Keeping Track of “Flying Elephants”: Challenges in
Large-Scale Management of Complex Mobile Objects

T. Drosdol’, T. Schwarz', M. Bauer!, M. GroBmann', N. Honle', D. Nicklas'

Universitét Stuttgart, Institute of Parallel and Distributed Systems
Universitétsstrae 38, 70569 Stuttgart, Germany
{drosdol,schwarts,bauer,grossmann,hoenle,nicklas } @informatik.uni-stuttgart.de

Abstract: The management of mobile objects like cars, persons, or workpieces in a
factory is an important task in many context-aware environments. So far, most solu-
tions can either cope with many small objects (few properties) or with a limited
number of complex objects in a centralized way. In this paper, we face the challenge
of managing a large number of bulky mobile objects (flying elephants). We state re-
quirements, propose basic components, and discuss alternative architectures based
on the main influencing factors like mobility and update rate.

1 Introduction

Keeping track of mobile objects is an important task when managing mobile environ-
ments: wireless carriers need to know where to route an incoming call to, road authorities
wish to know the location of traffic jams, or parents want to find their lost children in an
amusement park. Hence, more and more mobile objects are tracked, and selecting only
the desired ones requires utilizing a variety of additional information besides the objects’
positions: “Who else at this banquet is a Mozart-loving violinist?” Such information
could comprise user profiles, inventories, or a 3D model of the object to be used as a
virtual avatar. In this paper we present the solution space for dealing with complex mobile
objects (flying elephants) in a large-scale (possibly world-wide) environment.

Current research in location management for mobile networks focuses on highly scalable,
distributed systems for tracking users in order to route calls [MDO04]. However, the data
maintained per object is small — just object ID (OID), position (pos), and some billing
data — and is accessed solely using the OIDs, but not using spatial queries. On the con-
trary, moving object databases [Wo098] and spatio-temporal databases [Gii00] store com-
plex objects and allow for spatial and non-spatial access to them. However, current sys-
tems are centralized and can only cope with a relatively small number of objects. In
Nexus, our Location Service tracks mobile objects and offers spatial queries [LR02]. It
already is highly scalable, too. However, in order to work efficiently, it assumes the
amount of data per mobile object to be small, so that handovers remain reasonably cheap.

As illustrated above, there is a clear demand for providing spatial access to many complex
mobile objects. Since none of the current approaches is satisfactory, we investigate how
to construct a large-scale system meeting this demand. In the following, we state the sys-
tem’s requirements, derive its basic components, and discuss architectural alternatives.

! funded by the German Research Foundation (DFG) within the Center of Excellence (SFB) 627.

288

2 Requirements

A large-scale system for managing complex mobile objects has to meet several functional
and non-functional requirements. Supporting position updates and different kinds of que-
ries are the major functional requirements. The frequency of position updates directly
influences the accuracy of an object’s stored position. Consequently, as position is one of
the primary access paths, frequently changing positions need to be reflected in the spatial
index and may necessitate handovers of objects to different servers.

Location-based services and context-aware applications typically access data using three
types of queries: OID queries, spatial queries, and arbitrary filter queries. Note that these
queries only select information but do not perform joins of any kind, as the applications
we looked at did not require them. Yet, we intend to consider joins in future work.

OID queries find the objects corresponding to given OIDs. They are used to follow refer-
ences or relations between objects. In the cell-phone environment only this type of query
is employed. It is imperative that objects can be efficiently retrieved using just their OID.
Spatial queries subsume all kinds of queries that filter objects based on their position:
range, window, and nearest-neighbor queries. Efficiently accessing objects by position is
especially important for location-based applications, which issue queries like “Which
other players are closer than 100 meters to the user?” As location-based applications
extensively use OID queries as well, we conclude that OID and position are the two pri-
mary access paths that require special attention. Arbitrary filter queries select objects
using arbitrary combinations of conditions on spatial and non-spatial properties of the
objects. Queries issued by context-aware applications thereby typically involve some kind
of spatial condition: “Which is the closest non-smoking cab that is currently available?”
Hence, they profit from an efficient spatial access path as well.

