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Abstract: Gene prioritization based on background knowledge mined from litera-
ture has become an important method for the analysis of results from high-throughput
experimental assays such as gene expression microarrays, RNAi screens and genome-
wide association studies. We apply our gene mention identifier, which achieved the
best result of over 80% in the BioCreative II text-mining challenge [HPR+08], and
show how text-mined associations can be complemented using guilt-by-association on
high confidence protein interaction networks.

First, we predict hand-curated gene-disease relationships in the OMIM database,
Entrez Gene summaries and GeneRIFs with 37% success rate. Second, we confirm
24% of novel cell-cycle genes identified in a recent RNAi screen [KPH+07] by using
text-mining and high confidence protein interactions. Moreover, we show how 71%
of GOA cell-cycle annotations can be automatically recovered. Third, we devise a
method to rank genes based on novelty, increasing interest, impact, and popularity.

1 Introduction

With high-throughput methods such as gene expression analyses, high-throughput RNA
interference, and genome-wide association studies, gene prioritization becomes an im-
portant problem. Gene prioritization orders lists of genes according to their likelihood
to be associated to a process, phenotype, or disease. In particular, genetic linkage anal-
yses identify chromosomal regions, which are linked to a disease and which can con-
tain hundred candidate genes linked to a disease. The problem becomes one of estab-
lishing indirect links from the candidate genes to the disease. These links can be of
very different nature such as protein interactions [GLF+06, LKS+07], similarity of an-
notations from controlled vocabularies (phenotype in MeSH [LKS+07]), GeneOntology
[AAE+05, PIBA02, TCS03], anatomy [TKP+05], sequence similarity [TCS03, GLF+06,
AAE+05, LBO04, PIBA02], phylogeny [LBO04], or co-expression of genes [TKP+05,
TCS03, vDCK+03, vDCK+05]. As a result, these approaches manage to significantly re-
duce the number of candidate genes [TAT+06] or even directly identify the disease gene
such as [LKS+07], who predict for 298 out of 669 linkage intervals the correct disease
gene.

While the above studies prioritize some hundred genes regarding their link to a disease,
other efforts aim to establish large scale links between all genes of a genome and disease.
[BK06] mine meta-information of all data sets in the Gene Expression Omnibus by ex-
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tracting UMLS concepts from descriptions. This way they can identify novel genes linked
to aging. Similarly, [GCV+07] link human protein interaction with expression and disease
data. They conclude that disease genes are less likely to be essential interaction hubs and
are functionally on the periphery.

In general, protein interaction data can be beneficial to infer indirect relationships by ap-
plying the principle of guilt-by-association. Both [GLF+06] and [LKS+07] make use
of interactions in their analysis of linkage intervals and [GUT+08] find that half of their
correct gene-disease associations are indirectly inferred via protein interactions.

Summarizing the above work, there are three interesting aspects:

• First, only few approaches (e.g. [TKP+05, LKS+07]), apply text-mining to asso-
ciate genes and diseases and none of them apply large-scale identification of genes
and diseases in the whole of the medical literature.

• Second, only few (e.g. [GLF+06, LKS+07, GUT+08]) use protein interactions and
the principle of guilt-by-association.

• Third, experimental validation of prediction of novel disease genes is scarce, since
such links are inherently difficult to verify due to the complexity of diseases.

In this paper, we address these three points. We show how state-of-the-art entity recogni-
tion of cancer genes, cell-cycle terminology, diseases, and their co-occurrences combined
with the principle of guilt-by-association can predict hot cancer genes and novel cell-cycle
genes. Hot cancer genes i) are novel, ii) have been published in high impact journals, iii)
their popularity has not yet peaked, iv) and they attract a large group of researchers. This
meta information, which is the result of the comprehensive mining of literature, lends it-
self to identify genes worthy of exploitation since there is a direct or indirect link and they
are truly novel candidates. As argued above, the validation of gene-disease predictions
is difficult, since there are no straight forward experiments. We address this problem by
validating our approach on novel cell-cycle genes, which have been identified in a genome-
wide RNAi screen [KPH+07]. The screen provides a gold standard of over 850 novel cell
cycle genes, which have not been discussed in literature before.

