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Abstract 
 
Virtualization based server consolidation is the fundamental technology in data centers supporting e.g. server cost re-
duction, cheap HA failover setups or green computing. Virtual machines running on a shared server should be in an 
idealistic case independent of each other both from the point of view of logical and performability aspects; however, 
isolation is typically imperfect. The paper proposes a methodology for estimating parasitic interferences between virtual 
machines running on the same shared host by analyzing the core factors by means of data mining. The consequences to 
deployment policy are shortly addressed. 
 
 
 
1 Introduction 
Platform-level virtualization in the data center enables re-
source usage consolidation. The main means is the largely 
transparent migration of physical servers to virtual ma-
chines (VMs), hosted by a (typically) lesser number of 
host machines. The principle of resource reduction is the 
merging of all computational resources into a single pool. 
This results on the capacity assurance side in a substitu-
tion of the total of worst case capacity needs of the tasks 
statically deployed to the individual servers with that of 
the maximum of total of concurrently running applica-
tions (minus the virtualization related overhead). 
Maybe equally importantly, modern virtualization tech-
nologies became a cornerstone of implementing adaptivi-
ty and autonomicity in the data center by supporting such 
management actions in the platform as the live migration 
of machines between hosts, suspending/resuming virtual 
machines, providing machine state level checkpointing 
and the fast instantiation of “clone” virtual machines from 
checkpoint images. 
Through these actions, virtualization platforms provide 
excellent support on the virtual machine level for  
 

a) modular redundancy based structural fault tolerance 
patterns,  

b) many important error recovery patterns (as e.g. roll-
back or failover)  

c) and c) some patterns mitigating errors caused by 
overload faults.  

(For a taxonomy of the patterns of fault tolerant software, 
see [8].) Also, with a usually modest amount of dynami-
cally reallocable redundant resources (a “resource pool” 

of hosts) in the system, the dependability measures can be 
readjusted on-demand. 
However, virtualization introduces an additional resource 
arbitration layer in the form of the Virtual Machine Moni-
tor (VMM) or hypervisor. Platform virtualization tech-
nologies can be divided into two categories: solutions 
with bare-metal and hosted architectures. In the hosted 

case, the virtualization technology runs on a regular oper-
ating system (some widely used examples are VMware 
Workstation, VirtualBox and Microsoft Virtual PC), 
while the VMM of bare-metal architectures is not insu-
lated from the hardware by another software layer (VM-
ware ESX, Xen). 
The hypervisor presents virtual machines with a virtual 
operating platform. Fault isolation between the VMs is a 
crucial aspect of ensuring dependability in virtualized en-
vironments; this includes ensuring the lack of unaccepta-
ble performance interferences in the context of resource 
access arbitration. 
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Figure 1  Bare-metal vs hosted architectures 
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2 Performance interference of VMs 
Software stacks that in the native case would run on dedi-
cated hardware have to share the physical resources of the 
host system in a virtualized environment, the access being 
governed by the scheduling policies of the VMM. Unsur-
prisingly, the performance of the services is affected by 
the interference caused by other virtual machines running 
on the same host. A virtual machine shows different ser-
vice-level performance characteristics – more precisely, a 
different relationship between load and Quality of Service 
(QoS) – in most cases when it runs “on its own”, than 
when multiple virtual machines share the same host. [1] 
and [2] provide empirical data on this phenomenon. 
[1] also establishes a taxonomy for the sources of the in-
terference: a) shared resources visible to the VMM direct-
ly or through performance counters – for instance, core 
allocation or memory capacity; b) shared resources that 
are essentially invisible to the VMM by their nature – e.g. 
cache space and memory bandwidth and c) the specifics 
of the virtualization technology and the scheduling discip-
lines employed. 
Modern platform virtualization technologies as VMware 
ESX/vSphere and Xen provide support for enforcing ex-
plicit, allowance-based hard limits (or “caps”) on the visi-
ble resource metrics. These are CPU usage, physical 
memory usage, I/O Operations per Second on a per-VM 
basis and average bandwidth, peak bandwidth and burst 
size for (virtual) network port groups in the case of 
ESX/vSphere 4. These complement priority-based sche-
duling options for the critical core subset of the resources. 
Hard caps are commonly used in the industrial practice to 
establish performance isolation between virtual machines 
running services with stringent QoS requirements. Caps 
are also intended to serve as a form of resource usage 
fault containment in these cases. 
However, a number of problems arise when hard capping 
is used as a mechanism for performance isolation in QoS-
controlled environments. A significant technical factor is 
that these mechanisms confine only the use of visible re-
sources and they lack providing a guaranteed isolation 
from interferences through invisible resources.  
Moreover, even the platform level supervisory and re-
source-to-job allocation services have a complex interde-
pendence with the application level resource usage pat-
tern. The QoS of the “resource services” depends on these 
interferences– e.g. the patterns of parallel access influence 
the execution time in varying ways through caches, or op-
eration delay for storage I/O. The service-level QoS of the 
virtual machines in turn depends on these parameters.  
Establishing a performance model for services that leads 
to proper capping parameters is an ill-supported activity, 
even without taking interferences into account. Naturally, 
performance modeling is the starting point for performa-
bility design of HA applications. Although there is a large 
body of approaches for resource use forecasting in com-
puting systems (for a best practice guide, see e.g. [3]), 
these models and model identification methods tend to be  

