
Test Case Structuring and Execution Control in an
Integration Framework for Heterogeneous Automatic

Software Tests

Andreas Ganser1, Holger Schackmann1, Horst Lichter1, Heinz-Josef Schlebusch2

1RWTH Aachen, Research Group Software Construction, Ahornstr. 55, 52074 Aachen
{Ganser|Schackmann|Lichter}@swc.rwth-aachen.de

2KISTERS AG, Charlottenburger Allee 5, 52068 Aachen
Schlebusch@kisters.de

Abstract: Dependencies between automatic test cases are considered as problematic,
since they impair understandability and maintainability of these test cases. However,
dependencies can not be fully avoided, when test cases require a time-consuming setup
of the test fixture. This paper describes the handling of dependencies between test
cases within an integration framework for heterogeneous automatic test tools that uni-
fies test case administration, test execution and reporting of the test results. Two types
of dependencies between test cases are identified. A simple approach is presented how
one of these dependency types is utilized within the framework to gain control during
test execution in order to reduce test execution time and unnecessary output.

1 Introduction

To develop and maintain complex software products different tools for automatic software
tests are used. On the one hand this is caused by the need to pursue different kinds of
tests like system tests, unit tests, or tests of non-functional qualities. On the other hand
this is caused by the heterogeneity of the software under test in terms of implementations
languages, technologies or underlying platforms. Hence, substantial know-how is neces-
sary for applying these tools with a correct setup of the test environment, as well as for
developing and maintaining the test cases. Moreover, test results can become scattered
into several reports of different tools. As a consequence, this may lead to considerable
overhead in the testing process that limits the acceptance and benefits of automatic testing.
This was the motivation for the development of an integration framework for heteroge-
neous automatic test tools that unifies test case administration, test execution, and reporting
of the test results [SLH07]. This framework was developed in cooperation with KISTERS
AG. KISTERS AG offers software solutions for the energy markets and the management
of the natural resources water and air, based on core software technologies for time series
management of measurement values, modeling and forecasts. Due to the large volume of
data needed to test these high capacity systems under realistic conditions this application

387

domain imposes additional challenges. To complete a test suite run in reasonable time,
tests cases must share the same fixture or even be executed as chained tests [Mes07]. The
resulting dependencies between test cases complicate test case maintenance. Thus, it is
crucial to handle these dependencies within the integration framework.
In this paper several patterns for the integration of test cases into the central repository of
the test framework will be presented. Then a characterization of dependencies between
test cases is given. Further on, an approach will be presented how to utilize certain test
case dependencies to reduce the run time of test suites and ease the analysis of test results.
Finally, the capabilities of the framework will be discussed based on practical experiences
with the integration of a representative test tool.

2 Structure of the Test Framework

This section briefly describes the basic concepts of the framework and introduces several
recurring patterns of test structures. It is important to keep in mind that terms like test case
and test plan have a slightly different meaning in the context of different test automation
tools, as well as in the context of the test framework as described below.

2.1 Basic concepts

Test Repository

Test

Test Suite Test Case

Test Plan

Wrapper

Test Framework

references

*

JUnit-Wrapper WinRunner-Wrapper

*

executes

calls

...

Figure 1: Basic concepts of the test framework

A sketch of the framework’s basic concepts is given in Figure 1. The integration of an
automatic test tool in the test framework is realized by a wrapper that executes an auto-
matic test by a call to the external tool. Moreover, the wrapper is responsible for collecting
the results of the tests. General information on the test result, like the test verdict or the
execution time, is then delivered to the framework in a unified format. The wrapper can
provide optional comments and links to additional files. The framework will merge this
information into an overall report. The granularity of the results depends on the results
reported by the wrapper. A wrapper must at least report a verdict like “passed” or “failed”.
Tests are hierarchically organized into a test repository that is given by a directory structure
of the file system and is put under version control. A test suite is represented by a direc-
tory that contains a script which defines pre- and post-processing actions that describe the

388

and, most important, bears responsibility for the entire reporting and for the verdict.
A pattern of functional repository comprises a repository of functions from which test
cases can be constructed. This repository works as a tool box with reusable functions and
delivers no evaluation of the functions. Accordingly, the wrapper is responsible for the
reporting and the verdict.
The layer pattern works similarly to the functional repository but includes the evaluation
of the test. The main difference between both patterns is the abstraction the layer repre-
sents. The idea is to encapsulate complex calls in simple names and, furthermore, provide
an abstract code for tests.
The only pattern of a dynamic structure is the test plan as introduced in section 2.1. This
pattern builds upon test call scripts.