The cornerstone of our approach is our entity recognition algorithm, which achieved the
best results (81% success rate) in the recent BioCreative text-mining task of human gene
name identification [HPR+08]. Since then we have further improved it to 86% success
rate. We applied the algorithm, which is online accessible via the BioCreative meta server
[LKRP+08], to over 17,000,000 abstracts from PubMed. Additionally, we considered
for each abstract any annotated disease terms from the Medical Subject Heading, MeSH,
and all stemmed cell-cycle terminology from the Gene Ontology literally appearing in the
abstracts. Overall, our method identifies 2.74 million abstracts mentioning a gene, 1.71
million abstracts mentioning a gene and a disease, and 210.000 a gene and cell-cycle term.
This resource is now available as GoGene 1 [PRW+09].

With this large data source, we define a simple co-occurrence model and set out to solve
the following problems: First, how well can our model predict hand-curated gene-disease

1http://gopubmed.org/gogene
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relationships in the OMIM database, and in Entrez Gene GeneRIFs. Second, how many
of the over 850 novel cell-cycle genes identified in the RNAi screen [KPH+07] can be
predicted with our method and which role does text-mining play and which inference
through protein interactions? Third, we devise a method to rank genes based on novelty,
increasing interest, impact, and popularity. With this ranking, we discuss 50 hot cancer
genes and 20 hot cell-cycle genes in detail.

2 Methods

Identification of human genes in PubMed. We identify human gene mentions in
PubMed by parsing each abstract with a dictionary of gene names, synonyms, and spelling
variants. First we find as many hits as possible. In a second step, a context sensitive filter
is applied to remove false positive matches by looking at tokens in the neighborhood of
each name/hit and by resolving abbreviations to long forms. Finally, polysemous names,
i.e. names referring to more than one gene, are disambiguated by comparing the text at
hand against each candidate profile. A profile contains all known information of a gene,
e.g. GO annotations, diseases, background texts etc. taken from the high quality databases
Entrez Gene and SwissProt. The profile that best fits the text is taken as sense for the
ambiguous gene name. For a detailed explanation of our gene identification method see
[HPR+08].

Gene ranking. For researchers trying to obtain insights from large screening data, not
all genes are equally important. Some genes have often been discussed in the literature.
For some genes, the research interest of the community has reached saturation and has
since then declined. These declining genes have well-known and stable functions. It is
less probable that new insights into their function can be discovered . Yet, they do provide
a rich source of information that can shed light on the experiment. In contrast, other genes
lie at the forefront of research and have just recently received names and are only found
in recent publications. The probability to discover new insights for these genes is higher
due to their novelty. Moreover, a novel gene with many recent mentions in high impact
journals constitutes an even better candidate. By compiling the publication dates of all
human gene mentions in MEDLINE we can decide for each human gene whether research
interest has peaked and is dwindling, if the gene belongs to some hot topic of research, or
if the gene is discussed in a large body of high-impact literature.

Bibliometric features. We chose four features to measure how ‘interesting’ a gene
is. First the category peaked/not-peaked: peakedg , second the number of publications
weighted by impact factor: volumeg , third how recent is the interest in the gene indepen-
dently of the total number of papers: noveltyg , and finally the total number of distinct
authors that contributed to the publications for that gene: communityg . We defined a
gene has having peaked if the highest count of papers is at least 3 years old and if since
then there was a consistent decrease in the number of papers. We compute novelty using a
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simple exponential decrease of the relevance of old mentions divided by the total sum of
all impact factor points: noveltyg =

=2007
y=1950 αy−2007cg,y

In this formula cg,y represents the cumulative impact factor for gene g for the year y.
We chose to use a yearly decrease of 50% toward the past (α = 0.5). The communityg

measure has a minor impact on the ranking as it is strongly correlated to the volumeg , but it
does contribute additional information about the size of the research community for a gene.
To combine these measures we use a Pareto ranking approach[MA94]. The advantage of
this scheme is that it ranks genes according to all four features in a balanced manner.
For example, shown in Table 4 are the top five genes ranked for breast cancer. Among
these is SIRT7, a novel gene with many high-impact publications in recent years, but also
BRCA1, a well known and important gene for breast cancer. Among the 36509 human
genes, 16078 are found mentioned in MEDLINE and among these 31% have peaked (as
of January 2008).