The major non-functional requirements are efficiency, scalability, and openness. Effi-
ciency demands high throughput of position updates and queries as well as short answer-
ing times of individual queries. Our experiences with the Nexus Location Service have
shown that a single server is able to meet this requirement for at most 30,000 objects (in
typical usage scenarios). Thus, a large-scale system inevitably comprises many servers
that need to cooperate somehow. Scalability requires that the system can easily accom-
modate an increasing number of users by adding new servers. Openness demands that the
system has well-defined interfaces so that external mobile object management systems of
different providers can be integrated into the global system.

3 Basic Components

In this section we present the conceptual architecture of a large-scale system for managing
a huge number of complex mobile objects. We have identified several basic components
that are necessary to meet the presented requirements, as shown in Fig. 1.

To manage a very high number of complex mobile objects we distribute them to many
independent data servers. Each one manages only a limited number of objects at a time.
All of them must be capable of resolving arbitrary filter queries. Yet, their implementa-
tions may vary from traditional database servers to lean main memory solutions.

289

Application

<o
Reference

+—>
Communication

*

Other Properties oID

Fig. 1: Basic components of a large-scale system for managing mobile objects

In order to achieve scalability it is essential to minimize the number of servers accessed
for a given query. Therefore, we introduce special index components to enable efficient
retrieval of objects based on their OIDs and positions: the OID-index and the pos-index.

The OID-index supports an efficient processing of OID queries by keeping track of the
physical storage location of each object. This actually incorporates more than one data
server if the object’s data is either partitioned or replicated. Most of all, the OID-index
allows a seamless migration of mobile objects between different servers.

The pos-index is responsible for retrieving mobile objects based on their positions. For
every spatial query it supplies the resulting OIDs. Because it has to cope with frequent
position updates of many objects, the pos-index has a very dynamic nature and can main-
tain only the least possible amount of data: the OIDs and their current positions.

In a similar way, additional indexes on any property of the mobile objects can optimize
arbitrary filter queries containing conditions on these properties. For example, a type-
index supports retrieving only the cabs among all mobile objects.

Finally, the federation component serves as a single access point to the system and hides
the complexity of the distributed components just introduced. It coordinates the commu-
nication between these components, forwards queries and updates to them, and integrates
their results. Moreover, it is a good place to cache frequently accessed data.

Assume we are looking for the Mozart-loving violinists mentioned earlier. Within the
presented architecture, this query will be processed as follows: First, the pos-index pro-
vides the OIDs of all objects within the extent of that banquet. The OID-index then sup-
plies the relevant data servers. Finally, these servers are queried for objects having any of
the provided OIDs and being a Mozart-loving violinist.

In order to achieve scalability of the overall architecture, it is essential that all components
themselves are in turn scalable. This is accomplished by distributing them over a variable
number of physical servers. The federation component can be duplicated without restraint
because it offers a stateless service and does not store any data. The OID-space may be
partitioned to distribute the management of the OID-index among several servers.

Likewise, the pos-index is distributed to several servers. Each server of the lower pos-
index is responsible for a small partition of geographic space — its service area. It man-
ages only the positions of mobile objects residing within this fixed service area. For
maximum flexibility this division of space is neither regular nor perfect: service areas
may overlap and have any shape. When a mobile object leaves a service area a handover
to a different server has to be performed. For that reason, the OID-index also maintains a
pointer to the current server of the lower pos-index for each object. Furthermore, this

290

collection of index servers is complemented by an upper pos-index: it uses the service
areas to determine the servers of the lower pos-index that possibly contain objects satisfy-
ing a given spatial query. As service areas are mostly static, this part of the pos-index can
be replicated easily.

4 Discussion

The conceptual architecture proposed so far still contains a lot of room for further optimi-
zations. Especially communication costs may be reduced significantly by placing more
than one component on the same physical server, by shifting tasks between components,
and by considering the network topology when placing the components. The impact of
these adaptations is influenced by a number of factors.

First, the frequency of position updates depends on the speed and movement patterns of
the mobile objects in combination with the required accuracy. Secondly, the range of an
object’s movement in relation to the size of service areas (which in turn depends on the
number of objects to manage and their update frequency) determines its retention period
on a single server of the pos-index (and thus the frequency of handovers). Thirdly, the
size of data maintained per object determines the cost of handovers. Fourthly, the ratio of
updates to queries, and the frequency and types of queries have to be considered, all of
which depend mainly on the application domain. So do the selectivity of certain proper-
ties and the usefulness of additional indexes, which both affect the optimal processing
sequence of arbitrary filter queries. Finally, queries and position updates are typically
local, i.e. the issuer is within the queried area or at the updated position.

