
On the security of cryptographic primitives
 regarding technological innovations

Willi Geiselmann and Rainer Steinwandt

Institut für Algorithmen und Kognitive Systeme,

Fakultät für Informatik, Am Fasanengarten 5
 Universität Karlsruhe, D-76128 Karlsruhe

{geiselma, steinwan}@ira.uka.de

Abstract: Besides exploiting structural insight into a cryptographic algorithm,
cryptanalysis also tries to exploit technological innovations. Here we survey recent
proposals for supporting the most time-consuming steps in the number field sieve,
the best currently known (classical) algorithm for factoring large integers.

1 Introduction

Peter Shor’s probabilistic algorithms for factoring integers and computing discrete
logarithms on quantum computers [Sh94] provide an impressive example for the
interconnections of algorithmic and technological innovations. Once quantum computers
are available, these algorithms allow for a polynomial time solution of the two
mentioned problems, which is in sharp contrast to the best known algorithms for
“classical” hardware: For currently available computers, only algorithms with super-
polynomial running time are known for these tasks.
Having in mind the relevance of the two problems for practically used cryptographic
schemes, it is not surprising that the cryptographic research community also invests
significant effort in attempts to find specialized hardware that speeds up the currently
available “classical” algorithms. Here the main focus is not necessarily on finding
hardware designs that allow for asymptotic improvements – already finding a possibility
to break an at the moment widely deployed parameter choice would be very interesting.
In the sequel we survey some recent developments in the design of specialized hardware
devices for supporting the so-called number field sieve (see [LL93]), the best currently
known algorithm for factoring large integers. Rather impressive progress has been
achieved here in the last three years, which causes several researchers to assume that
factoring 1024-bit RSA-numbers is in principle feasible for a sufficiently large
organization.

2 Factoring Integers with the Number Field Sieve

Typically, modern algorithms for factoring consist of two steps which dominate the total
running time of the algorithm plus a pre- and a post-computation step. In particular, this
holds for the number field sieve (NFS), which is nowadays the most common algorithm
when dealing with the factorization of large integers as occurring in the public key of
RSA-like cryptosystems. It should be emphasized here, that albeit not being dominating

99

for the total running time of the algorithm, the pre- and post-computations must not be
considered as trivial steps: For the NFS, here an irreducible polynomial has to be fixed,
that determines the number field involved in a factorization. Choosing this parameter
properly is a rather critical task, as a bad choice can drastically increase the running time
of the subsequent relation collection step. Here, we do not recall the details of the
individual parts of the NFS, but it is important to note that the already mentioned

• relation collection step, and the
• linear algebra step

dominate the overall running time when applying the NFS. Consequently, proposals for
specialized hardware focus on these two parts. Interestingly, the view on the difficulty of
the two steps has changed throughout the last years: in the linear algebra step, elements
from the kernel of a large sparse matrix over GF(2) have to be determined, which
traditionally involves the use of a “super”-computer with a sufficiently large amount of
(fast) RAM. This is quite different from the relation collection step, which can easily be
distributed onto “normal” PCs and workstations. Thus, it is tempting to believe that the
linear algebra step is the more difficult one. However, by now the situation is just the
other way round; in particular, manufacturing a specialized hardware for dealing with
the linear algebra step of 1024 bit numbers seems much easier than doing the same for
the relation collection step.

3 Supporting hardware for the linear algebra step

A major step forward in the design of specialized hardware for the linear algebra step is
due to Daniel Bernstein [Be01]. His solution makes use of the well-known Wiedemann-
algorithm, which we do not recall here. For the sequel it is sufficient to know, that this
algorithm allows to reduce the linear algebra step to the problem of computing (long)
sequences of matrix-vector-products A⋅v, A2⋅v, A3⋅v, …, Ak⋅v where A is the sparse matrix
over GF(2) derived in the relation collection step and v is a vector with GF(2)-entries.

3.1 Bernstein’s proposal

Bernstein observed that the latter computation can be performed efficiently by means of
a repeatedly applied parallel sorting algorithm running on a mesh of simple processing
units. More specifically, Bernstein proposed the use of Schimmler’s sorting algorithm
which can sort M2:=22m numbers in less than 8M “steps” on M2 processing units.
Moreover, this algorithm requires only “local” communication and has a rather simple
control logic which facilitates a hardware implementation. In dependence of the cost
measure used, Bernstein’s approach does even allow for an asymptotic speed-up of the
number field sieve. Unfortunately, already for factoring a 512 bit RSA number, an ASIC
that can handle the complete matrix needed for this size, would require a wafer area
which is beyond the limits of current technology: realizing a circuit which spans more
than a complete wafer is extraordinary difficult and error-prone. However, in 2002
Lenstra et al. [Le02] presented a new design for the linear algebra step which might even
be able to handle the linear algebra step for 1024 bit numbers on a single wafer.

