
The i,nfluence of the structure of 
�igh-level languages on the 
efficiency of object code 

G. MUSSTOPF 
Scientific Contra! Systems GmbH, Hamburg, W.Germany 

1. lntroduction 

Programming languages are a means of communi­
cation between man and machine. For each of 
these languages an alphabet (set of symbols), a 
syntax and a set of semantic rules are defined. 
Applying the syntax and semantics statements for 
a computer can be constructed from the symbols 
of the alphabet. If a language consists· of only a 
few simple elements which are strongly adapted 
to the hardware of a given computer, it is called 
a low-level language. Algorithms which are to be 
described using such languages must first be 
manually prepared, i.e. translated. Other 
languages have a substantially !arger set of ele­
ments and rules. The representation of formulae 
in such languages, for example, is that used by 
the mathematician. These languages are called 
high-level languages. The translation into a form 
acceptable to the computer is carried out by a 
special computer program. lt is noteworthy that 
no measure exists for the level of a programming 
language. lt is also important to note that an 
arbitrary number of levels exists between the two 
extremes. 

One of the aims of developing a program with 
the help of a language is to perform the computa­
tion defined by the program. The object program 
as end product of the development, whether from 
manual pretranslation or from automatic transla­
tion, can be of varying quality. This can be seen, 
for example, from the speed and/or size of the 
object program. The quality of an object program 
is influenced by the quality of the translator, the 
language and the source program. 

People who program computers have the wish 
to express themselves at as high a level as pos­
sible, i.e. they want to use the jargon with which 
they are familiar. The advantages of being able 
to do this are: 

1. Short training period. 
2. Short program development time. 
3. High legibility of the source text. 
4. Low test and maintenance effort. 
5. Later modification easily carried out. 

The comparison of an object program, which 
has been generated automatically by a translator 
from a high-level language, with a functionally 
equivalent object program which has been opti­
mally written in a low-level language shows a 
large difference in the quality, i.e. efficiency, of 
the object programs. The size of this factor with 
respect to speed or size depends also on the 
structure of the computer (in addition to the 
reasons given above). 

For many applications this loss is rightly 
accepted. There exist. however, apart from 
system software, very many problems in the field 
of real-time applications which require that the 
object programs be of high quality. The 
assertions in the following sections should be 
considered in connection with these problems. 

2. Programming languages and programs 

The classical machine and assembler languages 
are considered here solely as objects of compari­
son for the quality of object programs. This 
section classifies languages such as PL360 [1], 
PS440 [2], CORAL66 [3], BLISS [4], PASCAL 
[5] and POLYP [ 6]. 

A program consists of two different kinds of 
elements. The first kind is used to describe the 
application (application elements), e.g. testing 
measurements for critical boundary values. The 
second kind is required owing to the 'general or 
specific structure of the computer' (EDP. ele­
ments), e.g. the specification of the lengths of 
items of information or the use of address vari­
ables. The use of this kind of element helps the 
translator to produce a better object program. 

These two classes of elements cannot be 
distinguished by the operators of operands they 
contain. 

The minus sign in 

TN - TO 

is used to represent a temperature difference, 
whereas that in 

23 



• 

problem oriented 
(high level) 

general computer 
oriented 
(medium 1 eve 1) 

FORTRAN 
ALGOL 
PL/1 
RTL 

POLYP 
CORAL 66 
PASCAL 

machine oriented PL 360 
(low level) PS 440 

Assembler lang, 

integer I, K, N; 
array V AL[0:50]; 

I := 3 * K + V AL[N]; 

address POINT; 
� LIMO16); 

integer I, K; 

I := 3 * K + POINT:LIM; 

variable POINT( B(32,8), A24); 
integer I, K, M; � LIM(I16); 
POINT :=POINT+ 4 * M; 
I := 3 * K + POINT:LIM; 

L R,M 
SLL R,2 
A R ,POINT 
ST R,POINT 

Variation of level 
statement by statement 

on passage through program 

Fig. 1 Language levels 

AV - 4 

is used to modify an address constant. From this 
it can be seen that one must speak not only of the 
level of language but also of the level of a pro­
gram. If address arithmetic is available in a 
language it does not mean in general that the 
programmer is forced to use it in his programs. 

