
QoS-aware cross-layer communication for Mobile Web
services with the WS-QoS framework
M. Tian, A. Gramm, H. Ritter, J. Schiller, and T. Voigt*

Freie Universität Berlin, Institut für Informatik
{tian, gramm, hritter, schiller}@inf.fu-berlin.de

* Swedish Institute of Computer Science, thiemo@sics.se

Abstract: QoS issues will play an important role for the success of Web services.
With the increasing number of mobile devices consuming Web services, specific
QoS mechanisms are required for the efficient use of Web services. We introduce
our Web service QoS framework that is designed for QoS-aware service
specification, discovery, selection, and invocation of Web services. Applying the
framework enables cross-layer communication in order to achieve cross-layer QoS
differentiation. We present an architecture based on this framework supporting
mobile and wireless Web service clients.

1 Introduction
Web Services are becoming more and more popular these days and more and more
businesses are planning to build their future solutions on the Web service technology.
With its tremendous success in business, quality of service (QoS) issues will play an
increasing role for Web service providers. With the ubiquity of mobile devices, such as
Smartphones and PDAs, it is easy to imagine that in the future clients using mobile
devices will generate a large percentage of all Web service requests.

In contrast to traditional web interaction, Web services incorporate additional and non-
negligible overhead due to the usage of XML. Since mobile devices are resource-
constrained in terms of CPU, memory, and battery-life, they need specific QoS
mechanisms to efficiently process and transmit Web services.

In this paper we present our Web service QoS (WS-QoS) framework [Ti03a], which has
been designed to provide a solution to QoS-aware specification, selection, publication,
and invocation of mobile Web services, thus to achieve an overall performance
improvement.

The rest of the paper is outlined as follows: After discussing related work, we present
our solution in Section 3. We conclude and discuss some future work in Section 4.

2 Related Work
Distinguishing QoS will influence strategies for selecting Web services as building
blocks to compose more sophisticated business applications. Therefore, features such as
security, message reliability and transactional QoS are issues in recent business process
management standards, above all the Business Process Execution Language for Web
Services (BPEL4WS) [IMB02]. High level QoS support is also being addressed in the
work on the WS-Integration specifications.

Several approaches have been proposed to implement standardized QoS specification for
Web Services. Both IBM’s Web Service Level Agreement (WSLA) framework and the

286

Web Service Management Language (WSML) applied in HP’s Open View Internet
Services define XML schemas to specify individually negotiated customized service
level agreements (SLAs). A detailed discussion of six approaches towards QoS
specification for Web services is given in [Ti03c].

3 The WS-QoS framework
A QoS-aware Web service communication process consists of three phases from the
client’s point of view. The first one is the specification of QoS requirements. The second
one is a QoS-aware service discovery and selection. The specified QoS is performed at
service invocation in the third phase. Our WS-QoS framework supports all three phases.

3.1 QoS specification with WS-QoS
We developed the WS-QoS framework with the following motivations:
(1) design an architecture that allows both service clients and service providers to
specify requests and offers with QoS properties and QoS classes,
(2) enable an efficient service offer discovery and selection in order to accelerate the
overall lookup process for clients,
(3) provide a flexible way for service providers to publish and update their service offers
with different QoS aspects as well as
(4) support QoS-aware service invocation and response, including mapping of QoS
requirements according to the transport network onto the actual underlying QoS-aware
network technology (e.g. UMTS, DiffServ) at run-time, thus to achieve an overall
performance gain.
By applying the WS-QoS XML schema service providers can augment their Web service
offers with various QoS aspects while clients can define their requirements related to

QoS parameters. In an element of the
type QoSInfo, shown in Figure 1,
QoS parameters such as processing
time, request rate, response time,
availability, reliability, security
protocols, transaction, price, and
custom defined parameters are declared
for the QoS support in the Web service
layer by clients and servers. Standard
and custom defined parameters such as
delay, bandwidth, jitter, and packet loss
are defined for the network layer QoS
support by both parties. QoS
parameters are automatically compared
during the service discovery and
selection phase.