a) quite complex; 

b) establish fine-granular models, thus necessitating 
additional effort for linking the model to system 
management policies and event handling (see later), 
and 

c) focus on a fixed operational point or heavily con-
strained operational domain, while in virtualized in-
frastructures the on-demand migration of virtual 
machines between hosts and restructuring of cap-
ping on the individual machines can change these 
significantly. 

2.1 Qualitative characterization 
System management in general deals with QoS-
management in highly qualitative terms; only a few ser-
vice QoS and service load classes are defined for capacity 
planning purposes and the supporting coarse-grained, 
“good enough” resource allocations are sought. VM per-
formance interferences in this setting manifest as effects 
that modify the provided QoS class of a VM running on a 
host in itself to another one when other VMs are also run 
on the host.  
If known, these constraints can then be taken into account 
during configuration planning – e.g. at the most basic lev-
el by prohibiting deploying two VMs to the same host 
when QoS class changing interferences can occur. Note 
that for a heterogeneous set of VM types – as is usual in 
enterprise data centers – not all VM types will show radi-
cal performance interferences. We can reasonably expect 
a CPU-bound application server and an I/O bound file 
server not to interfere with each other to a great extent 
(under normal load). However, explicitly testing all poss-
ible VM-to-host deployments for service QoS category 
level interferences is clearly not a tractable approach. 

2.2 Estimation from observations 
Virtualization platforms provide a set of built-in counters 
that collect various virtual machine and platform level 
run-time data – and to that, partially at a more fine-
grained level than at which caps are specified. For in-
stance, ESX/vSphere 4 has counters for disk commands 
issued, aborts, disk read and write requests while the I/O 
per second limit does not distinguish operations. 
We propose that the platform counters enable a conserva-
tive, phenomenological way of modeling possible interfe-
rences by formulating relationships between QoS-effects 
and effects on the platform counters.  
These counters enable estimating cross-VM interference.  
 

1. At first, a measurement of the QoS and platform 
characteristics of a single VM running on a host 
alone delivers its performance characteristics.  

2. Repeating the measurement with (at least) another 
VM also present as “disturbance”, we arrive at a set 
of QoS differences accompanied with a correspond-
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ing set of platform metric differences – these will 
serve as empirical proofs of sensitivity.  

3. Using classic data mining techniques, we can estab-
lish the platform metric difference categories that 
can be best linked to categorical changes in the QoS. 

4.  These factors of high sensitivity in turn can be used 
for a conservative solution exclusion strategy during 
configuration planning.  

For instance, if the experiments indicate that a “high” 
change in the disk write rate compared to the case when 
the measured VM ran alone invariably leads to a signifi-
cant QoS-change, than this finding provides a supporting 
argument for not deploying beside this VM another that is 
likely to generate at least so big a disk write rate. 

