
Qualitative Characterization of Quality of Service Interference
between Virtual Machines

Ágnes Salánki, Imre Kocsis, András Pataricza, Department of Measurement and Information
Systems, Budapest University of Technology and Economics, Budapest, Hungary
Zsolt Kocsis, IBM Center of Advanced Studies Budapest, Budapest, Hungary

Abstract

Virtualization based server consolidation is the fundamental technology in data centers supporting e.g. server cost re-
duction, cheap HA failover setups or green computing. Virtual machines running on a shared server should be in an
idealistic case independent of each other both from the point of view of logical and performability aspects; however,
isolation is typically imperfect. The paper proposes a methodology for estimating parasitic interferences between virtual
machines running on the same shared host by analyzing the core factors by means of data mining. The consequences to
deployment policy are shortly addressed.

1 Introduction
Platform-level virtualization in the data center enables re-
source usage consolidation. The main means is the largely
transparent migration of physical servers to virtual ma-
chines (VMs), hosted by a (typically) lesser number of
host machines. The principle of resource reduction is the
merging of all computational resources into a single pool.
This results on the capacity assurance side in a substitu-
tion of the total of worst case capacity needs of the tasks
statically deployed to the individual servers with that of
the maximum of total of concurrently running applica-
tions (minus the virtualization related overhead).
Maybe equally importantly, modern virtualization tech-
nologies became a cornerstone of implementing adaptivi-
ty and autonomicity in the data center by supporting such
management actions in the platform as the live migration
of machines between hosts, suspending/resuming virtual
machines, providing machine state level checkpointing
and the fast instantiation of “clone” virtual machines from
checkpoint images.
Through these actions, virtualization platforms provide
excellent support on the virtual machine level for

a) modular redundancy based structural fault tolerance
patterns,

b) many important error recovery patterns (as e.g. roll-
back or failover)

c) and c) some patterns mitigating errors caused by
overload faults.

(For a taxonomy of the patterns of fault tolerant software,
see [8].) Also, with a usually modest amount of dynami-
cally reallocable redundant resources (a “resource pool”

of hosts) in the system, the dependability measures can be
readjusted on-demand.
However, virtualization introduces an additional resource
arbitration layer in the form of the Virtual Machine Moni-
tor (VMM) or hypervisor. Platform virtualization tech-
nologies can be divided into two categories: solutions
with bare-metal and hosted architectures. In the hosted

case, the virtualization technology runs on a regular oper-
ating system (some widely used examples are VMware
Workstation, VirtualBox and Microsoft Virtual PC),
while the VMM of bare-metal architectures is not insu-
lated from the hardware by another software layer (VM-
ware ESX, Xen).
The hypervisor presents virtual machines with a virtual
operating platform. Fault isolation between the VMs is a
crucial aspect of ensuring dependability in virtualized en-
vironments; this includes ensuring the lack of unaccepta-
ble performance interferences in the context of resource
access arbitration.

HW

VMM

Management
OS

Management
application

OS OS

App App

HW

host OS

Application OS OS

VMM

App App

bare-metal
architecture

hosted
architecture

Figure 1 Bare-metal vs hosted architectures

47

2 Performance interference of VMs
Software stacks that in the native case would run on dedi-
cated hardware have to share the physical resources of the
host system in a virtualized environment, the access being
governed by the scheduling policies of the VMM. Unsur-
prisingly, the performance of the services is affected by
the interference caused by other virtual machines running
on the same host. A virtual machine shows different ser-
vice-level performance characteristics – more precisely, a
different relationship between load and Quality of Service
(QoS) – in most cases when it runs “on its own”, than
when multiple virtual machines share the same host. [1]
and [2] provide empirical data on this phenomenon.
[1] also establishes a taxonomy for the sources of the in-
terference: a) shared resources visible to the VMM direct-
ly or through performance counters – for instance, core
allocation or memory capacity; b) shared resources that
are essentially invisible to the VMM by their nature – e.g.
cache space and memory bandwidth and c) the specifics
of the virtualization technology and the scheduling discip-
lines employed.
Modern platform virtualization technologies as VMware
ESX/vSphere and Xen provide support for enforcing ex-
plicit, allowance-based hard limits (or “caps”) on the visi-
ble resource metrics. These are CPU usage, physical
memory usage, I/O Operations per Second on a per-VM
basis and average bandwidth, peak bandwidth and burst
size for (virtual) network port groups in the case of
ESX/vSphere 4. These complement priority-based sche-
duling options for the critical core subset of the resources.
Hard caps are commonly used in the industrial practice to
establish performance isolation between virtual machines
running services with stringent QoS requirements. Caps
are also intended to serve as a form of resource usage
fault containment in these cases.
However, a number of problems arise when hard capping
is used as a mechanism for performance isolation in QoS-
controlled environments. A significant technical factor is
that these mechanisms confine only the use of visible re-
sources and they lack providing a guaranteed isolation
from interferences through invisible resources.
Moreover, even the platform level supervisory and re-
source-to-job allocation services have a complex interde-
pendence with the application level resource usage pat-
tern. The QoS of the “resource services” depends on these
interferences– e.g. the patterns of parallel access influence
the execution time in varying ways through caches, or op-
eration delay for storage I/O. The service-level QoS of the
virtual machines in turn depends on these parameters.
Establishing a performance model for services that leads
to proper capping parameters is an ill-supported activity,
even without taking interferences into account. Naturally,
performance modeling is the starting point for performa-
bility design of HA applications. Although there is a large
body of approaches for resource use forecasting in com-
puting systems (for a best practice guide, see e.g. [3]),
these models and model identification methods tend to be

