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Abstract: Understanding complex biological systems requires data from manifold
biological levels. Often this data is analysed in some meaningful context, for example,
by integrating it into biological networks. However, spatial data given as 2D images or
3D volumes is commonly not taken into consideration and analysed separately. Here
we present a new approach to integrate and analyse complex multimodal biological
data in space and time. We present a data structure to manage this kind of data and
discuss application examples for different data integration scenarios.

Figure 1: Preview of a prototypic system which integrates, analyses and visualises multimodal bio-
logical data based on a mapping graph.
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1 Background

Modern life science researchers are able to acquire massive data by using high-throughput
techniques. This leads to the accumulation of data from gene and protein activity, protein
interaction and metabolite concentration, usually called -omics data. Additionally mani-
fold in silico analysis such as flux balance analysis, kinetic modelling, network-centralities
and -motifs can gather new information about the intrinsic properties of biological systems.
To put this data into biological context network models describing the interactions and re-
lations between biological objects are developed, such as gene regulatory or metabolic
networks. Also spatial data, such as structural and functional NMR volume data, histolog-
ical cross-sections, in situ hybridization and surface models, are measured and obtained in
increasing quantity and quality and should be considered as valuable parts of models of
biological systems.

To answer biological questions often different types of data have to be integrated and con-
sidered in spatial and temporal context. Using data mapping one can bring the multimodal
data into context to each other, allowing more intuitive analysis, navigation and interpre-
tation of the data. Currently there exist some tools for integration of -omics data into
the context of networks [HMWD04, JKS06, KBT+06, Kol02, SMO+03, vIKP+08]. Also
some 2D and/or 3D data integration tools exist [Bar06, HLD+07, MPLB07, SWH05].
However, integration of all datatypes in one application with complex mapping possibil-
ities is not considered. In this paper we present a novel approach combining biological
-omics data, 2D data, 3D data and network models under consideration of space and time.

The structure of this paper is as follows: First, we propose a data structure to represent
and integrate such diverse data types. Second, we discuss different ways of mapping and
visualising the multimodal data. Last, we show some example use cases for real-world
data mapping applications. Fig. 1 gives an impression of such a system, which is able to
intuitively integrate multimodal biological data.

2 Modelling Biological Data

Data is gathered from different parts of a biological system with different resolution. What
is the structure of the data? How do we account for the spatial and temporal dimension?

The data structure for multimodal biological data can be seen in Fig. 2. It consists of two
main parts: the measured data (highlighted in blue-grey) and annotation data. There are
four types of measured data: “Simple measurements” standing for single values, such as
the concentration of a metabolite without any further spatial information (-omics data is
usually modelled by simple measurements). “Images” represents two-dimensional data
such as histological cross-sections or in situ hybridisations. “Volumes” denote three-
dimensional data such as structural and functional NMR imaging data. “Networks” stand
for structural information of biological pathways expressed as a graph. Simple measure-
ments, images and volumes have a “replicateID” to be able to distinguish experiments
carried out several times helping to obtain statistical significant results. In addition to
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Figure 2: The model for data from experiments. Experiments are carried out under special conditions
and consist of a number of samples. These include four different types of measurements: simple
measurements, images, volumes and networks. Each measurement except networks may belong to
a substance representing the measured biological object.

simple measurements images and volumes include information for their size in respective
coordinate systems (pixel- and voxelsize and -numbers). Simple measurements and im-
ages also store position information, allowing to describe a vector of simple measurements
(e.g. gradients) or images (e.g. position of image in the real biological object) in spatial
context. Networks have a name and belong to a certain network group.
An biological experiment has some metadata such as name, coordinator of the experiment,
date of import and who imported it. Additional information, for example, about the ex-
periment setup, can be stored unstructured in the “comment” attribute. Each experiment
has a number of conditions under which it was carried out: The name of the species is
stored in the first attribute. The “genotype” attribute indicates a normal genotype or al-
tered one (e.g. different transgenic lines). “Treatment” may be oxygen-depletion or other
environmental properties. Under these conditions some samples are collected at a specific
time-point, representing the temporal dimension. Measurements are also collected from
a certain “component”, for example, chloroplast (cell level) or brain (organ level). Each
sample consists of a number of measurements, described above. All measurements but
networks describe the quantity of a certain substance measured in the experiment. The
substance will serve as an identifier in the data mapping, which will be described in detail
in the next section. For simple measurement data the identifier is, for example, a metabo-
lite or a protein, whereas the identifier for two-dimensional data may be the transcript
measured in an in situ hybridization. For three-dimensional data the substance can be the
metabolite the NMR image is based on, e.g., water or protons. Networks are not related to
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substances because they only describe structural relations.