3 Experimental environment 
We have developed an experimental environment to study 
our proposed approach. The environment was inspired by 
the two currently most prevalent virtualization bench-
marks, VMmark [4] and vConsolidate [5]. 
 
 
 
 
 
 
 
 
 
 
 

Three types of virtual machines are examined. 1) A VM 
running an Oracle database server, loaded with the de-
facto industrial benchmark Swingbench; 2) A VM run-
ning a Websphere Application Server and its “Plants by 
Websphere” example application, loaded with a custom 
page visit sequence that is replayed by IBM Rational Per-
formance Tester [6]; and 3) a Samba server VM, loaded 
by the file server benchmarking tool dbench. The QoS 
metrics of the services are average database query re-
sponse time, average web page response time and average 
server-side data throughput, respectively. The system 
running he measured virtual machines is a Fujitsu Sie-
mens Primergy TX 120 machine, with a dual core, 2,66 
GHz Intel Xeon processor and 2GB RAM. As a hypervi-
sor, the host runs VMware ESX 3.5. 
The load generator and service QoS registering compo-
nents were run from the same tester host (a machine with 
significantly more resources than the one running the 
hypervisor) and we use nonstandard applications and 

loads. This way, our results are to serve only the initial 
evaluation of experimental approaches and are unambi-
guously unusable for performance comparison purposes. 
Consequently, we give here only normalized values in the 
results. 
Experiments are run by a custom Java test harness on the 
tester machine that automates environment setup/restore, 
load generator management, the collection of results (QoS 
as well as platform metrics) and the batch execution of 
experiments. (See Figure 2.) 

4  Baseline and interference ex-
periments 

A virtual machine/load generator pair has three configura-
tion parameters in each experiment: the CPU limit of the 
virtual machine (hard upper cap), the memory limit of the 
virtual machine and the number of simulated users for the 
respective load generator. For each virtual machine type, 
the limits range from 10% to 90% in steps of 20%; three 
user number values are defined in each case, with 10 be-
ing the lowest and 50 being the highest uniformly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have conducted two series of experiments. In the first, 
each VM was measured as the sole running one on the 
host with each possible configuration setting. In the 
second, all three pairs were measured, with all possible 
configuration settings (limits were selected so that for the 
CPU as well as memory, the corresponding limits of the 
two VMs added up to 100%). Accounting for the cases in 
the second series where the services in the VMs consis-
tently did not even start or crashed, 765 experiments were 
run successfully. Each experiment ran for 20 minutes. 
The first series of experiments gives a “baseline” steady-
state performance estimation for each VM, mapping the 
configuration space to QoS and platform metric mea-
surements. As an example, Figure 3, 5 and 6 show the 
QoS-surface of the database server with respect to CPU 

VMware ESX 3.5

WS 2003Perf.
TesterSwingb.

Controller

dbench Ubuntu Red Hat
Linux

 
Figure 2.  Experimental environment 
 
  

Figure 3. Database running alone; normalized perfor-
mance w.r.t. limits (10 users) 
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and memory limits (10, 20 and 50 users, respectively). As 
expected, under the given load the server can become 
CPU as well as memory-constrained through too stringent 
limits; however, note how overlimiting the CPU has far 
more serious consequences when the system is not satu-
rated in the 10 user case. 
We chose to use limits only on the CPU and memory on 
the one hand to expedite the measurement campaign and 
on the other hand to first examine such cases where inter-
ference through visible resources is possible. Further re-
search will examine cases, where all limitable visible re-
sources are capped. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the second set of experiments it is directly discerni-
ble that depending on the operational regions of the VMs 
(as defined by capping and service load), there are signifi-
cant performance interferences; see for example Figure 4. 
It can be seen that for a heavily CPU-constrained database 

(where the QoS is already degraded to some extent), the 
interference effect is very significant. This indicates that 
in virtualized environments the impact of allocating an 
insufficient amount of slack to performance-critical ser-
vices can have a magnified impact w.r.t. native ones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 Data mining interference meas-
urements 