Considering these influencing factors, several architectural variants are conceivable. We
introduce the most promising ones here, knowing well that there are many others.

In the first variant (left side of Fig. 2), we merge a server of the lower pos-index with a
data server into a so called context server. Thus, it stores all parts of an object’s context
data and is able to process arbitrary filter queries efficiently. However, the cost of hand-
overs increases significantly because all the objects’ data has to be moved. In Nexus
[Ni01], we currently use context servers to store stationary objects like buildings and
roads. Storing mobile objects on context servers as well enables the federation to process
queries for stationary and mobile objects in the same way.

Alternatively, we can combine a data server with a server of the OID-index into a single
component called home server (right side of Fig. 2). This obliterates all lookups for the

Home Server

Context Server

& ther [Other Properties|

Other Propemes

Fig. 2: Alternative system architectures

291

data server corresponding to a given OID, as the OID-index already knows all data of the
searched object. However, arbitrary filter queries require extra effort. The federation has
to get the OIDs of candidate objects from the pos-index before letting the home servers
check the remaining conditions on these candidates.

For optimization, the objects’ positions may be stored only within the lower pos-index
servers. Then, position updates need to be reflected only at one component, but OID que-
ries have to fetch the objects’ positions from the lower pos-index. Arbitrary filter queries
may be further sped up if the lower pos-index knows the corresponding data server for
each object. Position updates and OID queries may also skip lookups at the OID-index, if
the application remembers the lower pos-index or data server it used the last time. Addi-
tionally, applications may send position updates directly to the server of the lower pos-
index, which may then take care of handovers itself.

5 Challenges

As we have discussed in this paper, taking care of “flying elephants” is a challenging task.
Tracking many mobile objects requires a scalable system that is distributed over many
servers. With regard to the distribution schemes, two conflicting goals exist: On the one
hand, efficiency demands optimal data placement within the system. The optimum would
be achieved if the data accessed by each individual query was always stored on a single
server (close to the issuer of the query). Due to the objects’ mobility, this data would
therefore have to be moved between different servers accordingly. For resolving arbitrary
filter queries the relevant data can thereby comprise all properties of the objects. On the
other hand, minimizing the introduced communication overhead calls for transferring
only the least possible amount of data. Ideally, no data would ever change its storage
location. Clearly, both goals cannot be met simultaneously for a large number of complex
mobile objects. Therefore, a suitable trade-off between these conflicting aspects is essen-
tial. It depends on the presented factors of influence.

In this paper, we proposed special, partitioned index components to support spatial and
OID queries alike. We also discussed the most important approaches to structure the sys-
tem’s architecture, but still several more are well conceivable. Next, we intend to imple-
ment the most promising variants and analyze their behavior.

References

[Gii00] Giiting et al.: A Foundation for Representing and Querying Moving Objects. In: ACM
Trans. Database Syst., Vol. 25, No. 1, March 2000.

[LRO2] Leonhardi, Rothermel: Architecture of a Large-scale Location Service. In: Proc. 22nd Int.
Conf. on Distributed Computing Systems (ICDCS 2002), Vienna, Austria, July 2002.

[MD04] Mao, Douligeris: A Distributed Database Architecture for Global Roaming in Next-Gen-
eration Mobile Networks. In: IEEE/ACM Trans. Netw., Vol. 12, No. 1, Febr. 2004.

[Ni0O1] Nicklas et al.: A Model-Based, Open Architecture for Mobile, Spatially Aware Applica-
tions. In: Proc. 7th Int. Symp. on Advances in Spatial and Temporal Databases (SSTD
2001), Redondo Beach, USA, July 2001.

[Wo098] Wolfson et al.: Moving Objects Databases: Issues and Solutions. In: Proc. 10th Int. Conf.
on Statistical and Scientific Database Management (SSDBM 1998), Capri, Italy, July 1998.

292