a) quite complex;

b) establish fine-granular models, thus necessitating
additional effort for linking the model to system
management policies and event handling (see later),
and

c) focus on a fixed operational point or heavily con-
strained operational domain, while in virtualized in-
frastructures the on-demand migration of virtual
machines between hosts and restructuring of cap-
ping on the individual machines can change these
significantly.

2.1 Qualitative characterization
System management in general deals with QoS-
management in highly qualitative terms; only a few ser-
vice QoS and service load classes are defined for capacity
planning purposes and the supporting coarse-grained,
“good enough” resource allocations are sought. VM per-
formance interferences in this setting manifest as effects
that modify the provided QoS class of a VM running on a
host in itself to another one when other VMs are also run
on the host.
If known, these constraints can then be taken into account
during configuration planning – e.g. at the most basic lev-
el by prohibiting deploying two VMs to the same host
when QoS class changing interferences can occur. Note
that for a heterogeneous set of VM types – as is usual in
enterprise data centers – not all VM types will show radi-
cal performance interferences. We can reasonably expect
a CPU-bound application server and an I/O bound file
server not to interfere with each other to a great extent
(under normal load). However, explicitly testing all poss-
ible VM-to-host deployments for service QoS category
level interferences is clearly not a tractable approach.

2.2 Estimation from observations
Virtualization platforms provide a set of built-in counters
that collect various virtual machine and platform level
run-time data – and to that, partially at a more fine-
grained level than at which caps are specified. For in-
stance, ESX/vSphere 4 has counters for disk commands
issued, aborts, disk read and write requests while the I/O
per second limit does not distinguish operations.
We propose that the platform counters enable a conserva-
tive, phenomenological way of modeling possible interfe-
rences by formulating relationships between QoS-effects
and effects on the platform counters.
These counters enable estimating cross-VM interference.

1. At first, a measurement of the QoS and platform
characteristics of a single VM running on a host
alone delivers its performance characteristics.

2. Repeating the measurement with (at least) another
VM also present as “disturbance”, we arrive at a set
of QoS differences accompanied with a correspond-

48

ing set of platform metric differences – these will
serve as empirical proofs of sensitivity.

3. Using classic data mining techniques, we can estab-
lish the platform metric difference categories that
can be best linked to categorical changes in the QoS.

4. These factors of high sensitivity in turn can be used
for a conservative solution exclusion strategy during
configuration planning.

For instance, if the experiments indicate that a “high”
change in the disk write rate compared to the case when
the measured VM ran alone invariably leads to a signifi-
cant QoS-change, than this finding provides a supporting
argument for not deploying beside this VM another that is
likely to generate at least so big a disk write rate.

3 Experimental environment
We have developed an experimental environment to study
our proposed approach. The environment was inspired by
the two currently most prevalent virtualization bench-
marks, VMmark [4] and vConsolidate [5].