3 Dependencies between Tests

A test case sometimes has dependencies to other test cases, for example chained tests,
where a subsequent test case relies on data outputs or the system state that has been created
by the preceding test. Such dependencies are considered as problematic, since understand-
ability and maintainability of these test cases is impaired [Mes07] [Bla03]. But there are
pragmatic reasons to run some tests as chained tests. If the setup of a test’s fixture is very
time consuming, like importing large data volume of measurement values, the setup time
can be saved by using the data output or system state created by another test.
Hence we had to face the problem how to handle these dependencies within the test frame-
work. Further investigation showed that two types of dependencies between tests can be
identified (see section 3.1). In the following we introduce these types of dependencies
and describe how the existing framework was enhanced with a lightweight controlling
mechanism with respect to a verdict dependency between tests.

3.1 Chained-Test Dependency and Verdict Dependency

Examining dependencies, the point of view and the order of tests need to be mentioned.
Firstly, tests are regarded how they are presented to the framework. This means a test case
is a call of a wrapper as illustrated in Figure 1 and, therefore, the smallest element the
framework is able to recognize and control. Notwithstanding, it might later be necessary
to inspect test cases of a test tool which are called by the wrapper. Secondly, test cases
are always ordered in a linear sequence. Therefore the perspective from a single test case
can be forwards and backwards which describes the preconditions and the postconditions
respectively. No matter what perspective is taken the relationships between two test cases
are subsumed and referred to as dependency. A backwards perspective is usually described
as follows:

if X then proceed else omit

But what is condition X? Simply put, it can be the status of the system or an aggregation
of the test’s outputs, e.g. the test verdict.

390

Whenever the status of the system is the condition, the tests are chained tests. This means
the test executed beforehand produced the preconditions for the upcoming test. This needs
to be avoided because chained tests are difficult to maintain and understand [Mes07]. Nev-
ertheless those chained tests are found in reality very often. This is because bringing the
entire system in the required status is often very tedious and time-consuming. This means
test chains are intended to save time and money. The other side of the coin is, the overall
status of the system can not be assured due to the amount of data you have to ensure.
In case the condition is an aggregation or interpretation of some output, the most con-
densed form is a verdict like “passed” or “failed”. Such verdicts are the pieces of interest
in this paper, because the decision to execute or to omit a test case will be made based on
the verdicts. A verdict is usually determined after the execution of a test case by compar-
ing actual outputs with expected outputs. Hence the status of the system is not involved
with how the decision is made.

expected as fixture

passed

failed

Test Case 1 Test Case 2?
Test

Outputs

Test Case 1 Test Case 2

Verdict

generates

system’s status

Verdict Dependency

Chained-test Dependency

Figure 3: Dependencies between test cases

Talking in terms of dependencies, there are two distinguishable kinds as shown in Figure 3.
To begin with, the chained-test dependency subsumes all conditions based on the status of
the system; next, the verdict dependency comprises all conditions concerning verdicts.

Merging chained-test dependencies and verdict dependencies, the latter is a subset of the
former. Indeed testers often like implying from verdicts to the status of the system. Hence
chained-test dependencies are often applied in the context of test case design without eval-
uating the overall status of the system, but simply using some verdicts.