Association of Genes to MeSH and GO terms. To annotate genes with terms from
MeSH and GO, we basically count the number of co-occurrences in the literature. For
each gene-term pair we compute an association-score as follows: scoreg,t = log2

N×ng,t

ng×nt

where N is the number of articles mentioning any gene and any term from the branch
(e.g. a disease), ng,t is the number of articles mentioning the gene and the term, ng is
the number of articles mentioning the gene and any term from the branch, and nt is the
number of articles mentioning the term and any gene. The higher the association score
the more likely this pair will be mentioned together in the literature. An association score
of zero means that gene and term occur independently of one another. A negative score
signals an underrepresentation of a pair in the literature.

Guilt-by-association. Guilt-by-association is the principle by which qualities can be
transfered between associated items. In our case, we transfered the information is cell-
cycle related to all direct interaction partners of a gene if it co-occurs significantly with
cell-cycle terms in the literature. We experimented with several decision functions but
observed that simply transferring to all direct neighbors of a gene performed best. In par-
ticular, adding more distant neighbors increases recall but leads to a significant decrease
in precision (data not shown).

3 Results

Prediction of Gene-Disease Associations. We compare text mined gene-disease asso-
ciations to Entrez Gene Summaries and GeneRIFs texts2 and to the OMIM database (Ta-
bles 3 and 3). The achieved precision rates in Table 3 are underestimations because of the
many incomplete GeneRIFs and Summaries (GRS) [BCF+07]. While the precision is low
because of many incomplete GRS, the recall suffers from false positives in the benchmark

2Downloaded December 2007
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Min. Score Sig. level (%) Precision (%) Recall (%) F1 (%)

12 0.04 59.2 1.7 3.3
10 0.22 44.0 6.1 10.6
8 0.97 21.8 11.8 15.4
6 3.5 9.3 19.6 12.6
4 10.8 4.7 33.0 8.2
2 28.6 3.0 53.7 5.6
0.6 50.0 2.5 73.5 4.8

Table 1: Results for text mined gene-disease associations. Comparison of gene-disease associations
for different score thresholds. Predicted diseases are compared to automatically annotated Entrez
Gene Summaries and GeneRIFs texts.

Min. Score Sig. level (%) Precision (%) Recall (%) F1 (%)

13 0.01 88.5 6.4 12.0
12 0.04 76.3 10.2 18.1
10 0.22 50.0 29.0 36.7
8 0.97 22.4 44.5 29.8
6 3.5 8.1 59.1 14.3
4 10.8 3.1 73.8 6.0
2 28.6 1.4 88.3 2.7
0.6 50.0 0.08 93.8 1.6

Table 2: Results for text mined gene-disease associations in OMIM. Comparison of gene-disease
associations for different score thresholds. Predicted associations are compared to the OMIM gene-
disease catalog.

data set. Annotation of GRS was done automatically by simple, context insensitive match-
ing to have as many training examples as possible of all kinds of diseases at the expense
of including false positives due to ambiguous disease terms. Since GRS are manually
added to a gene’s record, they might also contain information, which is not present in the
abstracts of publications. Thus, only by looking at abstracts and not at full texts we are
likely to miss gene-disease associations. Our predictions of human genes associated with
genetic disorders are evaluated by comparing to the OMIM gene-disease catalog Table 3.
We successfully mapped 358 disease concepts in MeSH to their respective counterparts in
OMIM and used them as a benchmark data set. As expected, the achieved results in terms
of recall are much better than for our GRS benchmark, since all annotations in OMIM can
be regarded as more reliable as GRS entries.