Figure 1. QosInfo element of the WS-QoS XML schema [Ti03a]

3.2 QoS-aware service discovery and selection with WS-QoS
In order to enable an efficient and accelerated QoS-aware service discovery and

287

selection, we extended the standard Web service interaction model [Kr01] with a Web
service offer broker (WSB). The WSB accelerates the client lookup process for services.
That means a Web service client will contact the WSB for looking up a service instead
of doing this with a UDDI registry. The WSB holds up-to-date information on offers
currently available for a group of services which have been requested in recent time.
Offers are grouped by the interface (tModel) that the services implement. The first time
services for an interface are requested, one or more UDDI registries associated with the
WSB are inquired. The WSDL files for these services are then checked for WS-QoS
extensions and available offers are built. From then on this newly created offer list is
consulted to find the best match for clients and their requirements.

3.3 Cross-layer communication with WS-QoS
In the WS-QoS framework a client defines different QoS aspects/parameters according
to different layers such as delay, jitter in the transport layer, compression and
decompression algorithms of SOAP content in the SOAP layer, response time, and
availability of the Web (service) server in the Web service/application layer. These
definitions take place in the Web service layer. The definitions are then interpreted and
performed by different components dedicated to each layer.
Figure 2 depicts the WS-QoS architecture during the third phase of a mobile Web
service communication process. We assume that the radio bearer supports both QoS and
QoS classes such as UMTS and GPRS and that the wired network supports the DiffServ
technology, which is, for example, applied by Telecom Italia.

Figure 2. QoS-aware mobile Web service invocation

3.3.1 QoS differentiation on the transport layer
QoS requirements specified by the clients are placed in the WS-QoS SOAP header.
Since the SOAP header is part of the SOAP messages, it can be evaluated by every
participating component along the whole communication path to allow for a cross-layer
QoS differentiation. Since concrete QoS metrics differ for specific network technologies,
we have decided to define priorities for QoS parameters according to the transport layer.
The priorities are then evaluated by a network proxy specific to a technology, which
maps the specified requirements to a corresponding traffic class. We have implemented

288

such a proxy for DiffServ networks.
In the scenario shown in Figure 2, a QoS-proxy running on the mobile client translates
the QoS requirements according to the transport QoS priorities to the corresponding
UMTS QoS class and performs signaling with the UMTS system. Since both DiffServ
and UMTS support QoS classes, the access point (AP) can now map the UMTS QoS
class to a corresponding DiffServ class (DiffServ code point, DSCP) [MNV02]. This
task is performed without any knowledge of the WS-QoS framework. Optionally, if the
AP would support WS-QoS, it could map the client’s requirement to a corresponding
DSCP by evaluating the QoS information in the WS-QoS SOAP header.
The intermediate DiffServ-enabled routers treat the traffic depending on the DSCP.
Upon receiving the client’s request, the server processes the response. When the server
sends the response, it will put the client’s QoS requirements into the SOAP header again.
A server side QoS-proxy will then evaluate the QoS information and mark the DSCP in
each IP packets accordingly. The intermediate routers will treat the IP packets according
to the DSCP. The AP will map the DiffServ class to a corresponding UMTS class.

3.3.2 Adaptive server performance levels

The serverQoSMetrics element of a WS-QoS definition (Figure 1) specifies server
performance in terms of processing time, throughput, availability and reliability. Clearly,
these parameters are interdependent. A short response time may allow higher throughput
and high throughput will provide for high availability. A service offer defines a distinct
level of service performance. Request differentiation may take the actual client
requirements into account. Yet, a more general approach to differentiate server
performance based on the selected offer will be more efficient in terms of scalability.
Request differentiation can take place on various levels. In the current implementation,
we consider request differentiation on the application level. Response times are
influenced by setting the priority of the thread processing the request according to the
clients’ requirements. However, different approaches such as load balancing and service
differentiation in web servers [Vo01] could be applied to improve server performance.

