
The UML 2.0 Test Profile as a Basis
for Integrated System and Test Development

Ina Schieferdecker

Technical University Berlin/Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31

D-10589 Berlin
ina.schieferdecker@fokus.fraunhofer.de

Abstract: Model centric development and engineering according to Model-Driven
Architectures (MDA) has recently gained much attention. This paper presents an
approach how a model centric approach cannot only be used for system
development but also at the same time to support the provision of system tests
which are to be an integral part of the overall system development. The paper
discusses the various artefacts for model-based testing along MDA and their
relation to the artefacts in system development. The testing artefacts can be
designed and modelled with the UML 2.0 Testing Profile (U2TP) which extends
UML 2.0 with test specific concepts.

1 Introduction

Test software is a special kind of software dedicated to the analysis and evaluation of
software systems. It can be modelled and developed the same way as system software, so
that development processes established for the design and development of systems can
theoretically be used also for test systems. Practically however, system specification
techniques do not take into account the specifics of test systems, like being able to define
test components, test data or verdicts. Many efforts have to be spent to enable system
developers and testers to understand each other, to transform system artefacts into test
artefacts, to keep them consistent, to relate and trace system requirements to test cases
and test results, etc. The situation can be improved if both the software system and its
test system(s) can be designed, specified and visualized within one technology. Then, the
people involved as well as the reviews, transformations, consistency checks, coverage
analysis, etc. do not have to cross technology borders, but can focus on the content of the
artefacts such as the system and test logic. As UML has been established as the industrial
standard in system design, its extension towards test systems was a compelling idea,
which resulted in the initiation and definition of the UML 2.0 Testing Profile (U2TP
[U2TP04]) By doing so, UML based development processes can also be used for test
design and test generation.

395

Model centric development of software system has recently become an important
software engineering strategy for handling the complexity and the increasing
requirements to larger and highly distributed software systems. The OMG initiative on
Model Driven Architectures (MDA) prescribes certain model artefacts to be used along
system development, how those models may be designed and their relationship
[MDA03]. It is an approach to system development that separates the specification of
functionality from the specification of the implementation of that functionality on a
specific technology platform [QVT04]. Main MDA artefacts are computationally
independent platform models (CIMs), platform independent system models (PIMs),
platform specific system models (PSMs) and system code [KWB03]. There is a clear
distinction between CIM, PIM, PSM and system code although it depends on the
context, the development process and the details of the system and target platform,
where the borders between CIM, PIM, PSM and system code are to be placed. Within
these abstraction levels, transformation techniques are used to translate model parts of
one abstraction level into model parts on another abstraction level. These
transformations can also be used to specify the relations and invariants between the
models on different abstraction levels, which are the base to check the consistency
between models and to validate models against each other. These MDA abstraction
levels can also be applied to test modelling [G03] as according to the philosophy of
MDA, the same modelling mechanism can be re-used for multiple targets [S01].
Similarly, test models can be specified independent from the computations, independent
from the platform details and specifically for a target platform before generating
executable test codes [D04].

2 The UML 2.0 Testing Profiles

The UML 2.0 Testing Profile (U2TP) defines a language for designing, visualizing,
specifying, analyzing, constructing and documenting the artefacts of test systems. It is a
test modelling language that can be used with all major object and component
technologies and be applied to test systems in various application domains. Being a
profile, the U2TP seamlessly integrates into UML. It is based on the UML 2.0 meta-
model [2] and reuses UML 2.0 syntax.

The UML 2.0 Testing Profile provides concepts that target both the pragmatic and
systematic development of concise test specifications and test models for black-box and
grey-box testing [U2TP04,U2TP04a]. In particular, the profile introduces concepts
covering: test architecture, test behaviour, test data, and time. The profile defines testing
concepts, including test context, test case, test component, and verdicts that are
commonly used during testing. Behavioural elements from UML 2.0 can be used to
specify the dynamic nature of test cases. These include interactions, state diagrams, and
activity diagrams. Additional concepts for behaviour include several types of actions
(validation actions, log actions, final actions, etc.), defaults for managing unexpected
behaviours, and arbiters for determining the final verdict for a test case. The definition
and handling of test data is supported by wildcards, data pools, data partitions, data
selectors and coding rules. Timers and time zones are also provided to enable
specifications of test cases with appropriate timing capabilities.

396

The philosophy being adopted for the development of U2TP has been to make use of
existing UML 2.0 concepts wherever possible, thereby minimizing the introduction of
new concepts. The U2TP concepts are structured into

Test architecture concepts defining concepts related to test structure and test
configuration, i.e. the test components and system components involved in a
test and their relationships

Test behaviours concepts defining dynamic aspects of test procedures covering
stimuli, observations and evaluation activities during a test,

Test data concepts defining concepts for test data used in test procedures, i.e.
the structures and meaning of values to be processed in a test, and

Time concepts defining concepts for a time quantified definition of test
procedures, i.e. the time constraints and time observation for a test execution.

The use of U2TP for the development of test suites from system models has been for
example described in [U2TP04b]. While these tests have been manually derived and
checked for consistency, a more systematic approach for test generation and validation is
possible with model-driven test techniques as outlined in the following section.