Prediction of Cell-Cycle Genes. A recent genome-wide high-throughput RNAi screen
identified 1351 genes important for cell division in HeLa cells [KPH+07]. Among these
1351 genes, only 243 were previously associated with cell-cycle progression, and 252 pre-
viously uncharacterized genes were assigned this function. The remaining 882 genes were
known to be implicated in other functions than cell-cycle. Another study characterized the
genome-wide program of gene expression during the cell division cycle in HeLa cells us-
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ing cDNA micro-arrays [WSS+02]. They identified genes periodically expressed during
cell-cycle progression. These genes are not necessarily important to cell-cycle itself, but
are nevertheless downstream of the cell-cycle machinery. As shown in Fig. 1D only 89
genes are both important for cell-cycle and periodically expressed, and 53 among these
were previously known to be important for cell-cycle.

We compare these experimental knowledge to gene–cell-cycle associations mined from
MEDLINE abstracts Table 3. To improve recall, we used protein sequence homology
as well as protein interactions to transfer associations using the principle of guilt-by-
association. First we evaluated how many genes associated to cell-cycle in GOA and
KEGG can be recovered using text-mining. We achieve a recall of 40.6% and a preci-
sion of 43.3% using co-occurrence of genes with cell-cycle GO terms. Using the princi-
ple of guilt-by-association, the recall can be improved to 45.3% when using protein se-
quence homology, and to 67.9% when using protein interactions from the HPRD database
[MSK+06]. Thus, high-quality protein interactions are a valuable resource for improving
recall. Moreover, predicting all genes known to be related to cell-cycle either in GOA,
KEGG, [KPH+07] or [WSS+02] leads to a decrease in recall of 19.3% except when us-
ing protein interactions. In this case, the recall more than doubles to 44.3% with the best
F1-measure of 34.5%.

Next, we tried to predict the 882 new cell-cycle related genes identified by [KPH+07] us-
ing text-mining, protein sequence homology and protein interactions. Using solely gene–
cell-cycle co-occurrences, our approach achieved a maximum p-value of 0.51 indicating
the difficulty of predicting previously unknown cell-cycle genes using text-mining alone.
Adding protein sequence homology leads to a slightly better p-value of 0.24 – still in-
significant. However, using protein interactions improves the statistical significance of the
results with a p-value of 0.016 (HPRD). In this case we are able to confirm 24.3% of the
new cell-cycle genes identified by [KPH+07].

4 Discussion

The method we proposed can find novel links between genes and diseases not yet contained
in databases such as Entrez Gene and OMIM. Especially genes that link to neoplasms are
of high importance because of the high mortality of cancer patients. Among those genes,
we can highlight interesting ones using a ranking that integrates different measures for
interest such as novelty, volume, community, and peaked. We picked 10 different cancers
categories (8 by site and 2 by type) and ranked the associated genes for each category
(Tab. 4). Interestingly, none of our top ranked genes for pancreatic cancers is listed in
OMIM. A manual inspection of those genes showed that each is indeed linked to pancre-
atic cancers. A possible explanation is that OMIM only includes genes shown to follow
Mendelian inheritance patterns. For example, the top-ranked gene SIRT4 was first reported
in 1999 in a publication about the characterization of five human yeast SIR2 homologs.
Next publications followed in 2002, 2003, and 2005 revealing the regulation of SIRTs
by histone deacetylase inhibitors. Then in 2006, two papers in the high-impact journal
Cell were published reporting that SIRTs turn out to be critical regulators of metabolism
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Prediction Rec.(%) Prec.(%) F1(%) p-value(<)

gene-cell cycle GO terms co-occurrence:
GOA 55.7 32.2 40.4 10−186

GOA+KEGG 40.6 43.3 41.4 10−204

GOA+KEGG+Kittler 21.3 47.3 29.0 10−123

GOA+KEGG+Kittler+Whitfield 19.3 52.2 27.8 10−125

gene-cell cycle GO terms co-occurrence + sequence homology:
GOA 61 28.0 38.3 10−191

GOA+KEGG 45.3 38.4 41.2 10−209

GOA+KEGG+Kittler 24.4 43.0 30.8 10−125

GOA+KEGG+Kittler+Whitfield 19.3 52.2 27.8 10−125

gene-cell cycle GO terms co-occurrence + PPI:
GOA 71.7 13.5 21.9 10−136

GOA+KEGG 67.9 17.1 27 10−154

GOA+KEGG+Kittler 45.3 23.8 30.4 10−87

GOA+KEGG+Kittler+Whitfield 44.3 28.3 34.2 10−100

Predicting new cell cycle genes found in Kittler et al. [KPH+07]:
Cell cycle term co-occurence 3.4 7.0 4.2 0.51