Three types of virtual machines are examined. 1) A VM
running an Oracle database server, loaded with the de-
facto industrial benchmark Swingbench; 2) A VM run-
ning a Websphere Application Server and its “Plants by
Websphere” example application, loaded with a custom
page visit sequence that is replayed by IBM Rational Per-
formance Tester [6]; and 3) a Samba server VM, loaded
by the file server benchmarking tool dbench. The QoS
metrics of the services are average database query re-
sponse time, average web page response time and average
server-side data throughput, respectively. The system
running he measured virtual machines is a Fujitsu Sie-
mens Primergy TX 120 machine, with a dual core, 2,66
GHz Intel Xeon processor and 2GB RAM. As a hypervi-
sor, the host runs VMware ESX 3.5.
The load generator and service QoS registering compo-
nents were run from the same tester host (a machine with
significantly more resources than the one running the
hypervisor) and we use nonstandard applications and

loads. This way, our results are to serve only the initial
evaluation of experimental approaches and are unambi-
guously unusable for performance comparison purposes.
Consequently, we give here only normalized values in the
results.
Experiments are run by a custom Java test harness on the
tester machine that automates environment setup/restore,
load generator management, the collection of results (QoS
as well as platform metrics) and the batch execution of
experiments. (See Figure 2.)

4 Baseline and interference ex-
periments

A virtual machine/load generator pair has three configura-
tion parameters in each experiment: the CPU limit of the
virtual machine (hard upper cap), the memory limit of the
virtual machine and the number of simulated users for the
respective load generator. For each virtual machine type,
the limits range from 10% to 90% in steps of 20%; three
user number values are defined in each case, with 10 be-
ing the lowest and 50 being the highest uniformly.

We have conducted two series of experiments. In the first,
each VM was measured as the sole running one on the
host with each possible configuration setting. In the
second, all three pairs were measured, with all possible
configuration settings (limits were selected so that for the
CPU as well as memory, the corresponding limits of the
two VMs added up to 100%). Accounting for the cases in
the second series where the services in the VMs consis-
tently did not even start or crashed, 765 experiments were
run successfully. Each experiment ran for 20 minutes.
The first series of experiments gives a “baseline” steady-
state performance estimation for each VM, mapping the
configuration space to QoS and platform metric mea-
surements. As an example, Figure 3, 5 and 6 show the
QoS-surface of the database server with respect to CPU

VMware ESX 3.5

WS 2003Perf.
TesterSwingb.

Controller

dbench Ubuntu Red Hat
Linux

Figure 2. Experimental environment

Figure 3. Database running alone; normalized perfor-
mance w.r.t. limits (10 users)

49

and memory limits (10, 20 and 50 users, respectively). As
expected, under the given load the server can become
CPU as well as memory-constrained through too stringent
limits; however, note how overlimiting the CPU has far
more serious consequences when the system is not satu-
rated in the 10 user case.
We chose to use limits only on the CPU and memory on
the one hand to expedite the measurement campaign and
on the other hand to first examine such cases where inter-
ference through visible resources is possible. Further re-
search will examine cases, where all limitable visible re-
sources are capped.

From the second set of experiments it is directly discerni-
ble that depending on the operational regions of the VMs
(as defined by capping and service load), there are signifi-
cant performance interferences; see for example Figure 4.
It can be seen that for a heavily CPU-constrained database

(where the QoS is already degraded to some extent), the
interference effect is very significant. This indicates that
in virtualized environments the impact of allocating an
insufficient amount of slack to performance-critical ser-
vices can have a magnified impact w.r.t. native ones.

5 Data mining interference meas-
urements

The constructive use of virtualization has to take into ac-
count parasitic coupling between different applications
through the resources. Note that this is fundamental from
the point of view of modular replication based dependa-
bility assurance of applications – a technique that can be
exploited to a great extent in virtualized environments,
due to the ease with which virtual machine replicas can be
created. Mainstream technologies for assuring dependa-
bility (typically high availability) exploit these capabili-
ties.
However, the cross-coupling observed during the mea-
surements between functionally independent applications
may corrupt these schemes; moreover, it may introduce a
nondeterministic, thus nonpredictable cross-coupling in-
validating QoS guarantees.
Artificial intelligence offers effective methods for the es-
timation of principal factors and their impact by sophisti-
cated algorithms, embedded in data minig tools. We have
performed numerous data mining experiments on QoS
and platform metric differences.
We have found that building decision trees – more specif-
ically, classification trees with QoS change classes in the
leafs – are a promising way to capture the most important
factors in the “footprint” of interferences on the platform
level.
These decision trees have the advantage of clearly sepa-
rating the qualitatively different domains of operations
together with the principal factors dominating their main

Figure 4. QoS-change of database VM (10 users) w.r.t.
Figure 3 – disturbance: dbench (10 users)

Figure 5. Database running alone; normalized perfor-
mance w.r.t. limits (20 users)

Figure 6. Database running alone; normalized perfor-
mance w.r.t. limits (50 users)