The constructive use of virtualization has to take into ac-
count parasitic coupling between different applications 
through the resources. Note that this is fundamental from 
the point of view of modular replication based dependa-
bility assurance of applications – a technique that can be 
exploited to a great extent in virtualized environments, 
due to the ease with which virtual machine replicas can be 
created. Mainstream technologies for assuring dependa-
bility (typically high availability) exploit these capabili-
ties. 
However, the cross-coupling observed during the mea-
surements between functionally independent applications 
may corrupt these schemes; moreover, it may introduce a 
nondeterministic, thus nonpredictable cross-coupling in-
validating QoS guarantees. 
Artificial intelligence offers effective methods for the es-
timation of principal factors and their impact by sophisti-
cated algorithms, embedded in data minig tools. We have 
performed numerous data mining experiments on QoS 
and platform metric differences.  
We have found that building decision trees – more specif-
ically, classification trees with QoS change classes in the 
leafs – are a promising way to capture the most important 
factors in the “footprint” of interferences on the platform 
level.  
These decision trees have the advantage of clearly sepa-
rating the qualitatively different domains of operations 
together with the principal factors dominating their main 

 
Figure 4. QoS-change of database VM (10 users) w.r.t. 
Figure 3 – disturbance: dbench (10 users) 
 
 

 
Figure 5. Database running alone; normalized perfor-
mance w.r.t. limits (20 users) 
 
 

 
Figure 6. Database running alone; normalized perfor-
mance w.r.t. limits (50 users) 
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characteristics. We use a built-in classifier (J48) of the 
popular machine-learning suite WEKA [9]. 
Let us consider as an example the database server with the 
10 user load class (Figure 3). We take as disturbance the 
co-allocation of the virtualized application server to the 
same physical host in all CPU/memory limit points with 
all three load classes. The decision tree on the platform 
metric differences w.r.t. the case when the database VM 
runs alone on the host is depicted on Figure 7. 
The nodes of the tree are the differences in platform me-
trics (that is, aggregate ones for the platform and not VM-
specific). For now, the classification of the QoS-
difference into classes is performed automatically, in a 
preprocessing step. The ratio of properly classified ele-
ments and improperly classified elements – if any – is 
displayed in parentheses in the leafs of the tree on the fig-
ure. Although we do not wish to represent quantitative 
results, for the reference the most serious QoS difference 
ratio class (“High”) lies in the x2 – x3 range, while the 
class Small represents cases where the multiplier is 
smaller than 1.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In VMware ESX, the CPU Running (15 min peak) me-
tric represents the percentage of time a CPU group ran at 
peak over a period of 15 minutes. The counter Memory 
Swap In measures the total amount of memory swapped  
in. 
The interpretation of the results is the following. 
 

1. In most operational points, the database server is 
largely unaffected by the (usually heavily CPU-
bound) application server.  

2. However, there were cases when the amount of peak 
usage of the CPU does not really change – still, sig-
nificant interferences were observed. 

 
As another example, let us consider the case when the dis-
turbance is the dbench virtual machine (Figure 8; note 
that here using differences are used instead of ratios, as 
due to the distribution of the data it supports decision tree 
building better). 
Here the most serious QoS difference class (“+High”) 
lies in the tens of seconds range, while the class “Small” 
represents deviations smaller than a half second. Interes-
tingly, two cases were found where the QoS was actually 
slightly improved in the two-VM case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In VMware ESX, Memory Usage is defined as the ratio 
of the total physical memory consumed (by VMs and the 
virtualization environment) and the amount of physical 
memory installed.  
This way, the decision tree has the following interpreta-
tion: 
 

1. Even relatively small changes in the host-level disk 
write rate lead to measurable changes in the QoS 
(recall that I/O throughput was not capped). 

2. When the disk write rate is not significantly influ-
enced, the QoS virtually does not change, provided 

 
Figure 8. Classifying the QoS-change for the Oracle 
VM; disturbance: dbench 
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Figure 7. Classifying the QoS-change for the Oracle 
VM; disturbance: WebSphere 
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that the change in actual host memory usage remains 
below approximately +40%.  