+ protein sequence homology 6.7 7.7 6.4 0.24
+ protein interactions (HPRD) 24.3 8.0 12 0.016

Table 3: Predicting cell cycle related genes using GO term co-occurrence, protein sequence homol-
ogy and protein interactions. Predicting known cell cycle related genes from GOA can be done at a
maximal recall of 71%. Protein sequence homology only improves recall at the cost of a loss in pre-
cision. Using protein interactions improves recall, and when predicting all known cell cycle related
genes (GOA+KEGG+Kittler+Whitfield) it achieves a higher F1-measure than pure co-occurrence.
Predicting the new cell-cycle genes of [KPH+07] does not work using pure text-mining (P = 0.51),
is only marginally improved using protein sequence homology (P = 0.24), but becomes significant
when using protein interactions from HPRD (P = 0.016).

Bone Brain Breast Eye Leukemia Liver Lymphoma Pancreas Prostate Skin

FXYD6 CRB3 SIRT7 E2F5 CLLU1 LIN28B * NPC1L1 SIRT4 OR51E1 * KRT1
ADAM8 GHRHR BRIP1 * E2F1 * ARL11 * HNF1A * ULBP2 * G6PC2 OR51E2 * MSH2 *
C9orf46 SCGN BRCA1 * CDK4 * FCRL3 TCP10L * TBX21 SOX2 TMPRSS2 * MSH6 *
FGF23 * HDAC-3 SERPINB5 * KIF14 * CCDC28A UGT2B7 FHL2 FFAR1 PCA3 * MLH1 *
TRIB2 SOX4 AP1S2 RBBP8 * GATA1 * ZNF689 CCR7 CDX2 PI16 KRT15

Table 4: Top five genes for 10 cancer. The top five genes according to the Pareto ranking for 10
different neoplasms. Most of the listed genes have seen an increase in research interest in recent
years and have a high volume of high impact publications. Genes with a star are mentioned in
OMIM to be related to the corresponding disease, genes without a star are not. Note that for brain
and pancreas cancer none the top 5 genes identified are listed in OMIM.

and that SIRT4 acts in the mitochondria of pancreatic cells. The loss of SIRT4 in in-
sulinoma cells up-regulates amino-acid-stimulated insulin secretion, which links SIRT4 to
pancreatic cancers [HMH+06]. Another member of the histone deacetylase gene family is
SIRT7, which we found associated to breast cancers. Together with SIRT4, this gene was
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first reported in 1999. A recent publication in the British Journal of Cancer reports that
levels of SIRT7 expression were significantly increased in breast cancers.

As expected, we found more links to cancers among genes known to be involved in cell-
cycle progression, since defects in the cell-cycle are causative for cancers development
(Fig. 1E). A recent RNAi screen identified more than 850 new genes with impact on cell-
cycle progression [KPH+07]. Out of those, 24% can be further confirmed by literature
mining combined with high confidence protein interaction networks. A ranking of these
genes highlights the interesting candidates for further research and confirmation studies
(Fig. 1B and C). Figure 1A shows a sub-graph of the HPRD network with genes pre-
dicted by our method. For example, let’s examine the gene IRF3 – an interferon regu-
latory factor. It forms a complex with CREBBP and thus interacts in the network with
CREBBP [YLM+02]. Moreover, CREBBP co-occurs with cell-cycle terms such as ‘DNA
replication checkpoint’, ‘centriole replication’, ‘re-entry into mitotic cell-cycle’. These
co-occurrences together with the interaction between IRF3 and CREBBP is our evidence
for a link between IRF3 and cell-cycle. The importance of IRF3 for the cell-cycle can be
further confirmed in that the target genes of IRF-3 are themselves involved in cell-cycle as
shown in a recent Nature publication [AVC+07].