The proposed data model is simpler than that one used in the MIAME standard [BHQ+01]
(microarray data), PEDRo database [TPG+03] (proteomics data) or ArMet framework
[RJL+07] (metabolomics data). The reason is, that we do not want to model the complete
experiment workflow. This would include experiment description, design and setup, nor-
malisation methods, annotation methods, the raw and processed data, data standards and
more. Instead the focus of our model is on already processed, filtered and normalised ex-
perimental data and metadata. Therefore we consider only data required for visualisation
and analysis.

3 Integration of Multimodal Biological Data
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Figure 3: Mapping graph for integrating multimodal data. A node contains all biological data of
one type (simple measurements, images, volumes and networks as shown in Fig. 2). An (hyper)edge
represents a mapping between one, two or more types of biological data. There are several mappings
possible, but for comprehensibility only one- and two-type mappings are shown.

The integration of multimodal biological data is achieved by a mapping graph, whose
structure is shown in Fig. 3. The nodes represent different types of biological data, whereby
the edges represent a possible mapping between these types. In the following we describe
the kinds of data mapping. There are mappings between data of the same type (e.g. “aa”),
mappings between data of two different types (e.g. “ac”), mappings between three types
(e.g. “acd”), and mappings between all types of data (“abcd”). Note that the mapping
usually allows several ways to be processed and visualised. For example, mapping one
network on another could be represented as a stacking (see Fig. 4) or as one network
showing the difference between both. Here we will give a typical example for some of the
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mappings, but many more are possible.

aa: Mapping of simple measurements on simple measurements, for example, visualising
the correlation of metabolite concentrations by scatter plots.

bb: Mapping of networks on other networks, for example, network stacking. A detailed
use case can be found in Section 4.1.

cc: Mapping of images on images, for example, image stacking of cross-sections. This
can be useful if several cross-sections of one object have been obtained and the
images have to be placed according to their position in the real object.

dd: Mapping of volumes on volumes, which can be useful for comparing tissue shapes.
Here researchers may acquire information how the shape of tissues differ for genet-
ically altered systems.

ab: Mapping of simple measurements on networks, for example, concentration-depen-
dent node colouring. A detailed use case can be found in Section 4.3

ac: Mapping of simple measurements on images, for example, combining high-resolu-
tion metabolite concentration data and low-resolution image data showing the con-
centration distribution in two dimensions.

cd: Mapping of images on volumes, for example multimodal alignment. High-resolution
or special coloured cross-sections taken from a biological object are aligned into the
three-dimensional representation of the object. A detailed use case can be found in
Section 4.2

bd: Mapping of networks on volumes, for example, for navigation. Here segmented
tissues of the volume can be used to navigate through the different networks obtained
in experiments.

More complex mappings are also possible (e.g. “abc”), but depend on the requirements
of life scientists and are therefore often purpose-built. By using this mapping graph the
multimodal biological data, consisting of different data types, can be seamlessly combined
and integrated into one system.

The data can be imported into the mapping graph using file open dialogs or drag and
drop functionality. Such files can be exported from various tools and databases, e.g.
KEGG, MetaCrop, AMIRA [SWH05]. Several data formats will be accepted, e.g. GML,
GraphML, SBML and KGML for networks, CSV textfiles and Excel spreadsheets for
simple measurements, VRML and Analyze 7.5 for volumes and PNG, JPEG and TIFF for
images.

4 Use Cases

To show the functionality of the integration via a mapping graph we will highlight four
exemplary use cases in detail.
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4.1 Network Stacking

Figure 4: Use case network stacking: Four networks of glycolysis from different species are stacked
in the three-dimensional space to support exploration of structural differences such as missing
metabolites and interactions.