 
A consequence to be drawn from the example is that it is 
ill advised to use the remaining layer of the decision tree 
on an as is basis, as for both categories there are only two 
underlying measurements at the “edge” of the configura-
tion and operational space mapped out by the measure-
ment campaign. At the same time, the two examples 
clearly indicate the limitations of automated data 
processing methods. Even simple visual comparison indi-
cates heavy differences at the phenomenological level; 
however, the estimation of the causal roots needs a 
somewhat speculative expert interpretation. Here we try 
to trace back the observed phenomena in the particular 
subdomain to the resource usage level as most probably 
such interferences originate in (nearly) saturated re-
sources. This needs a deep understanding and interpreta-
tion of the dynamics of the resource use. 
As such, for prediction purposes we can employ the tech-
nique of pessimistic overabstraction of the behavior of the 
system and state that significant changes in the overall 
memory usage (more than approximately +40%) may lead 
to significant QoS changes.  
These pessimistic overabstractions form the basis of a 
cautious, pessimistic design paradigm. More measure-
ments and refined decision trees may reduce the unwanted 
resource underexploitation originating in the pessimism of 
the approach. Most importantly, future work will add the 
CPU/memory limit and load characteristics to the plat-
form metric differences as the supporting variable set of 
decision tree building, in order to incorporate in the deci-
sion trees one aspect our initial methodology does not 
deal with - the fact that the presence and causes of interfe-
rence phenomena may depend on load and the amount of 
available resources. 

6 Interference and configuration 
planning 

The most basic aspects of configuration planning in virtu-
alized environments is designing deployment – which vir-
tual machine should be instantiated on which host – and 
deciding on the resource allowances – the parameteriza-
tion of various capping and scheduling options – on a per 
host basis. Similarly to classic configuration planning ap-
proaches, the objective function of configuration planning 
in virtualized environments can be based on various ser-
vice-level requirements as e.g. the need to adhere to 
SLAs, the objectives of risk management and operational 
cost constraints. Even some novel dependability issues 
such as the fault of a single physical machine becoming a 
common-mode fault for multiple services do not pose 
fundamentally new questions. 
Multiple works have examined configuration planning of 
virtualized environments with the objective (or one of the 
objectives) being maintaining constraints on the QoS of 

the services provided. Most of these works approach the 
problem as a purely combinatorial (vector packing) or 
mixed integer linear programming one (see e.g. 
[10][11][12]). One of the common characteristics of these 
known approaches is that they do not deal with perfor-
mance interferences of any type. 
Taking performance interferences into account during 
configuration search necessitates the ability to approx-
imate the QoS of a virtual machine instance given its 
CPU/memory limits and its load. Even without virtualiza-
tion and parasitic interferences, this topic can become 
very involved when the granularity of the underlying time 
window of the QoS metric is fine, or the precision of the 
required estimation is big, especially when comparatively 
long prediction horizons are taken. The complexity of 
QoS prediction further grows with the introduction of va-
rying and/or highly nondeterministic loads. (Again, see 
e.g. [3].) In the context of our current work QoS is de-
fined as a steady-state metric with a large underlying time 
window (tens of minutes). Admittedly, for the most im-
portant “averaging” QoS metrics this will mask the (po-
tential) presence of outliers and transients phases with 
significant amplitude. However, the usual industrial prac-
tice largely follows the same approach at design time as 
building more precise performance models prior to the 
operational phase is usually infeasible – additionally, the 
portability of performance assumptions between opera-
tional settings tends to be poor. 
We have conducted a series of single-machine perfor-
mance experiments that map out the QoS of individual 
virtual machines in a space of points of operation defined 
by load, CPU and memory limits. By applying qualitative 
categorization, these give rise to a set of “operational 
mode maps”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also, we have performed a series of interference mea-
surements between pairs of virtual machines that provide 
empirical evidence for the deviations from the single-VM 