PALB2 is a breast cancer susceptibility gene that interacts with BRCA2 to enable its re-
combinational repair and checkpoint functions [XSN+06]. When mutated, it more than
doubles the risk of breast and ovarian cancers [WK07]. PALB2 is among the genes iden-
tified by [KPH+07] and predicted using both gene-cell-cycle co-occurrences and protein
interactions (Fig. 1C). In HPRD, PALB2 is reported to interact with BRCA2, a gene which
we find co-occurring significantly with cell-cycle terms in MEDLINE. Yet, PALB2 itself
is not associated to cell-cycle in GOA or KEGG nor does it significantly co-occur with
cell-cycle terms in the literature. This example shows how protein interactions can help to
recover such candidates. As seen in Fig. 1C, our method correctly associates PALB2 as
top ranked for ovarian cancers. PALB2 is definitely a ‘hot’ gene first researched in 2006
and discussed in 2007 in four Nature publications.

5 Conclusion

We showed the feasibility of a simple statistical co-occurrence model to find links between
genes and diseases as well as between genes and cell-cycle processes by automatically
searching the literature and using high confidence protein interactions. The achieved re-
sults for finding those associations are comparable to recent approaches to relationship
extraction from texts, such as protein-protein interactions [KLV07]. The main contribu-
tions of our work are: i) the application of a state-of-the-art gene name identifier to all
articles indexed in MEDLINE, ii) the ranking of all genes discussed in the literature by
different measures of interest, iii) the potential to find novel links between genes, cancers,
and cell-cycle processes not yet annotated in public databases, and iv) the support of high-
throughput experiments by filtering results using knowledge from literature and known
interaction networks to select the most promising gene candidates.
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Figure 1: Predicting Cell Cycle genes. (A) Example HPRD Sub-network of protein interactions
for new cell cycle genes [KPH+07] predicted using our method, and visualized using power graphs
[RRAS08]. Genes like IRF3 and NCOR2 can be predicted using both gene–cell cycle term co-
occurrence and high quality protein interactions from HPRD. (B) Top 12 hottest genes among genes
shown in the example sub-network. Genes BCL2L11, SIRT1, GATA1 and IRF3 are at top. (C)
Top 12 hottest genes among all new cell cycle genes from [KPH+07] predicted by our method to-
gether with significantly co-occurring neoplasms. (D) Overlap between [KPH+07] cell cycle genes,
[WSS+02] cell cycle periodic genes, and known cell cycle genes annotated in GOA or KEGG.
Among the 53 genes in all three sets we find genes involved in the structural aspects of cell cycle
such as histones, centromere proteins, tubulins and kinesins, that are both important and periodically
expressed. Only 36 genes are both found by [KPH+07] and [WSS+02] but are not annotated in
GOA or KEGG such as MELK and CBX3. (E) Disease associations mined from literature for all
human genes (top) compared to disease associations for cell cycle genes. As expected, cell cycle
genes are enriched in neoplasms and depleted in nutritional and metabolic diseases.
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[LBO04] Núria López-Bigas and Christos A Ouzounis. Genome-wide identification of genes
likely to be involved in human genetic disease. Nucleic Acids Res, 32(10):3108–3114,
2004. disease.

[LKRP+08] F. Leitner, M. Krallinger, C. Rodriguez-Penagos, J. Hakenberg, C. Plake, C. Kuo,
C. Hsu, R. Tsai, H. Hung, W. Lau, C. Johnson, R. Sæ tre, K. Yoshida, Y. Chen, S. Kim,
S. Shin, B. Zhang, W. Baumgartner, L. Hunter, B. Haddow, M. Matthews, X. Wang,
P. Ruch, F. Ehrler, A. Ozgur, G. Erkan, D. Radev, M. Krauthammer, T. Luong, R. Hoff-
mann, C. Sander, and A. Valencia. Introducing Meta-Services for Biomedical Infor-
mation Extraction. Genome Biology, 2008. accepted.

90 Royer et al.



[LKS+07] Kasper Lage, E. Olof Karlberg, Zenia M Storling, Páll I Olason, Anders G Pedersen,
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