
Natural Language Interaction Using a Scalable Reference
Dictionary

Veera Boonjing* and Cheng Hsu**

*Mathematics and Computer Science
King Mongkut’s Institute of Technology Ladkrabang

Ladkrabang, Bangkok 10520 Thailand
kbveera@kmitl.ac.th

 ** Decision Sciences and Engineering Systems
Rensselaer Polytechnic Institute

Troy, NY 121800 USA
hsuc@rpi.edu

Abstract: A truly natural language interface needs to be feasible for actual
implementation. We developed such a new approach for database query and tested it
successfully in a laboratory environment. The new result is based on metadata
search, where the metadata grow in largely linear manner and the search is
linguistics-free (allowing for grammatically incorrect and incomplete input). A new
class of reference dictionary integrates four types of enterprise metadata: enterprise
information models, database values, user-words, and query cases using an
ontology-based meta-structure. The layered information models allow user-words to
stay in original forms as users articulated them, as opposed to relying on
permutations of individual words contained in the natural input. These properties
make the approach scalable to the number of users and the size of the database. A
graphical representation method turns the dictionary into searchable graphs
representing all possible interpretations of the input. A branch-and-bound algorithm
then identifies optimal interpretations, which lead to SQL implementation of the
original queries. Query cases enhance the metadata and the search of metadata, as
well as provide case-based reasoning to directly answer the queries. This design
assures feasible solutions at the termination of the search - i.e., the results always
contain the correct answer.

1. The Problem of Natural Language Database Query

A truly natural language interface for database query has many important promises; but
they all predicate on its being sufficiently feasible (either in the naturalness or in the
scalability) for actual applications. This feasibility is still a hard problem in the field. To
illustrate natural language database query, we list below a number of actual queries from
mocked end users against a laboratory Computer-Integrated Manufacturing (CIM)
database that we tested in the research. Many of them were incorrect or incomplete for the
English language, but could happen easily in actuality.

42

• Just give me only customers who placed orders on PZ1.
• Get billing address of John Smith.
• PZ1 customers
• How about PZ1 orders?
• Give all order_id and models that John Smith’s orders.
• Do we have records about John Smith, Jim Kowalski, and William Batt?; they

are our clients.
• Not done orders
• Now I want to know cost of PZ1 and PZ10
• What models did John Smith order?
• How about part PZ1?
• All customers.

In these truly natural queries, not only multiple different interpretations exist for the same
expressions, the interpretations might not even contain sufficient data to complete the
query for processing on the database. Thus, the two basic problems facing natural
language database query are ambiguities in intent and specification, and both require the
system to possess deep and broad metadata about the underlying database to resolve.

A significant portion of previous results in the field develops specific concept-form-
syntax models either for the users to use explicitly (imposed templates) or for the
applications to target implicitly (presumed patterns). These models provide precise
interpretation and mapping to traditional database query languages when the user input
matches exactly. Thus, they control the ambiguities at the expense of naturalness. We
might classify these results into five categories according to the technical nature of their
linguistic models. They include (1) the template-based approach [e.g., SH01], (2) the
syntax-based approach [e.g., AG97], (3) the semantics-grammar-based approach [e.g.,
COD78; HE78; OW00; WC78], (4) the intermediate-representation-language-based
approach [e.g., BAT86; GA87; WU92], and (5) the concept-based models such as
MindNet [RI98], WordNet [FE98], and conceptual dependency [SC75]. Some recent
works combine these results [MET02] and have also tried to offer more naturalness by
narrowing the application domain and engaging more natural language forms and rules
[e.g., RO00; SH01].