10 30 50 70 90

10

30

50

70

90

CPU

Memory
Good

Worst

Mid

 
Figure 9. An example qualitative categorization of 
Figure 3. 
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maps – when only the two machines run on the same host 
and the CPU and memory are partitioned between them. 
However, supporting configuration planning by direct 
measurement only is clearly a process that does not scale. 
Denoting the set of virtual machines with  and disallow-
ing virtual machine replication on the same host, worst 
case there are  virtual machine combinations that 
would have to be measured in all possible resource parti-
tioning and load combinations. 
Instead, we propose qualitatively estimating the QoS of 
the service provided by a VM in multiple-VM configura-
tions by approximating the qualitative QoS difference the 
other VMs may cause. Let  be the virtual machine for 
which we seek its expected QoS class under load  and 
with CPU and memory limits  and . The outline of the 
approach: 
 

1. An “undisturbed” QoS class  is computed 
from the single-VM measurements of  via 
linear approximation for the operational point 

. 
2. The platform metric difference category vectors 

that can lead to significant changes (more pre-
cisely, change categories) in the QoS of  are 
gathered from decision trees that have been in-
ferred from the interference experiments for 

. 
3. For the set of other VMs to be deployed on the 

same host, it is computed that what their aggre-
gate impact on these platform metrics can be in 
their respective operational points, based on their 
single-VM measurements. 

4.  is modified with the QoS-category of the in-
terference relation(s) that is compatible with this 
impact. 

 
Note that the third step necessitates a mapping between 
the VM-specific metrics (e.g. VM memory usage) and the 
platform metrics (host memory usage). However, estab-
lishing this mapping – using pessimistic approximation, if 
necessary – is quite straightforward for most platform me-
trics. 
Estimating the impact of other machines this way is not 
guaranteed to deliver exact or even always correct results. 
Still, this procedure is appropriate to conservatively dis-
card such configurations during planning where there is 
evidence that a setup with a given platform-level metric 
signature will lead to unacceptable QoS of one or more of 
the virtual machines hosted, despite their individual sin-
gle-VM behavior. Naturally, accepted solutions have to 
be performance-tested to find those that were not dis-
carded, but are inappropriate QoS-wise. 

7 Outlook: monitoring configura-
tion planning 

Using data mining techniques on the results of single-VM 
measurement campaigns promises to lead to a method for 
the deeper understanding of the internal characteristics of 
virtual machines and eventually to synthesizing monitor-
ing configurations that are defined in terms of hypervisor 
metrics, not guest OS ones and direct service monitoring. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 depicts the decision tree built on the experi-
mental data gained from all single-VM database experi-
ments. This tree contains the three phenomenologically 
most important factors defining the performance of the 
database server, regardless of the load and capping em-
ployed. (There is roughly one order of magnitude differ-
ence between the QoS categories in the leafs.) It is direct-
ly discernible that in the operational points we have data 
for, neither low nor high disk write rates do accompany 
optimum performance. Even when the disk write rate is 
what is expected under normal operations, a high or very 
high CPU Ready time – the time a virtual machine has 
to wait before it is scheduled for execution on a CPU – is 

Disk Write Rate
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= VHigh
(12545-22910)

= High
(3624-6574)

Mid
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VBad
(5)

Mid
(8) = Mid

(363-1346)
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(4)
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(0)
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Memory Usage
Percent (average)
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(0)
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(3)
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(5/1)
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(1)

 
Figure 10. Decision tree built on the VM specific metrics 
of all database experiments 
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associated with degraded performance in more than half 
of the cases. At the very least, such decision trees provide 
a solid initial monitoring configuration that can be refined 
via online learning and is not invalidated by online data 
center reconfigurations. 

8 Conclusion and future work 
The experimental validation and refinement of the interfe-
rence-estimation methodology is currently ongoing work; 
here our initial results were reported. Notably, we have to 
address the open question that how much “disturbance” 
measurement campaigns are necessary for a moderately 
extended set of virtual machines. Also, as an implementa-
tion a mixed integer linear program is being designed for 
the interference-aware configuration planning of virtua-
lized environments. 
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