The EDP elements of a program can be 
divided into three subclasses: 

1. Elements which refer to the general struc­
ture of computers (e.g. data overlay). 

2. Elements which refer to the properties of 
a specific computer but which only influ­
ence the efficiency of the program (e.g. use 
of pointers as operand). 

3. Elements which refer to the properties of 
a specific computer and which lead to 
errors (among other things) if the same 
source text is used when the program is 
transferred to another computer. 

Programs which only contain applications ele­
ments and EDP elements of the first class are 
called machine-independent, those which in addi­
tion contain EDP elements of the second class are 
called conditionally machine-dependent and those 
containing EDP elements of the third class are 
called machine-dependent. 

This classification proves useful when the 
languages themselves are analysed. The position-
ing of information in POLYP is taken as an 
example. The declaration: 

variable AV(B(32,8),A24); 

defines a variable with the name AV of type 
address and of length 24 bits (A24 ). The specifi-

24 

cation B(32,8) states that the address variable 
should have a bit address which is modulus 32 
plus 8. For a word machine (smallest address­
able storage unit is a word) with a 32-bit word 
the declaration above means that the variable is 
to be positioned into the rightmost 24 bits of a 
word. The declaration is also interpretable for a 
16- or 8-bit machine. 

L word 1 ength 32 bits 

address: 2003 2004 

L byte 1 ength 8 bits 

address: 516 517 518 519 520 

L word 1 ength 16 bi ts 

address:4002 4003 4004 

Fig. 2 Positioning 

The language elements used in the declaration 
above are machine-independent since the syntactic 
and semantic defiriition makes no reference to a 
particular computer. Their occurrence in pro­
gram elements leads to conditionally machine­
dependent or even to machine-independent 
programs·. The notion machine-independence is 
connected with the notion transferability of 
programs. Languages like FORTRAN, ALGOL 60 
and COBOL were developed in order to allow for 
the exchange of programs regardless of the 



computers being used. A program was transfer­
able if it produced identical results when trans­
lated and run on two different computers. This 
condition is in general not sufficient for real- time 
applications. In addition, timing conditions 
(reaction time) must be fulfilled. This is, 
however, difficult to attain. 

Another difficulty leads to similar wishes. 
Small and medium-sized real- time computers 
often have peripherals whose performance is too 
low and software which is not extensive enough 
for the development of medium and large program 
systems. For this reason many users are in 
favour of transferring the development work onto 
a large computer. This should be possible without 
having to use a simulator. lt is mostly sufficient 
if the logic of the program modules can be tested 
on the large computer. Furthermore, it is not 
only possible to produce translators for such 
computers more cheaply, but they are also 
capable of accepting the full language. 

software production 
system 

Fig. 3 

real-time 
system 

If an object code of high quality is required it 
is necessary to make use of additional aids such 
as general macro processors. 

3. Compilers 

For the following considerations it is necessary 
to say something about the structure and the 
development of compilers. lt is the job of a com­
piler to analyse a source text and translate it into 
a form which is directly or indirectly executable 
by the hardware. lt is useful to differentiate 
between those problems which are associated with 
'compile time' and those which are associated 
with 'run time'. 

A compiler must be integrated into an operat­
ing system which, for exa.mple, takes over the 
management of data files. lt is important that the 
compiler must be able to differentiate between 
various kinds of language elements (as opposed to 
the programmer). For example, the compiler 
must normally be able to distinguish between calls 
to user procedures, calls to standard procedures 
and calls to 1/0 procedures. One reason for this 
is that often different instruction sequences must 
be generated in each of the three cases. In order 
to make the distinction possible, the compiler 

must have a list of the names of all standard and 
1/0 procedures (e.g. in its identifier list). 

i 
system 

l 
r 

user 

Fig. 4 

standard functions 
(numerical) 

system functi ons 
(I/0, real-time) 

normal user functions 
variables, arrays, 
tables, etc. 