Another fundamental approach developed previously is to use a general linguistics-string
model to allow for interpretation of free-text queries. A prevailing idea of such models is
the n-gram-based dictionary, containing all possible uses (permutations) of words found
in all past queries to interpret new queries. It then maps the interpretation to a semantic
representation of the database structure and thereby determines the executable queries for
the original natural language input. Examples include many approaches using relation,
object, tree, space vector, probabilistic measures, semantic parsing, and other designs to
relate concepts to strings [JK01; JO95; KI00; ME99; MIT02; WA84; ZH99]. Some other
results limit the design to particular applications in order to control the size of the models
[e.g., BE99; JA86; GT82; ME99; MOT90; SI92]. A concern for these results is their
scalability. When the linguistics used are simplistic, such as containing only synonyms to
the database objects, the question of multiple interpretations - i.e., the ambiguity in intent

43

- looms large. When, on the other hand, the models are theoretically comprehensive
enough to deal with ambiguities, they may become too costly to implement for non-trivial
applications. The size of an n-gram dictionary could increase exponentially as the number
of queries and users increases.

In all these approaches, incomplete input could still cause ambiguities in specification
and/or intent, if the systems do not possess sufficient metadata to "complete the picture"
for the users. Furthermore, a truly natural language interface can never guarantee
complete success for all uses at all times - even humans routinely misunderstand other
humans. Thus, it has to be able to always yield a feasible solution that contains the correct
answer plus some additional but relevant information, and to continuously improve its
performance through experience: obtaining (online) users’ responses and/or the cases on
the users. It follows that interaction with users is always critical for the system to close the
loop and assure its validity. However, to make the interaction meaningful, the system has
to possess sufficient metadata in order to provide a useful reference scheme on which to
base the interaction (e.g., dialogue). Previous results have shown the need for sufficient
interaction capability to achieve the above goal [COD78; KA84; MIL75; MY76; RU01;
WC78].

Therefore, we submit that open, deep and scalable metadata about both the structure and
application of the databases is a key to solving the problem of natural language query.
With sufficient metadata, the system could resolve ambiguity in specification and support
a reference dictionary capable of resolving ambiguity in intent that grows linearly.
Moreover, with them, the system could develop an efficient interaction with the user to
assure a feasible closure for query processing as well as to effect continuous
improvement. We envision the following metadata: query cases as in case-based
reasoning, an enterprise information model expandable to include any number of semantic
layers, database objects and values, and open user-words recognized for the information
model and database objects and values. We then develop a feasible region interpretation
approach using metadata to achieve natural language database query, as described in
Section 2 below. We present the core method of the new approach next in Section 3, the
laboratory testing in Section 4, and discuss some proposed new research afterwards in the
concluding section.

2. The Metadata Search Approach

The four types of metadata: query cases, enterprise information model, database objects
and values, and user-words, mutually support each other in an integrative manner.
Database objects (structure, operators, etc.) and values are what the database is; but users
have to refer to them in one way or another in their queries. Enterprise information
models represent well-defined applications and the basic concepts of these applications
for the underlying databases. An information model could be flat, representing only the
immediate database structure and hence becomes fundamentally not scalable; but it could
also include scalable layers of semantics on top of the database structure. The more
scalable and layered, the more completely this subset of metadata captures the concepts

44

users use to make queries. Users would, however, use their own words to refer to these
concepts and database objects and values when they articulate a request against the
database. The individual phrases and words user use in their original forms (not
permutations of the original words that the system derives and generates) are the user-
words. Query cases are past examples of user queries and their correct results. They
should include minimally the exceptions - i.e., the cases where the system would have to
engage an interaction with the users to obtain the correct answers. Thus, a case could
include user, application and other pertinent information to assist its future use in
interpreting the queries from perhaps the same user, the same application and the like. In
this sense, cases close the gap between the metadata collected and the ones required at any
given point of time. The system could use cases to interpret natural queries directly, if
necessary, in a case-based reasoning manner. Clearly, database values, user-words and
cases would grow as the use of the database continues; but the growth is proportional
linearly to the actual queries processed. Other types of metadata could grow, too, to a
much less extent. The scalable enterprise information model is at the core of the metadata.
It allows the system to infer the missing information to complete the incomplete queries;
and it minimizes the need for user-words. Together with cases, they make it possible for a
sufficient reference dictionary to avoid using n-grams. All together, they promise a
feasible solution to resolving the ambiguities in intent and specificity.

