 (1993)
1, pp. 139-162.

[Kell04] Kelly, S.: Tools for Domain-Specific Modeling. In:
Dr.Dobb’s journal, September, 2004.

[KeLR96] Kelly, S.; K. Lyytinen; M. Rossi: MetaEdit+: A
Fully Configurable Multi-User and Multi-Tool CASE and
CAME Environment. In: Advanced Information Systems
Engineering, proceedings of the 8th International
Conference CAISE'96. P. Constapoulos, J. Mylopoulos
and Y. Vassiliou. Berlin, Springer-Verlag:, 1996, pp. 1-
21.

[KeTa94] Kelly, S.; V.-P. Tahvanainen: Support for
Incremental Method Engineering and MetaCASE. In:
5th Workshop on the Next Generation of CASE Tools,
Enschede, the Netherlands, Universiteit Twente, 1994.

[Klin93] Klint, P.: A Meta-Environment for Generating
Programming Environments. In: ACM Transactions on
Software Engineering and Methodology 2 (1993), 2,
pp. 176-201.

[KoKo84] Kottemann, J. E.; B. R. Konsynski. Dynamic
Metasystems for Information Systems Development.
Fifth International Conference on Information Systems,
1984.

[KuWe92] Kumar, K.; R. J. Welke. Methodology
Engineering: A Proposal for Situation Specific
Methodology Construction. Challenges and Strategies
for Research in Systems Development. W. W.
Kottermann and J. A. Senn. Washington, John Wiley &
Sons: 257-269, 1992.

[Lepp05] Leppänen, M.: An Ontological Framework and a
Methodical Skeleton for Method Engineering – A

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

What is Needed in a MetaCASE Environment? 35

Contextual Approach, Doctoral Thesis, Jyväskylä
Studies in Computing 52, University of Jyväskylä,
2005.

[LuKT04] Luoma, J., S. Kelly; J.-P. Tolvanen: Defining
Domain-Specific Modeling Languages: Collected
Experiences, In: Proceedings of the 4th OOPSLA
Workshop on Domain-Specific Modeling (DSM’04),
Computer Science and Information System Reports,
Technical Reports, TR-33, University of Jyväskylä,
Finland, 2004.

[MaHR96] Marttiin, P.; F. Harmsen; M. Rossi: Evaluation of
Two CAME Environments Using a Functional
Framework: Findings on Maestro II/Decamerone and
MetaEdit+. In: Method Engineering, Principles of
Method Construction and Support. S. Brinkkemper, K.
Lyytinen and R. Welke (eds.). London, Chapman-Hall,
1996, pp. 63-86.

[MLR+92] Marttiin, P.; K. Lyytinen; M. Rossi; V.-P.
Tahvanainen; J.-P. Tolvanen: Modeling Requirements
for Future CASE: Issues and Implementation
Considerations. In: 13th International Conference on
Information Systems, Dallas, Texas, ACM Press, 1992.

[MLR+95] Marttiin, P.; K. Lyytinen; M. Rossi; V.-P.
Tahvanainen; J.-P. Tolvanen: Modeling Requirements
for Future CASE: Issues and Implementation
Considerations. In: Information Resources
Management Journal 8(1995) 1, pp. 15-25.

[MRTL93] Marttiin, P.; M. Rossi; V.-P. Tahvanainen; K.
Lyytinen: A Comparative Review of CASE Shells: A
Preliminary Framework and Research Outcomes. In:
Information & Management 25 (1993), pp. 11-31.

[SLTM91] Smolander, K.; K. Lyytinen; V.-P. Tahvanainen;
P. Marttiin: MetaEdit – A Flexible Graphical
Environment for Methodology Modelling. In: Advanced
Information Systems Engineering, Proceedings of the
Third International Conference CAiSE'91. R. Andersen,
J. A. Bubenko jr. and A. Solvberg (eds.). Berlin,
Springer-Verlag, (1991), pp. 168-193.

[SoTM88] Sorenson, P. G.; J.-P. Tremblay; A. J. McAllister:
The Metaview System for Many Specification
Environments. In: IEEE Software 14(1988) 3, pp. 30-
38.

[Strö05] Ströbele, T.: EclipseUML – UML and Eclipse. In:
OOP, Münich, 2005.

[TMHY80] Teichroew, D.; P. Macasovic; E. Hershey; Y.
Yamamoto: Application of the Entity-Relationship
Approach to Information Processing Systems Modeling.
In: Entity-Relationship Approach to Systems Analysis
and Design. P. P. Chen, North-Holland, 1980, pp. 15-
38.

[VeSr95] Vessey, I.; A. P. Sravanapudi: CASE tools as
collaborative support technologies. In: CACM 38(1995)
1: pp. 83-95.

[Wint02] Winter, A.: Exchanging Graphs with GXL. In:
Proceedings of Graph Drawing – 9th Interational
Symposium, Vienna, Springer Verlag, 2002.

[Zhan00] Zhang, Z.: Defining components in a MetaCASE
environment. In: Proceedings of CAiSE'00, Stockholm,
Sweden, Springer-Verlag, 2000.

Steven Kelly, Juha-Pekka Tolvanen

MetaCase
Ylistönmäentie 31
FI-40500 Jyväskylä
Finland
stevek@metacase.com, jpt@metacase.com
http://www.metacase.com

Matti Rossi

Helsinki School of Economics
Department of Business Technology
P.O. Box 1210
FI-00101 Helsinki, Finland
matti.rossi@hkkk.fi
http://www.hkkk.fi/~mrossi