3.2 Verdict Dependencies in the Test Framework

The verdict dependencies need to be examined at different levels of test design. First, a
look at the level of test cases is needed and, second, a look inside a test case is needed to
regard test steps. At the level of test cases the verdict dependencies are quite useful. In
fact verdicts open up an elegant way to gain control about test runs. This control can be
done with a little help of knowledge about previously run tests. So, it might be possible
to deduce whether the upcoming test case is likely to succeed. If there is no way it will
succeed it can be omitted. For example, a failed login in the first test case makes a second
useless which logs in and tries to change the user’s name. Omitting the second test case re-
duces the execution time and keeps the tester away from inspecting outputs which deliver

391

no further insights. Therefore, the verdict dependencies became the idea the framework
was improved with.
Since the framework bases test runs on test plans (section 2.1) and should evaluate verdicts
during run time, the verdict dependencies need to make an impact on the dynamic pattern
mentioned in section 2.2. Hence, the description of a test element was extended with a
keyword “requires passed” as shown in Figure 4. This keyword models the verdict depen-
dency of the current test case and takes a list of test cases which define its precondition.

DependenceVerdictTest Case 2

Test Case 1 (e.g. Login)

Test Case 3 (e.g. Login, Change User’s Name)

Test Suite Test Plan XY

<test location="Test Case 3"

requires_passed="Test Case 1" />

<test location="Test Case 1" />

Figure 4: Sketch of a verdict dependency in a test plan

4 Integration of a Representative Testing Approach

The main intention for considering verdict dependencies lies in optimizing test runs and
outputs. But testing approaches need to be well structured and designed to gain full bene-
fits from these dependencies. Therefore, a representative testing approach was integrated
into the framework in order to assess the usefulness of the concept. A model for evaluating
tests in some sort is presented in [ZVS+07], which bases on the ISO model for software
quality [ISO]. An appropriate language to name problems, in terms of test smells, was
found in the area of object oriented xUnit test patterns [Mes07]. The above mentioned
chained tests therefore suffer from interacting tests in terms of test smells.
Such and alike problems were investigated during integrating an application specific test
tool and the existing test suites into the framework [Gan07]. This tool implements a typical
testing approach referred to as reference version approach [FG99]. It compares expected
outputs, the references, with the obtained outputs in order to find differences. Whenever a
difference is found, the test is assumed to have failed. Therefore the expected outputs need
to be prepared beforehand. These references can be of many different types: text files,
screen shots, dumps of databases et cetera.
With respect to the above mentioned patterns, the approach was transformed from a black
box pattern to a test call script pattern. In detail the testing approach was split up in con-
trollable parts, what is one call of the application specific test tool per test case. This
enabled the integration of this approach in the framework with the test call scripts nec-
essary for the wrapper calls. Moreover, the verdict dependencies could be applied to the
testing approach, and the results of the comparison were improved by parsing these results
into xml-formatted documents. These documents can now be imported to the company’s

392

reporting system which increases the acceptance of the framework.
Regarding the quality model, the evaluation was done slightly altered, because the eval-
uation was not of a test specification but a testing tool. Most important were the strong
improvements of understandability, analyzability and the improvement of the test repeata-
bility. By contrast, the time behavior is affected negatively due to the overhead the frame-
work imposes. Besides the usage is more complex since the framework requires more
configuration settings. But we think that the improved controllability, the embedding of
the framework in the application domain and the better understandability of the test out-
weigh the mentioned disadvantages.
In terms of test smells, we were able to eliminate a smell called “manual result verifi-
cation” in consideration of condensing the test run to a single verdict. This was achieved
because on the one hand the verdicts exist at every stage of abstraction, from test steps over
test cases up to test suites and test plans. On the other hand a parser transforms variances
in the comparisons into verdicts. Moreover, the framework’s ability to ease automatic test
runs and result analysis reduced the danger of “infrequently run tests”.

Over all the improved controllability of the testing approach finally has facilitated the
usage of the verdict dependencies and, the benefits and the simplicity of the concept lead
to a positive acceptance. Therefore, the verdict dependencies are expected to be employed
increasingly in test suites with tedious fixtures.