3 MDA++ and the Test Artefacts

MDA tries to overcome common problems in existing development processes:
requirements, specifications and development information are often documented and
communicated via paper – consistency is therefore hard to achieve. Typically, experts
responsible for different development tasks in different development phases do not
interact on a common terminology base and face therefore communication and
efficiency problems. Transitions between different phases in development process are
not or not sufficiently automated. And last but not least, developers and testers do not
share artefacts – not only but also as technologies and methods for early and continuous
tests throughout the development process are missing. U2TP bridges the gap between
project leaders, developers and testers by providing means for using UML also for test
development and modelling. This allows the reuse of UML design documents for testing
and enables test development in an early system development phase. MDA++ - the
extension of MDA with test support – adds to this the various test artefacts and their
relations to the system artefacts. The overall approach of MDA++ is depicted in Fig. 1.

The artefacts used along the development process are based on metamodels which define
the process, technologies, methods and system specifics in form of concept spaces
reflecting the concept structures and their relations. There exist metamodels for system
artefacts to capture the computationally independent system model (CIM), the platform
independent system model (PIM), the platform model (PM), the platform specific model
(PSM) and the system code (SC).

397

CIM PIM SC

CIT PIT PST

PM PSM

TPM TC

Metamodel Transformation

Mapping Relation

+target

+source

Figure 1: MDA++: MDA with testing support

The models can be associated via various transformations being either mappings or
relations. For example, a PSM is typically derived from a PIM by taking into account the
characteristics of a PM.

Likewise, for the test development there exist a computational independent test (CIT), a
platform independent test (PIT), a platform specific test (PST), a test platform model and
a test code (TC). Please note that the platform in PST relate to the system platform, i.e.
the PST contains tests being specific to the characteristics of the system platform. The
test platform is taking into account when generating the TC from a PST.

In addition, there are mappings from system models to test models such as from CIM to
CIT or from PIM to PIT. There are also relations between system and test models which
define e.g. consistency or coverage criteria. Another relation is the relation between test
code and system code which reflects the application of the tests onto the real system and
which will result in test reports. Examples for the mappings from system to test models
include:

x The CIM to CIT mapping which derives test objectives and test suite structures
from the business objectives combined with overall test strategies used in a
specific development process,

x The PIM to PIT mapping which can be based on a mapping from use cases (and
their formalization in form of activity diagrams or sequence diagrams) onto sets
of abstract test cases, which define the behavioural test procedures but leaving
out details of test data,

x The PSM to PST mapping which derives test dedicated to the platform specific
interfaces and to the special treatment of system components on the target
platform. It will also resolve data dependencies and complete abstract test cases
into concrete test cases such that specific test data is sent to and expected from
the system under test.

398

The approach of generating test models from system models follow established
techniques for e.g. structural aspects of tests such as types, test components and their test
configurations and for e.g. behavioural aspects such as the derivation of tests from
(extended) finite state machines (represented by UML state machines) or message
sequence charts (represented by UML interaction diagrams) can be used. The first uses
mainly state or transition coverage methods, while the second uses branch or path
coverage methods to derive the various test sequences.

Open questions include for example if transformation from PIM to PSM to PST will
result in the same tests when transforming PIM to PIT to PST. We are currently at the
beginning of this research, where we use our results in test specification with U2TP and
test generation from UML 2.0 models to U2TP. We expect interesting results when
analysing MDA++ in application domains such as the financial domain or in the
automotive domain.

References

 [U2TP04] OMG: UML 2.0 Testing Profile. Final Adopted Specification, ptc/04-04-02, 2004.
[U2TP04a] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, S. Lucio, E. Samuelsson, I.

Schieferdecker, and C. Williams: The UML 2.0 Testing Profile, Conquest 2004,
ASQF Press, September 2004, Nuremberg, Germany.

[U2TP04b] I. Schieferdecker: The UML 2.0 Testing Profile U2TP, TIMNA 2004,
Telecommunications Information Multi-Management Networking Architecture,
October 2004 Beijing, China.

 [MDA03] OMG: Model-Driven Architecture (MDA) www.omg.org/docs/omg/03-06-01.pdf,
www.omg.org/docs/formal/02-04-03.pdf.

[QVT04] OMG: MOF Query/Views/Transformations, 2nd Revised Submission, ad/04-01-06,
2004.

[UML03] OMG: UML 2.0 Superstructure Final Adopted Specification, www.omg.org/cgi-
bin/doc?ptc/2003-08-02.

[KWB03] A. Kleppe, J. Warmer, W. Bast: MDA Explained: The Model Driven, Architecture–
Practice and Promise. Addison-Wesley Pub Co, 2003.

[G03] Gross, H.: Testing and the UML – a perfect fit. Fraunhofer IESE, Technical Report
110.03E, 2003.

[S01] J. Siegel, OMG Staff Strategy Group: Developing in omg’s model-driven
architecture., 2001.

[D04] Z. R. Dai: Model-Driven Testing with UML 2.0, Second European Workshop on
Model Driven Architecture (MDA) with an emphasis on Methodologies and
Transformations (EWMDA'04), Canterbury, England, September 2004.

[AWL04] D. Amyot, M. Weiss., L. Logrippo: UCM-Based Generation of Test Goals. ISSRE'04
Workshop on Integrated-reliability with Telecommunications and UML Languages
(ISSRE04:WITUL), Rennes, France, November 2004.

[ZDSD05] J. Zander, Z.R. Dai, I. Schieferdecker, G. Din: From U2TP Models to Executable
Tests with TTCN-3 - An Approach to Model Driven Testing, IFIP 17th Intern. Conf.
on Testing Communicating Systems - TestCom 2005, Montreal, Canada, March 2005.

399