A natural query is reducible to the set of user-words, concepts, database objects and
values it contains. Conversely, a particular combination of these keywords could represent
a particular natural query. However, the set of keywords may not always correspond to a
unique and complete database query that the system can process correctly. The reasons
include possible multiple mappings of the keywords to database objects/values, and
incomplete keywords that the systems can complete in multiple ways. This is where the
search approach comes into play. We first store the metadata into a reference dictionary
and manage it as a Metadatabase (see the next section), and then use networked graphs to
represent their logical structure. An interpretation of a set of keywords is an image of the
set on the logical structure. The approach identifies implicitly all permissible
interpretations (including the ones derived from the reference dictionary for incomplete
input) for the set from the dictionary, and evaluates their relative merits to optimize the
interpretation for the query using the branch-and-bound method. The optimal
interpretation then leads to a query using the underlying database query language (such as
SQL). The above approach is free of the need to understand linguistically the human
meaning of the words and phrases used. It needs only one keyword to start the search
process, since it could infer possible (multiple) interpretations from the graphs of the
logical structure that contain it. When the original user query contains a complete set of
metadata free of ambiguity, such as the ones that satisfies an SQL programmer, no
derivation is necessary and a solution is readily available. Among all possible
interpretations for a set of keywords, the one that involves least addition of derived
keywords (including zero) should be the one most accurate to the user's intent. The
argument here is simple: users would not be deliberately wordy with respect to their own
standards, nor misleading, when querying a database. Therefore, minimal sufficiency is a
good search criterion while the logical structure is the constraint of the metadata search
algorithms, for a constrained optimization paradigm.

45

The core of the reference dictionary (enterprise information model and initial user-words)
will be a design-time product; while cases, additional user-words, changes to the
information model, and database values will be added as the database system evolves. The
reference dictionary-based logical structure holds four fundamental promises: it generates
search-ready graphics; it supports case-based reasoning; it assures complete
interpretations of natural queries; and it simplifies user-words. The last point is worth
further elaboration. Consider the theoretical complexity of processing only one natural
query. Suppose the text consists of a stream of n words of which m are recognized
metadata. There would then be n/m words associated with each known term; these words
become the candidate user-words for the known terms. The expected number of
permutations of these new words would be m*(n/m)! for the query. As n grows over time
with new queries, the number of user-words would grow in this rate - and this is the
general complexity of a linguistic dictionary. Obviously, the system wants to increase the
number m (hits) since the bigger m is, the fewer (exponentially) the possible groupings of
words would be, resulting in fewer new user-words considered or added to the dictionary.
Information models with rich (layered) semantics provide a large m for the initial design
of user-words, and consequently lead to less ambiguity, fewer possible interpretations,
and fewer new user-words. When m reaches a reasonable scale, permutations of user-
words become less necessary. Cases do not directly change m, but do help resolve
ambiguity due to insufficient user-words, and hence help to reduce the need for new user-
words. Information models and cases represent a tightly structured, efficient kernel of
meaning with which the users will be familiar.

The above argument shows a strong probability that the new method is scalable to the
number of users (queries) and the size of the database, since the reference dictionary
grows linearly. This scalability gets stronger when the meta-structure of the reference
dictionary itself allows for open and scalable management (addition, deletion, and
modification) of enterprise metadata as the underlying database systems evolve. This
indeed the case as we will discuss in the next section.