50

characteristics. We use a built-in classifier (J48) of the
popular machine-learning suite WEKA [9].
Let us consider as an example the database server with the
10 user load class (Figure 3). We take as disturbance the
co-allocation of the virtualized application server to the
same physical host in all CPU/memory limit points with
all three load classes. The decision tree on the platform
metric differences w.r.t. the case when the database VM
runs alone on the host is depicted on Figure 7.
The nodes of the tree are the differences in platform me-
trics (that is, aggregate ones for the platform and not VM-
specific). For now, the classification of the QoS-
difference into classes is performed automatically, in a
preprocessing step. The ratio of properly classified ele-
ments and improperly classified elements – if any – is
displayed in parentheses in the leafs of the tree on the fig-
ure. Although we do not wish to represent quantitative
results, for the reference the most serious QoS difference
ratio class (“High”) lies in the x2 – x3 range, while the
class Small represents cases where the multiplier is
smaller than 1.4.

In VMware ESX, the CPU Running (15 min peak) me-
tric represents the percentage of time a CPU group ran at
peak over a period of 15 minutes. The counter Memory
Swap In measures the total amount of memory swapped
in.
The interpretation of the results is the following.

1. In most operational points, the database server is
largely unaffected by the (usually heavily CPU-
bound) application server.

2. However, there were cases when the amount of peak
usage of the CPU does not really change – still, sig-
nificant interferences were observed.

As another example, let us consider the case when the dis-
turbance is the dbench virtual machine (Figure 8; note
that here using differences are used instead of ratios, as
due to the distribution of the data it supports decision tree
building better).
Here the most serious QoS difference class (“+High”)
lies in the tens of seconds range, while the class “Small”
represents deviations smaller than a half second. Interes-
tingly, two cases were found where the QoS was actually
slightly improved in the two-VM case.

In VMware ESX, Memory Usage is defined as the ratio
of the total physical memory consumed (by VMs and the
virtualization environment) and the amount of physical
memory installed.
This way, the decision tree has the following interpreta-
tion:

1. Even relatively small changes in the host-level disk
write rate lead to measurable changes in the QoS
(recall that I/O throughput was not capped).

2. When the disk write rate is not significantly influ-
enced, the QoS virtually does not change, provided

Figure 8. Classifying the QoS-change for the Oracle
VM; disturbance: dbench

ΔCPU Running
peak, 15 min (percent, ratio)

ΔMemory Swap In
kilobytes (average, ratio)

ΔQoS_Small
(32/1)

ΔQoS_Small
(3)

ΔQoS_Mid
(3/2)

High
(1.17-1.67)

VHigh
(1.74-1.77)

Low
(0.38-0.64)

Mid
(0.81-1.13)

ΔQoS_High
(5/1)

ΔQoS_High
(0)

ΔQoS_High
(0)

ΔQoS_Mid
(2)

Low
(0)

Mid
(1.35-1.40)

High
(1.49-1.63)

VHigh
(1.74-1.92)

Figure 7. Classifying the QoS-change for the Oracle
VM; disturbance: WebSphere

51

that the change in actual host memory usage remains
below approximately +40%.

A consequence to be drawn from the example is that it is
ill advised to use the remaining layer of the decision tree
on an as is basis, as for both categories there are only two
underlying measurements at the “edge” of the configura-
tion and operational space mapped out by the measure-
ment campaign. At the same time, the two examples
clearly indicate the limitations of automated data
processing methods. Even simple visual comparison indi-
cates heavy differences at the phenomenological level;
however, the estimation of the causal roots needs a
somewhat speculative expert interpretation. Here we try
to trace back the observed phenomena in the particular
subdomain to the resource usage level as most probably
such interferences originate in (nearly) saturated re-
sources. This needs a deep understanding and interpreta-
tion of the dynamics of the resource use.
As such, for prediction purposes we can employ the tech-
nique of pessimistic overabstraction of the behavior of the
system and state that significant changes in the overall
memory usage (more than approximately +40%) may lead
to significant QoS changes.
These pessimistic overabstractions form the basis of a
cautious, pessimistic design paradigm. More measure-
ments and refined decision trees may reduce the unwanted
resource underexploitation originating in the pessimism of
the approach. Most importantly, future work will add the
CPU/memory limit and load characteristics to the plat-
form metric differences as the supporting variable set of
decision tree building, in order to incorporate in the deci-
sion trees one aspect our initial methodology does not
deal with - the fact that the presence and causes of interfe-
rence phenomena may depend on load and the amount of
available resources.