Functions 

The program which is generated by the com­
piler must normally run under the control of an 
operating system. This run- time operating 
system need not necessarily be identical to the 
compile time operating system. An existing 
operating system is usually used, whereby inter­
face routines and extensions are necessary. This 
often requires an effort which is half the total 
effort of producing the compiler. Also, adaptation 
causes a reduction in the efficiency of the system. 
This problem occurs especially with real-time 
systems where the advantages of a universal 
system are discarded in favour of the higher 
efficiency of numerous small systems, each of 
which is tailored to the demands of a given appli­
cation. Thus the necessity arises of adapting a 
language and its compiler to a gi ven operating 
system. This should be possible without having 
to modify the compiler. lt is possible to meet 
this demand if a distinction can be made at the 
definition level between the classes of procedure 
mentioned above [ 6] . In the compiler only the 
call interface need be defined. For each 
procedure class a different instruction sequence 
for the call is generated. The number and nature 
of the individual standard and 1/0 (or system) 
procedures need not be known to the compiler. 

From the programmer's point of view, the 
main nucleus together with the procedures must 
represent a unit. By this method a system 
independence can be achieved which, at least for 
the next few years, exists in no process control 
programming language, compiler or operating 
system. 

4. The reasons for bad object programs 

lt is often thought and claimed that the reason for 

25 



the low quality of object programs which have been 
generated from source programs written in high­
level languages lies in the fact that the optimisa­
tion methods used in the compilers are not good 
enough. Much could certainly be done to improve 
these methods but optimising alone cannot solve 
all of the problems being discussed. For 
example, the problem of choosing between an 
optimisation which produces a fast object program 
and one which produces a short object program 
cannot be solved satisfactorily since the compiler 
sees the source program as a static unit and has 
little or no infromation about its dynamic nature. 
In the following considerations it will be assumed 
that the compilers considered all perform a suf­
ficient degree of optimisation. Three typical 
properties of program elements have been chosen 
which exist in languages such as FORTRAN. 

In the first example the definition of informa­
tion (data) is analysed . Information types such as 
integer, real , boolean and string are usually 
available. The information length is normally 
predefined although alternatives such as double 
length are often allowed. In considering the 
information type boolean, which is most interest­
ing in real- time applications, the question of the 
representation of a boolean value immediately 
arises. Should it be represented by a bit, a byte 
or maybe a short word ? The information can be 
stored so as to optimise access time or so as to 
optimise storage requirement .  The source text 
of the program must be analysed in order to 
determine which optimisation method should be 
used. Although it is relatively easy to calculate 
the storage requirement of a program, it is 
usually impossible to discover much about the 
effect of an access time optimisation , since the 
dynamic properties of the program cannot in 
general be determined. As already mentioned, it 
is also necessary, along with the type and length, 
to specify the positioning of an item of informa­
tion. This is especially of interest in the case of 
tables, where the elements possess various types 
and lengths . 

The second example is the sequential process­
ing of information. Program cycles or loops 
(e.g. for statement) , in which rows or columns of 
arrays or tables are processed, are 'mostly used 
for this purpose. The well known methods of 
optimising the organisation of the loop do not gi ve 
the solution to the problem. More critical is the 
access to the information which is processed 
within the loop. The use of index registers relies 
on the fact that the loop controlled variable is 
incremented/decremented by a fixed constant 
value for each circuit of the loop, one condition 
for which is that its value is neither directly nor 
indirectly (side effects of procedures !) altered 
within the loop. If a static analysis of the source 
program shows even a remote possibility of this 
occurring, index registers cannot be used . The 
sequential processing of information outside loops 

26 

is normally left unexamined. The problem can be 
sölved in critical cases only by using address 
variables for which an address arithmetic is pro­
vided. An improvement can be achieved in 
POLYP [ 6] , however, by using the vectorial 
statements which are an extension of the PL/1 
array cross- section principle. 

The last example is the call of a procedure 
with the transfer of parameters. Procedures are 
one of the most important aids in producing 
program systems and at the same time one of the 
most common causes of low quality in object 
programs. The reason can be found in the 
universality of the procedure concept. The para­
meter list in the object program consists, with 
hardly an exception , of a vector of pointers. The 
possibility of transferring values in registers or 
in special lists does not exist. The volume of 
instructions required for a procedure call and in 
the prolog and epilog of the procedure is out of 
proportion for short procedures. 

The reason is that the construction and 
management of the parameter lists must be partly 
generated by the compiler and partly undertaken 
by run- time routines. It is completely sufficient 
for critical applications if an address variable as 
parameter is allowed. Thus the organisation and 
management of parameter lists becomes flexible 
and can be programmed to suit the situation. For 
example, the same parameter list can .be used 
for düferent procedures, or the parameter list 
can consist of a mixture of pointers and values. 