The core logic of the metadata search approach proceeds this way. Given a graph R = <V,
E> of the reference dictionary where V is a set of vertices consisting of cases (C), user-
words (U), information models (M), and database values (D); and E is a set of edges
connecting them:

Step 1: Identify an ordered k-tuple Ikeyword = (t1, t2, …, tk) where ti is a word/phrase
(keyword) in the input that also belongs to U, M or D of R; i = 1, 2, …,k; and k is a
number of keywords found in the input. Associated with each element ti is the set of
referenced M or D (each element of Ikeyword may refer to many elements in M or D).
Denote this set as Vi. Therefore, we have an ordered k-tuple Vkeyword = (V1, V2, …, Vk)
where Vi is a set of referenced M or D for ti.
Step 2: Determine the most similar past case by matching keywords of the query with
problem definitions of past cases. If a perfectly matched case is found, then apply the case
solution and go to Step 5. Otherwise, if the similarity measure of the most similar case is
sufficiently significant (say at least 60%), then modify the case to obtain a solution and go
to Step 5.
Step 3: Determine a minimal combination set of elements of V1, V2, …, Vk.

46

Step 4: Search for the best interpretation by using the branch and bound method.
Step 5: Map the result to the database query language. Obtain the results of the query and
confirm them with users.

Note that the case-based learning mechanism engages user in dialogue as needed. Its
outcome becomes new cases and user-words added to C and U, respectively. The above
logic consists of a few postulates.

Postulate 1: Necessary Condition
The natural query input contains at least one keyword found in R.
Postulate 2: Sufficient Condition
The natural query input contains an unambiguous set of keywords necessary for forming
an accurate SQL statement for the query.
Postulate 3: Optimality
When all other things are equal, the best interpretation of the natural query input is the one
requiring minimum traversal on the logical structure of R.

Although the sufficient condition guarantees the logic to succeed, the approach actually
works under the necessary condition in most cases in our testing. Postulate 3 also allows
for adding new criteria such as operating rules for the database to the search.

3. The Core Methods and Algorithms: An Illustrative Example

The above basic logic is implemented in a set of core methods and algorithms, including
an ontology-based meta-structure of the reference dictionary, a graphical representation of
the metadata in the reference dictionary, a branch-and-bound search algorithm, and a
case-reasoning logic. The details are available from the literature [BO02]. We give a
conceptual overview here. The meta-structure is based on the Metadatabase model
[HU96], using the Two-Stage Entity-Relationship ontology of information modeling
[HU96]. The Metadatabase is shown open and scalable to incorporating heterogeneous
databases into the integration environment. Thus, the reference dictionary is capable of
integrating multiple information models and accommodating their evolution online. This
research adds some extensions, namely cases and user words, to the previous model. A
case in the case-based reasoning paradigm typically consists of three components: a
problem definition, a solution, and its outcome. In this research, the reference dictionary
contains the complete domain knowledge needed, so the problem definition is expanded
but the outcome is dropped. New problems would use the problem definition to find the
(best) matching cases and apply the associated solutions to them. A set of keywords and
their recognized vertices for a query describes the problem definition, and its
interpretation defines the solution.

The graphical representation defines the logical structure of a database on a graph G, a
sub-graph of the reference dictionary graph. Given a natural language query Q, the
natural language interface performs an interpretation in several steps. It first scans Q to
recognize the keywords (entries in the reference dictionary) in the natural query, i.e., the

47

recognized keyword. It then determines their corresponding recognized vertex sets in G
and identifies all query images of Q on G based on these vertex sets. Since Q may be
ambiguous (e.g., incomplete and multi-valued mapping) to G, each of its recognized
keywords could correspond to multiple recognized vertices, resulting in multiple query
images. Further, a recognized vertex may not always connect to other recognized vertices
in a way covering a complete range of data semantics (database value, attribute, entity,
and relationship) with a unique path. Therefore, it could have multiple semantic paths.
Taking these data semantics into account, we obtain all possible semantic paths for a
query image, called the feasible graphs. The refinement of feasible graphs leads to
connected feasible graphs and complete query graphs. A complete query graph represents
an executable interpretation of the natural language query Q according to the logical
structure G. The optimization algorithm implicitly searches all possible interpretations to
determine the final query graph for execution.