6 Interference and configuration
planning

The most basic aspects of configuration planning in virtu-
alized environments is designing deployment – which vir-
tual machine should be instantiated on which host – and
deciding on the resource allowances – the parameteriza-
tion of various capping and scheduling options – on a per
host basis. Similarly to classic configuration planning ap-
proaches, the objective function of configuration planning
in virtualized environments can be based on various ser-
vice-level requirements as e.g. the need to adhere to
SLAs, the objectives of risk management and operational
cost constraints. Even some novel dependability issues
such as the fault of a single physical machine becoming a
common-mode fault for multiple services do not pose
fundamentally new questions.
Multiple works have examined configuration planning of
virtualized environments with the objective (or one of the
objectives) being maintaining constraints on the QoS of

the services provided. Most of these works approach the
problem as a purely combinatorial (vector packing) or
mixed integer linear programming one (see e.g.
[10][11][12]). One of the common characteristics of these
known approaches is that they do not deal with perfor-
mance interferences of any type.
Taking performance interferences into account during
configuration search necessitates the ability to approx-
imate the QoS of a virtual machine instance given its
CPU/memory limits and its load. Even without virtualiza-
tion and parasitic interferences, this topic can become
very involved when the granularity of the underlying time
window of the QoS metric is fine, or the precision of the
required estimation is big, especially when comparatively
long prediction horizons are taken. The complexity of
QoS prediction further grows with the introduction of va-
rying and/or highly nondeterministic loads. (Again, see
e.g. [3].) In the context of our current work QoS is de-
fined as a steady-state metric with a large underlying time
window (tens of minutes). Admittedly, for the most im-
portant “averaging” QoS metrics this will mask the (po-
tential) presence of outliers and transients phases with
significant amplitude. However, the usual industrial prac-
tice largely follows the same approach at design time as
building more precise performance models prior to the
operational phase is usually infeasible – additionally, the
portability of performance assumptions between opera-
tional settings tends to be poor.
We have conducted a series of single-machine perfor-
mance experiments that map out the QoS of individual
virtual machines in a space of points of operation defined
by load, CPU and memory limits. By applying qualitative
categorization, these give rise to a set of “operational
mode maps”.

Also, we have performed a series of interference mea-
surements between pairs of virtual machines that provide
empirical evidence for the deviations from the single-VM

10 30 50 70 90

10

30

50

70

90

CPU

Memory
Good

Worst

Mid

Figure 9. An example qualitative categorization of
Figure 3.

52

maps – when only the two machines run on the same host
and the CPU and memory are partitioned between them.
However, supporting configuration planning by direct
measurement only is clearly a process that does not scale.
Denoting the set of virtual machines with and disallow-
ing virtual machine replication on the same host, worst
case there are virtual machine combinations that
would have to be measured in all possible resource parti-
tioning and load combinations.
Instead, we propose qualitatively estimating the QoS of
the service provided by a VM in multiple-VM configura-
tions by approximating the qualitative QoS difference the
other VMs may cause. Let be the virtual machine for
which we seek its expected QoS class under load and
with CPU and memory limits and . The outline of the
approach:

1. An “undisturbed” QoS class is computed
from the single-VM measurements of via
linear approximation for the operational point

.
2. The platform metric difference category vectors

that can lead to significant changes (more pre-
cisely, change categories) in the QoS of are
gathered from decision trees that have been in-
ferred from the interference experiments for

.
3. For the set of other VMs to be deployed on the

same host, it is computed that what their aggre-
gate impact on these platform metrics can be in
their respective operational points, based on their
single-VM measurements.

4. is modified with the QoS-category of the in-
terference relation(s) that is compatible with this
impact.

Note that the third step necessitates a mapping between
the VM-specific metrics (e.g. VM memory usage) and the
platform metrics (host memory usage). However, estab-
lishing this mapping – using pessimistic approximation, if
necessary – is quite straightforward for most platform me-
trics.
Estimating the impact of other machines this way is not
guaranteed to deliver exact or even always correct results.
Still, this procedure is appropriate to conservatively dis-
card such configurations during planning where there is
evidence that a setup with a given platform-level metric
signature will lead to unacceptable QoS of one or more of
the virtual machines hosted, despite their individual sin-
gle-VM behavior. Naturally, accepted solutions have to
be performance-tested to find those that were not dis-
carded, but are inappropriate QoS-wise.