100

3.2 An improvement of Lenstra, Shamir, Tomlinson, and Tromer

In contrast to Bernstein’s approach, the design presented in [Le02] relies on the use of a
new – and theoretically still unexplored – routing algorithm, so-called clockwise
transposition routing. Similarly, as in Schimmler’s algorithm, only local compare-
exchange operations and a very simple control logic are required. Further on, the new
hardware proposal makes use of nowadays available technology that allows to mix
special storage processes for very small DRAM with processes for ASICs. This trick is
crucial for obtaining a circuit that both fits on a single standard 300 mm silicon wafer
and can store a (sparse) representation of the matrix needed for the linear algebra step in
the case of numbers with up to 1024 bit.
Of course, manufacturing a circuit that spans a full wafer is technologically still
challenging, but it is more feasible than realizing a circuit that spans several wafers.
Fortunately, in 2003 it was shown that even the use of a single wafer-sized circuit can be
avoided through a suitable “partitioning” of the matrix derived in the relation collection.

3.3 The partitioning of Geiselmann and Steinwandt

The matrix-vector multiplications occurring in Wiedemann’s algorithm can be split into
multiplications of submatrices with subvectors. When exploiting this idea for a hardware
implementation, the question of combining the intermediate results efficiently arises, but
as explained in [GS03a], this problem can be solved. In summary, one can derive a
design for a network of small chips which can complete the linear algebra step for 1024
bit numbers within a few days. Consequently, the linear algebra step for 1024 bit
numbers is at the moment considered as in principle doable. Due to the distribution onto
small chips in [GS03a], one may even think of increasing the matrix size beyond the
estimates for the 1024 bit case. In particular, as already said in [Le02] one can “conclude
that from a practical standpoint, the security of RSA relies exclusively on the hardness of
the relation collection step of the number field sieve.”

4 Supporting hardware for the relation collection step

Relation collection is done by sieving: Simplifying, one can say that here long intervals
of integers are scanned for values where a specific integer-valued function has many
“small” prime factors. Based on the use of expensive high-end technology, in 1999 Adi
Shamir presented a design for an opto-electronic device which could do the sieving
extremely fast [Sh99]; even the New York Times reported on this invention.

4.1 An opto-electronic proposal: TWINKLE

In the TWINKLE device, the sieving interval is represented by the time (number of
clock cycles) used by the device, and each processor takes care of one prime number p.
Namely, it counts to p, reports a “hit”, counts to p again, etc. To be able to handle all the

101

reports, Shamir proposed the use of LEDs and a photo detector to collect the light. This
raises some non-trivial technical questions, but, e.g., through the use of high-end GaAs
technology, all these obstacles can theoretically be overcome. Nevertheless, a practical
implementation of a TWINKLE device has not been reported yet.

4.2 Silicon-based proposals: Mesh-based sieving and TWIRL

In [GS02] it is shown how Schimmler’s sorting algorithm can be used to implement a
sieving device for 512 bit numbers on a single silicon wafer. The idea is to split the
sieving interval into subintervals which are handled individually. Unfortunately,
handling small primes is quite troublesome in this design, and it is unclear how to scale
the device to larger numbers. However, recent results [GS03b] show that a related design
based on a routing mesh (that uses a compact factor base encoding in DRAM) allows for
a significant speed-up and might allow for realizing the relation collection for 768-bit
numbers on silicon chips that can be manufactured with current technology.
The fastest currently known design is The Weizmann Institute Relation Locator [ST03]
which stores the factor bases in DRAM and can in principle handle 1024 bit numbers.
However, for 1024 bit numbers, in the proposed form the largest involved chip fills a
complete 300 mm wafer, which makes manufacturing the device rather challenging.

5 Conclusion

Significant progress in the design of hardware supporting the NFS has been achieved,
and although the factorization of a 768 bit number has not been reported yet, by means
of the proposed designs it might well be doable in reasonable time.

References

[Be01] Bernstein, D. J.: Circuits for integer factorization: a proposal. Manuscript, 2001.
http://cr.yp.to/papers.html
[GS02] Geiselmann, W. and Steinwandt, R.: A Dedicated Sieving Hardware. Proc. of PKC ’03,
vol. 2567 of LNCS, pp. 256 – 266. Springer, 2002.
[GS03a] Geiselmann, W. and Steinwandt, R.: Hardware to Solve Sparse Systems of Linear
Equations Over GF(2). To appear in Proc. of CHES ’03, LNCS. Springer, 2003.
[GS03b] Geiselmann, W. and Steinwandt, R.: Yet Another Sieving Device. Submitted , 2003.
[Le02] Lenstra, A. K., Shamir A., Tomlinson J., and Tromer, E.: Analysis of Bernstein’s
Factorization Circuit. Proc. of ASIACRYPT 2002, vol. 2501 of LNCS, pp. 1 – 26. Springer, 2002.
[LL93] Lenstra, A. K. and Lenstra, H. W.: The development of the number field sieve, vol. 1554
of Lecture Notes in Mathematics. Springer, 1993.
[Sh94] Shor, P. W.: Algorithms for quantum computation: Discrete logarithms and factoring. Proc.
of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, pp. 124 – 134, 1994.
[Sh99] Shamir, A.: Factoring Large Numbers with the TWINKLE Device. Proceedings of CHES
’99, vol. 1717 of LNCS, pp. 2 – 12. Springer, 1999.
[ST03] Shamir, A. and Tromer, E.: Factoring Large Numbers with the TWIRL Device. To appear
in Proc. of CRYPTO ’03. Springer, 2003.

102

http://cr.yp.to/papers.html