The graphical representation method yields a feasible region poised for search. As long as
the search method employed is bound within the region, then any results obtained are
guaranteed to be a feasible solution relevant to the original query. The solution may not
offer pinpoint precision, i.e., may contain additional information not requested in the
original query, but will nonetheless include the correct answer and the additional
information will be meaningful. A case would be a query to get the cost of part ID 111222
that returned an answer of all information for the part including the cost. The answer is
clearly feasible and useful to the user.

The search algorithm itself follows the Branch-and-Bound logic, as illustrated below in
the processing of the first natural language query example presented in Section 1: Just
give me only customers who placed orders on PZ1. Henceforth this query is referred to as
Query 1.

Suppose keywords (words and phrases matching some entries in the reference dictionary
or some vertices in graph G) and their recognized vertices (a set of G vertices matching
keywords) for this query are as shown in Table 1.

Table 1. keywords and their minimal vertex sets for Query 1.

Keyword Vertex
CUSTOMERS S CUSTOMER
ORDERS S ORDER
PZ1 V opsI_100|PZ1, V ppsI_54|PZ1, V sfcI_11|PZ1,

V sfcI_5|PZ1

The followings are possible query images generated from Table 1.

QI 1: { S CUSTOMER, S ORDER, V opsI_100|PZ1 }
QI 2: { S CUSTOMER, S ORDER, V ppsI_54|PZ1 }
QI 3: { S CUSTOMER, S ORDER, V sfcI_11|PZ1 }
QI 4: { S CUSTOMER, S ORDER, V sfcI_5|PZ1 }

48

The search graph of branch-and-bound search for Query 1 is shown in Figure 1. It
branches from root vertex where its lower bound (LB) = 1 to all possible query images
(QI1-QI4). See [BO02] for details on the evaluation function LB(). Among these query
images, the QI1 has the least lower bound. Therefore, the next vertex to explore is QI1.

QI3
LB=6

ROOT
LB = 1

QI1
LB = 5

FG11
LB = 5

FG12
LB = 5

QG121
Z = 5

QG111
Z = 5

QI2
LB=6

QI4
LB=6

Figure 1: The search graph for Query 1

There are two possible feasible graphs can be inferred from QI1. Both FG11 and FG12
have LB = 5. Since this lower bound is still lower than of any other vertices visited, the
branch-and-bound search branches from FG11 and FG12. The branch from FG11 give the
query graph QG111 with cost = 5 as shown in Figure 2. The branch from FG12 also gives
the query graph QG121 with cost = 5 as shown in Figure 3. No other vertices visited can
give a cost lower than this. Therefore, both QG111 and QG121 are considered as
interpretation candidates for Query 1.

I opsI_100
PART_ID

PZ1

E ORDER_ITEM E ORDERE PART E CUSTOMER

Figure 2: The query graph QG111 for FG11

49

I opsI_100
PART_ID

PZ1

E ORDER_ITEM E ORDERE PART E CUSTOMER

Figure 3: The query graph QG121 for FG12

Consider QG111 and QG121, both of them contain the same attribute and value and the
same entity/relationship solution path. The only difference is the attribute and value
belonging to the different entity/relationship in the path. This happens because an attribute
could be a key in one entity/relationship and a foreign key in other entities/relationships.
Since it does not make any difference in semantics between QG111 and QG121, they are
considered equivalent. Therefore, one of them can be removed.

Suppose the QG121 is removed, then the QG111 is the final solution. This interpretation
is then mapped to the following SQL query. See [BO02] for mapping rules.