7 Outlook: monitoring configura-
tion planning

Using data mining techniques on the results of single-VM
measurement campaigns promises to lead to a method for
the deeper understanding of the internal characteristics of
virtual machines and eventually to synthesizing monitor-
ing configurations that are defined in terms of hypervisor
metrics, not guest OS ones and direct service monitoring.

Figure 10 depicts the decision tree built on the experi-
mental data gained from all single-VM database experi-
ments. This tree contains the three phenomenologically
most important factors defining the performance of the
database server, regardless of the load and capping em-
ployed. (There is roughly one order of magnitude differ-
ence between the QoS categories in the leafs.) It is direct-
ly discernible that in the operational points we have data
for, neither low nor high disk write rates do accompany
optimum performance. Even when the disk write rate is
what is expected under normal operations, a high or very
high CPU Ready time – the time a virtual machine has
to wait before it is scheduled for execution on a CPU – is

Disk Write Rate
kBytes/s (average)

= Low
(161-170)

= VHigh
(12545-22910)

= High
(3624-6574)

Mid
(21)

VBad
(5)

Mid
(8) = Mid

(363-1346)

CPU Ready
millisec (summation)

= Mid
(3188-4872)

= VHigh
(13292-14567)

= High
(6482-7288)

Bad
(4)

Good
(0)

= Low
(23-766)

Good
(28)

Memory Usage
Percent (average)

= High
(4334-4801)

= VHigh
(5295-6000)

= Low
(2645-2957)

= Mid
(3498-4271)

Mid
(0)

Mid
(3)

Good
(5/1)

Mid
(1)

Figure 10. Decision tree built on the VM specific metrics
of all database experiments

53

associated with degraded performance in more than half
of the cases. At the very least, such decision trees provide
a solid initial monitoring configuration that can be refined
via online learning and is not invalidated by online data
center reconfigurations.

8 Conclusion and future work
The experimental validation and refinement of the interfe-
rence-estimation methodology is currently ongoing work;
here our initial results were reported. Notably, we have to
address the open question that how much “disturbance”
measurement campaigns are necessary for a moderately
extended set of virtual machines. Also, as an implementa-
tion a mixed integer linear program is being designed for
the interference-aware configuration planning of virtua-
lized environments.

9 Literature
[1] O. Tickoo, I. Ravi, I. Ramesh, and D Newell, “Model-

ing virtual machine performance.” ACM SIGME-
TRICS Performance Evaluation Review 37, no. 3
(2010): 55.

[2] J.N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane,
D. Dimatos, G. Hamilton, M. Mccabe, and J. Owens,
"Quantifying the Performance Isolation Properties of
Virtualization Systems," Proceedings of the 2007
workshop on Experimental computer science, 2007,
pp. 13-14.

[3] Günther A. Hoffmann, Kishor S. Trivedi, and Miros-
law Malek. “A Best Practice Guide to Resource Fore-
casting for Computing Systems.” IEEE Transactions
on Reliability 56, no. 4 (December 2007): 615-628.

[4] V. Makhija, B. Herndon, P. Smith, et al. VMmark: A
scalable benchmark for virtualized systems. VMware,
Inc., Tech. Rep. 2006.

[5] K. Shi, J. P. Casazza, M. Greeneld, "Redefining server
performance characterization for virtualization ben-
chmarking," Intel Technology Journal, vol. 10, 2006,
pp. 243-252.

[6] IBM Rational Performance Tester product page.
http://www-
01.ibm.com/software/awdtools/tester/performance/

[7] dbench home page. http://dbench.samba.org/
[8] R. Hanmer, Patterns for Fault Tolerant Software, John

Wiley & Sons, 2007.
[9] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann, Ian H. Witten, “The
WEKA Data Mining Software: An Update”, SIGKDD
Explorations, Volume 11, Issue 1.2009.

[10] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Ap-
plication Performance Management in Virtualized
Server Environments.” Network Operations and Man-
agement Symposium 2006 NOMS 2006 10th IEEEI-
FIP, 373-381. IEEE.

[11] V. Petrucci, O. Loques, and D. Mossé, “A dynamic
optimization model for power and performance man-
agement of virtualized clusters.” Proceedings of the
1st International Conference on Energy-Efficient
Computing and Networking, 2010, pp. 225-233

[12] M. Cardosa, M.R. Korupolu, and A. Singh, “Shares
and utilities based power consolidation in virtualized
server environments”, IFIP/IEEE International Sym-
posium on Integrated Network Management, 2009,
pp. 327-334

54