The first use case is network stacking (see Fig. 1 and 4), which is an instance of mapping
case “bb” and represented in the mapping graph by an edge between networks (see Fig. 5).
Here several networks are aligned allowing visual comparison of network properties: a
network is mapped at one plane lying in a three-dimensional space. The next network
and its plane are aligned in such a way that the corresponding nodes in the networks
are stacked on top of each other respecting the layouts (see [BDS04] for further details).
Additional networks can be aligned in the same way creating a 2 1

2D-stacking of networks.
This representation allows to explore structural differences and similarities such as missing
metabolites, unique interactions and conserved motifs for different species or genotypes.

4.2 Multimodal Alignment

Multimodal Alignment is a technique to align two-dimensional images into three-dimen-
sional volumes. Often the images are high-resolution cross-sections through the biological
object, allowing high detailed analysis and yield information obtained with specific meth-
ods such as in situ hybridisations. Volumes on the other hand represent lower-resolution
three-dimensional information of an object. The idea is to combine both information,
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Figure 5: Instance of the mapping graph for use case network stacking. The mapping graph consists
of four glycolysis networks of different species.

which means the image has to be moved to the correct position in the volume. To align
the images one can use cross-correlation or other methods (e.g. some algorithms are im-
plemented in the Insight Segmentation and Registration Toolkit [YAL02]). This means the
second use case is an instance of mapping case “cd”. An example of the result of such a
mapping can be seen in Fig. 1 on the first page.

4.3 Omics Data in the Context of Networks

For the analysis of biological data it is useful to apply an integrated view on the measured
data and its related background information, such as metabolic pathways or regulative pro-
cesses. For this purpose one can map the biological data (e.g. protein activity, metabolite
concentration, etc.) to structural information such as glycolysis pathway, which represents
a mapping of type “ab”. An automatic mapping of experiment data onto relevant network
elements occurs if the measured data and the network nodes have common identifiers.
For the visualisation of mapped data the display of multiple mapped datasets for a single
network element is supported. Using line charts, bar charts and similar techniques the
scientist is able to visualise more complicated datasets, such as data from different time
points, experimental conditions and replicates. For further information about this mapping
see [JKS06].

4.4 Oxygen Gradient and Flux Balance Analysis

The last exemplary use case consists of a mapping “ab” and can be seen in Fig. 6 and 7.
At the top of Fig. 6 there is an oxygen gradient, which consists of a number of simple mea-
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Figure 6: Use case flux balance analysis: One-dimensional oxygen gradient used as an input for
flux balance analysis [KPE03]. The simulation results for different oxygen levels are mapped to the
glycolysis network. The visualisation of the data shows, that the higher the oxygen concentration
the higher the starch accumulating flux (middle, left, right).

surements. Such gradients could be obtained as time series or by a probe moving through
a tissue and measuring the relative oxygen level for different positions (see [RWW+04]).
The values of this gradient are used as an input for flux balance analysis [KPE03], which
models fluxes in networks on basis of structural and stoichiometric information. Some
starting concentrations are necessary, which are taken from the oxygen gradient as input
for different scenarios: The middle network visualises the fluxes near oxygen depletion,
the left one normal oxygen level and the right one higher oxygen level than in the air.
In this way respective flux visualisations can be shown for different scenarios, based on
simple measurements.
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Figure 7: Instance of the mapping graph for use case flux balance analysis. The mapping graph
consists of an oxygen gradient (simple measurement), which is mapped to a glycolysis network of
barley and used for flux balance analysis.

5 Conclusion and Outlook

Using high-throughput methods biological researchers gather lots of data of different types
from multiple -omics areas, network models and spatial data. For intuitive exploration
of this data we propose a data structure representing the biological data and supporting
all necessary mapping and data exploration methods. The biological data was integrated
using a mapping graph, which allows intuitive combination of data. Its nodes represent
the data types and its edges represent mappings between data types. Some mapping types
were analysed and finally four exemplary use cases of data integration were described in
detail.

The data structure and some of the mappings and use cases are implemented on the basis
of the VANTED system [JKS06] in Java3D to provide scientists with the possibility to
handle not only -omics data and network models, but also to account for two- and three-
dimensional data in one system. We plan to complete the development and implementation
of further mapping and interaction methods together with life scientists before releasing it
as an Open Source Add-On for VANTED.
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