SELECT DISTINCT PART.COST, PART.DESCRIPTION, PART.PART_ID,
ORDER_ITEM.ORDER_LINE_ID, ORDER_ITEM.CUST_ORDER_ID,
ORDER_ITEM.DATE_SCHED, ORDER_ITEM.QUANTITY,
ORDER_ITEM.OI_STATUS, ORDER_ITEM.PART_ID,
ORDER.CUST_ORDER_ID, ORDER.DATE_DESIRED,
ORDER.OD_STATUS, ORDER.CUST_ID, CUSTOMER.CUST_ID,
CUSTOMER.CUST_NAME, CUSTOMER.B_ADDR, CUSTOMER.S_ADDR
FROM ORDER, CUSTOMER, ORDER_ITEM, PART
WHERE ORDER.CUST_ID=CUSTOMER.CUST_ID and
ORDER.CUST_ORDER_ID=ORDER_ITEM.CUST_ORDER_ID and
ORDER_ITEM.PART_ID=PART.PART_ID and
(PART.PART_ID = 'PZ1');

4. Extension: Case-Based Reasoning and Interaction

In theory, the system could accumulate all natural queries it has processed (using the
above method) into a case-base. When the case-base has grown to a sufficient size, the
designer would have a choice to shift to relying mainly on case-based reasoning to answer
new queries and uses the interpretation algorithm only as a backup. This design would be
reasonable since the growth of cases is linear. However, in this research, we still regard
initially cases as a secondary tool to support the primary means of metadata search. As
such, the role of case-based reasoning is to assure a closure to the user and in a sense a
learning capability to the system. Therefore, we consider in this paper only the need to
build new cases for natural queries that the system failed to provide a single (query graph)
answer or the user rejected the answer. An interaction with the user is the means to

50

achieve this end. The interaction capability is more a last defense than a regular way of
solution; however, it could improve the performance in the worse than average cases
when the repository of the cases grows. When an interaction becomes necessary, the
system asks the user for additional information to solve the query correctly. There are
three possible causes of failure: (1) incorrect recognized vertex for a recognized keyword,
(2) no recognizable keywords in a query, and (3) insufficient keywords. A metadata-based
interaction identifies the cause and guides the user to define new user-words to fix it. For
the first cause, it provides the pertinent metadata (information model) describing the
possible recognized vertices for the keywords found so that the user could either designate
the intended vertex for a keyword or redefine the keywords. For the second cause, it walks
the user through the enterprise information model from high level down to associate new
user-words to vertices of information models. For the last cause, it similarly guides the
user to provide additional keywords for the query. In all these cases, the interaction adds
new user-words as well as building cases to the reference dictionary. The system will
repeat this cycle until it yields a correct result. Another design to resolve the case of
multiple query graphs for a query is to present all possible solutions to users in terms of
natural language for them to choose the intended solution. If the number of alternative
solutions is relatively large, it presents all possible scopes of solutions for users to choose
to narrow down the possible solutions before asking them to choose the intended solution.
When the system obtains the correct result, it completes the case with problem definition,
solution definition, and other information according to the structure of cases in the
reference dictionary. The method of case-based reasoning uses the cases built and
accumulated either to assist the metadata search or to answer directly the queries. The
method includes (1) a matching mechanism to match a query and a case, (2) criteria to
decide whether to reuse the most similar case, and (3) a mechanism to reuse the case. We
adopt standard results in the information retrieval field, with modifications to
accommodate equivalent keywords, to match a query with a case, viz., the vector space
model [SA83] and its COSINE measure of similarity. The actual design will be a major
task of the proposed research.

The above extensions also add to the basic scalability of the new method, in the sense that
they facilitate the performance in actual implementation. We verify the claims about
scalability through a laboratory test, as discussed next.

5. Verification at a Laboratory

We implemented the core algorithms in a software system running on a UNIX-Oracle
Server. The reference dictionary and the application database - a Computer-Integrated
Manufacturing (CIM) system - both reside in Oracle. The software itself has two
components: the user interface, coded in HTML and Java Script to be compatible with
major Web browsers, and the core algorithms, using Java Applets embedded in the user
interface in a browser-based computing manner. The implementation developed so far
solves primarily natural language queries that have a basic SQL solution. That is, the
basic SQL uses search-conditions in the WHERE clause that either (1) are an expression
of the form “attribute1 = attribute2” or “attribute = value,” or (2) a combination of such

51

expressions with the logical operators “AND” and “OR.” These results are sufficient to
show the feasibility of the metadata search approach but are insufficient for implementing
the approach in practice.