5 Conclus ion 

Considering the demand for language elements 
for the positioning of information , address vari­
ables, address arithmetic and address variables 
as parameters in procedure calls, it can be seen 
that the price to be paid for an improvement in 
the quality, of object programs is the necessity 
for a better knowledge of the hardware properties 
of the computer(s) being programmed. It is not, 
however, required that the syntax and semantics 
of the assembler languages in question be known. 

The problems mentioned are often solved by 
inserting assembler language text into the high­
level source. This , however, does nothing to 
improve the legibility of the source program. 
The solution adapted by languages such as Bl.JSS, 
PASCAL and POLYP is to provide language ele­
ments like those discussed above which can be 
used to improve the declarations and in some 
cases which can be used at critical positions in 
the dynamic parts of the program. The use of a 
second language is thus not necessary (Fig. 1). A 
more exact examination shows that a relatively 
small number of fixed or special positionings of 
information are required for a given computer or 
project. The generality of, and thus the amount 
to be written for, a gi ven declaration can be 



disturbing. This difficulty can be removed by 
introducing a general control (or macro) language. 
With the aid of a suitable library the required 
'modifications' can be made to the source text. 

modified 
source source object 
program ______ program ______ .,. program 

interpretative 
--� source progr . 

modification 

control procedure 
1 i brary 

generative 
compiler 

Fig. 5 General macro processor 

design system 

programming 

This method can be used to great advantage, 
together with the system procedures mentioned 
in Section 3, to extend the language, without 
changing the compiler or operating system, with 
real- time oriented function calls. lt is also pos­
sible, after the design phase of a project, to 
construct a control procedure library (Fig. 7) so 
that during the programming phase programs can 
be written without special knowledge of the com­
puter and which can be translated into efficient 
object programs. 

The methods described here also allow the 
development of real- time program systems using 
!arger computers (software production system). 
lt is only necessary that the required control 
procedure libraries be available. 

mod . 
test system 

test 
maintenance 

Fig. 6 Project phases 

source 
program 

modi fi e� 
source 
program 

macro 
assembler 
program 

code 
generators 

macro 
assembler 

interpretative 
comp iler 

--- generative CG Y 
compiler 

CG Z 
macro 
assembler 
library X X 

' 
. _ ,  

control control 
procedure procedure 
library l i brary 

X y 

X 

Fig. 7 Ful l compi ler 

y 

macro 
assembler 
1 i brary Y 

macro 
assembler 

object 
program 

27  



1 .  WffiTH, N . ,  'PL 360,  a programming language for the 
360 computers ' ,  Journ . ACM, Vl 5 , pp . 3 7 -74  ( 1968) . 

2 .  GOOS, G . ,  LAGALLY, K. , and SAPPER, G . ,  'PS440 -
Eine niedere Programmiersprache ' ,  Ber icht 7 002 RZ 
der TH München . 

3 .  Inter- establishment Committee for Computer Applica­
tions ,  'Official definition of CORAL 66 ' (1 9 70) .  

4 .  WULF , W .A . ,  RUSSE LL, D . B . ,  and HABERMANN, A .N . ,  
'BLISS: a language for systems programming ' , Comm . 
of the ACM, Vl 4 (1 2 ) ,  pp . 7 80- 790  (December 1 97 1 ) .  

5 .  WffiTH, N . , 'The programming language Pascal ' ,  Acta 
Informatica, Vl , pp . 35- 63  ( 197 1 ) .  

6 .  MUSSTOPF ,  G . ,  'Defin ition der Programmiersprache 
POLYP ' (noch unveröffentlicht) . 

7 .  MUSSTOPF ,  G . ,  'Sprachgesteuerte Modifikationen von 
Quell-programmen ' ,  GI- Tagung (März 1 972 ) . 

28 

Discussion 

Q. In Fig . 1 ,  what does the horizontal axis 
denote ? 

A.  The stage during execution of a program -
different statements may be at different levels . 

Q .  In Fig . 6 (project phases) , how significant are 
the relative sizes ? 

A .  lt depends on the problem. 

Q .  1s a description of POLYP available ? 

A.  Only in German (see reference [ 6] ) . 


	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828