5 Experiences and Outlook

With the initial assumption of side-effect free test cases, some existing tests could only be
integrated as black box. The usage of verdict dependencies enables the integration on a
more fine-grained level and facilitates detailed control of the test case execution by the test
framework. Describing verdict dependencies as an optional precondition for a test makes
existing dependencies explicit within a test plan. Hence understandability of the test plan
is substantially improved.
Moreover, verdict dependencies can be utilized to run very coarse-grained tests as regres-
sion tests, especially of high capacity systems. But in case something fails, more details
about the defect should be found out. This is what we call a top-down test strategy. For
this purpose we introduced an attribute named “requires failed” which works the opposite
way of the “requires passed”. That is the test is only executed in case the named tests in
the attribute failed or were not executed. Of course both attributes can be combined.

Further development might involve verdict dependencies for parallelizing the execution of
test plans; in other terms “load-balancing” the test plan or test run. Therefore our verdict
dependencies are important as a constraint how it is reasonable to distribute the execution
of test cases. For example, consider a given test plan with a very long run time, e.g. one
day. But this test plan must be done within four hours. In case the test plan can be distrib-
uted along verdict dependencies on several machines, maybe four hours will be enough.
Note that parallelizing test plans is different from running test cases for a distributed sys-
tem. An enhancement of the framework that enables the description of such distributed
test scenarios has been implemented as a prototype [Ada07].

393

6 Summary

In a nutshell, we introduced a framework for automated testing in a heterogeneous testing
environment and showed how this approach on high-level test tool controlling can be op-
timized. In order to come up with a clean concept, we examined possible dependencies
between tests and distinguished between chained-test dependencies and verdict dependen-
cies. Though chained-test dependencies are a common way to reduce effort in fixtures,
there is no way to gain proper control for the framework. Instead the verdict dependencies
open up the opportunity for controlling a test run. For this purpose a test plan must include
information about preconditions in terms of verdicts about previously run tests. In case
the preconditions are not fulfilled, the execution of a test case is omitted. Using verdict
dependencies relies on a certain fine-grained structure of a test case with respect how the
test tool works. Therefore some structures were examined and some hints about how to
include a testing approach were given.

References

[Ada07] Sofia Adamanova. Distributed execution of heterogeneous automatic software tests.
Master Thesis, RWTH Aachen, 12 2007.

[Bin00] Robert V. Binder. Testing Object-Oriented Systems. Addison-Wesley, 2000.

[Bla03] Rex Black. Critical Testing Processes: Plan, Prepare, Perform, Perfect. Addison Wes-
ley, 2003.

[FG99] Mark Fewster and Dorothy Graham. Software Test Automation - Effective use of test
execution tools. Addison Wesley Logman Limited, ACM New York, 1999.

[Gan07] Andreas Ganser. Testdesign für automatische Softwaretests. Diplomarbeit, RWTH
Aachen, 11 2007.

[ISO] ISO/IEC 9126. Software engineering Product quality Part 1: Quality model, Part 2:
External metrics, Part 3: Internal metrics, Part 4: Quality in use metrics. International
Standards Organization.

[Mes07] Gerard Meszaros. XUnit Test Patterns. Addison-Wesley, 2007.

[SLH07] Holger Schackmann, Horst Lichter, and Veit Hoffmann. An integration framework for
heterogeneous automatic software tests. In Bleek, Schwentner, and Züllighoven, editors,
Software Engineering (Workshops), volume 106 of LNI, pages 107–112. GI, 2007.

[Vig05] Uwe Vigenschow. Objektorientiertes Testen und Testautomatisierung in der Praxis.
dpunkt Verlag, 2005.

[ZVS+07] Benjamin Zeiß, Diana Vega, Ina Schieferdecker, Helmut Neukirchen, and Jens
Grabowski. Applying the ISO 9126 Quality Model to Test Specifications. In Software
Engineering 2007 (SE 2007, Lecture Notes in Informatics (LNI), volume 105), pages
231–242. Köllen Verlag, Bonn, März 2007.

394