We tested the prototype system with 10 users to substantiate the feasibility of the
metadata search approach. The participants included professionals not associated with
Rensselaer as well as undergraduate students and graduate students at Rensselaer. Their
background in databases ranges from strong to virtually none. We provided the
participants with the descriptions, information models, and contents of the CIM database;
but were otherwise completely detached from them so as to allow them to ask as many
questions as they wished against the database in any text forms. An answer to a question
is correct when it includes all information the user required. In this implementation, the
reference dictionary of the testing case included only information models, database
values, and less than 200 user-words that we created by ourselves in advance.

The system solved every query listed in the first section, The Problem. It used a limited
number of new user-words to solve every additional query listed below. It failed
originally to produce correct answers to these queries; however, it solved every one when
the boldface words/phrases that the users articulated were added to the reference
dictionary as user-words (only one entry for each word or phrase). Without them, the
system produced either multiple interpretations for the user to select or a single
incomplete interpretation. Either cases contained the correct interpretation. There were no
other queries users generated that the system failed to solve correctly.

• William Batt's contact
• Michael Goin address
• Not done yet transaction
• Buyers of PZ10.
• How many people order pz1?
• Is Jim Kowlaski billing address and mailing address the same?
• What is Craig Norman billing address and home address? Please also list all of

his orders.
• What are the products associated with order no 00001?
• Show the detail Craig Norman’s order, part description, quantity, and where to

ship it?
• List all in-process orders and their details.

The important fact about these new user-words is their consistency with the basic logic of
metadata search: they do not require n-gram and their number grows linearly. The result
shows, the concept of metadata search is sound and the approach is scalable. It also
supports the claim that enterprise information models with layered semantics reduce the
number of user-words required and enhance the metadata search.

All queries tested satisfy the necessary condition and the sufficient condition postulated in
Section 2. The response times of all queries were between 1 and 10 seconds, running the
software from a Web client site against the Oracle server.

52

6. Beyond the Current Results

Many scholars consider natural language interaction a major pillar of Information
Technology in the new century. However, the field has not been as active as it should be,
because in part of past frustrations. The research reported here contributes to enterprise
database systems, which have good applications in the field of Internet-based information
services. In a broader sense, the work might show that natural language processing is
actually feasible, in the sense that it almost always produces a useful answer (feasible
region-bound) to almost any relevant query, and that companies can use it at reasonable
cost. The preliminary results suggest that natural language processing could apply to a
significant domain where many enterprise users need completely intuitive user interfaces
(allowing for ambiguous, incomplete, and incorrect articulation) to fully reap the benefits
of online enterprise information. The continued research on this line promises to show the
viability of having end users querying databases in their own languages. The medium of
query could either be free text typed in the system or be natural sentences spoken to it.

The continuing research will first extend the core method to include the full range of SQL
capabilities, especially the other standard operators not included yet, derived-attributes
and expressions, and date-related and other temporal selection criteria. We need to
develop a large-scale case-base to provide a parallel approach for query interpretation.
Second, research on implementation tools and methodology to help acquire the metadata
and maintain the reference dictionary is required. Third, opportunities exist in connecting
the system to voice interaction using even commercially available voice technologies to
allow for voice query of databases. They also exist in the exploration for applications,
especially in the Web-based settings. Finally, the possibilities of creating sufficient
metadata to represent the application domain of information retrieval outside of databases
deserve exploration. Research in this area would engage directly the progress on the
general problem of human computer interaction.

References

[AG97] Adam, N.R. and A. Gangopadhyay, "A Form-Based Natural Language Front-End to a
CIM database," IEEE Trans. On Knowledge and Data Engineering, 9:2, 1997, pp. 238-
250.

[BAT86] Bates, M., M.G.Moser, and D. Stallard, "The IRUS Transportation Natural Language
Interface," in Expert Database Systems, 1986, pp. 617-630.