3.3.3 Message load reduction through adaptive compression
Although mobile devices are resource-constrained, the capability of mobile hardware in
terms of CPU power and memory is increasing rapidly. But the improvement and
increase of the battery life-time and the data rate for wireless transmission are still
challenging issues in active research. Therefore, considering both aspects in mobile
computing is essential.
Compression and decompression on mobile devices need not be performed by the same
algorithm. Energy consumption can be reduced up to 30% by choosing the lowest-
energy compressor and decompressor on a mobile device. Furthermore, wireless
transmission of a bit can require 1000 times more energy than a single 32-bit
computation [BA03].
To signal what compression is to be used we extend the securityAndTransaction node of
the tQoSInfo element, which is defined in the WS-QoS XML schema, with two sub
nodes compression and decompression. The servers announce which (de)compression
algorithms they support. The clients define which compression algorithm a server has to
use to compress responses.

289

Compression also decreases server performance due to the additional CPU time required.
Our measurements in [Ti03b] show that the throughput of a heavily loaded server can
decrease substantially when it is required to compress Web service responses. At the
same time the response times experienced by the clients increase. In order to protect the
server from overloading, we proposed a simple scheme that allows clients to specify
whether they want to receive data compressed when requesting a Web service.

4 Conclusions and future work
The value of this paper is not merely to show that WS-QoS is a suitable solution to QoS-
aware mobile Web service communication, but rather to stress the fact that the various
QoS aspects of distinct communication layers participating in different communication
phases should always be considered as parts of an integrated solution. Broader research
will be necessary in order to enable different layers to communicate with each other.
Higher layers should be prepared to consume QoS provided by lower layers and lower
layers should actively provide QoS according to the requirements of the upper ones. In
other words, the cooperation and communication patterns of different layers should be
mapped to each other carefully. This requires components with some degree of
intelligence. Applying the WS-QoS framework enables cross-layer communication in
order to achieve cross-layer QoS differentiation. Different parts of the solution have
been implemented and performance measurements have been conducted [Ti03b],
[Gr03], [Na03]. The results prove the feasibility of the proposed solution. We are now
building a testbed to conduct performance measurements of the complete architecture.

5 References
[BA03] K. Barr and K. Asanovic, Massachusetts Institute of Technology, Energy Aware Lossless
Data Compression, USENIX MobiSys, 2003.

[Gr03] A. Gramm, QoS support for Web services, diploma thesis, FU Berlin, 2003.

[IMB02] IBM, Microsoft, Bea, Business Process Execution Language For Web Services, 2002.

[Kr01] H. Kreger, Web Service Conceptual Architecture WSCA 1.0, 2001.

[MNV02] S.I. Maniatis, E.G. Nikolouzou, I.S Venieris, QoS issues in the converged 3G wireless
and wired networks, IEEE, Communications Magazine, Volume 40, Issue 8, 2002

[Na03] M. Nabulsi, A concept for QoS aware Web services, diploma thesis, FU Berlin, 2003.

[Ti03a] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller. A Concept for QoS Integration
in Web Services, IEEE Computer Society 1st Web Services Quality Workshop (WQW 2003)
ISBN: 0769521037, Rome, Italy, 2003.

[Ti03b] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller, Performance Considerations
for Mobile Web Services, IEEE Communication Society Workshop on Applications and Services
in wireless Networks (ASWN 2003), Bern, Switzerland, 2003.

[Ti03c] M. Tian, A. Gramm, H. Ritter, J. Schiller. A Survey of current Approaches towards
Specification and Management of Quality of Service for Web Services. To be published in PIK,
Sonderthemenheft "Web services", 2004.

[Vo01] T. Voigt, R. Tewari, D. Freimuth and A. Mehra. Kernel Mechanisms for Service
Differentiation in Overloaded Web Servers, Proceedings of Usenix Annual Technical Conference,
pages 189 – 202, Boston, MA, USA, June 2001.

290