[BE99] Bergman, L., J. Shoudt, V. Castelli, and C. Li, “An Interface Framework for Digital
Library,” International Journal on Digital Libraries, 2:2-3, 1999, pp. 178-189.

[BO02] Boonjing, V. and C. Hsu, “Metadata Search: A New Approach to Natural Language
Database Interfaces,” Proceedings IASTED International Conference on Information
Systems and Databases, October, 2002, Tokyo, Japan.

[COD78] Codd, E.F., "How about Recently? (English Dialog with Relational Databases Using
Rendezvous Vesion 1). In B. Shneiderman (Eds). Databases: Improving Usability and
Responsiveness, 1978, pp. 3-28.

[FE98] Fellbaum, C. (Eds), “WordNet: an Electronic Lexical Database,” MIT Press, Boston,
1998.

53

[GA87] Gross, B.J., D.E. Appelt, P.A. Martin and F.C.N. Pereira, "TEAM: an Experiment in
Design of Transportable Natural-Language Interfaces," ACM Transactions, 32, 1987, pp.
173-243.

[GT82] Guida, G. and Tasso C., "NLI: A Robust Interface for Natural Language Person-Machine
Communication," Int. J. Man-Machine Studies, 17, 1982, pp.417-433.

[HE78] Hendrix, G.G. Sacerdoti, E.D. Sagalowicz, C. and Slocum, J., "Development a Natural
Language Interface to Complex Data," ACM Trans. on Database Systems, 3:2, 1978, pp.
105-147.

[HS91] Hsu, C., M. Bouziane, L. Ratter, and L. Yee, "Information Resources Management in
Heterogeneous, Distributed Environments: A Metadatabase Approach," IEEE Trans. on
Software Engineering, 17:6, 1991, pp. 604-625.

[HU96] Hsu, C., Enterprise Integration and Modeling: the Metadatabase Approach, Kluwer
Academic Publishers, Boston, 1996.

[JA86] Janus, J.M., "The Semantics-based Natural Language Interface to Relational Databases,"
in L. Bolc and M. Jarke (Eds), Cooperative Interfaces to Information Systems, pp. 143-
187, Springer-Verlag, New York, 1986.

[JK01] Jarvelin, K., J. Kekalainen and T. Niemi, “Concept-Based Query Expansion and
Construction,” Information Retrieval, 4:3/4, 2001, pp. 231-255.

[JO95] Johnson, J.A.,“Semantic Relatedness,” Computers Math. Applic, 29:5, 1995, pp. 51-63.
[KA84] Kaplan, S.J., "Designing a Portable Natural Language Database Query System," ACM

Trans. on Database Systems, 9:1, 1984, pp. 1-19.
[KI00] Kim, W., “Corpus-Based Statistical Screening for Phrase Identification,” Journal of the

American Medical Information Association, 7:5, 2000, pp. 499-511.
[ME99] Meng, F. and W. Chu, "Database Query Formulation from Natural Language using

Semantic Modeling and Statistical Keyword Meaning Disambiguation," Technical Report
CSD-TR 99003, 1999, Computer Science Department, University of California, Los
Angeles, California.

[MET02] Metais, E., “Enhancing Information Systems Management with Natural Language
Processing Techniques,” Data and Knowledge Engineering, 41:2-3, 2002, pp. 247-272.

[MIL75] Miller, P.L., "An Adaptive Natural Language System that Listens, Asks, and Learns," in
Advance Papers of Forth International Joint Conference on Artificial Intelligence. pp.
406-413, Morgan Kaufmann, California, 1975.

[MIT02] Mittendorfer, M. and W. Winiwarter, “Exploiting Syntactic Abalisys of Queries for
Information Retrieval,” Data and Knowledge Engineering, 42:3, 2002, pp. 315-325.

[MOT90] Motro, A., “FLEX: A Tolerant and Cooperative User Interface to Databases,” IEEE
Transactions on Knowledge and Data Engineering, 2:2, 1990, pp. 231-246.

[MY76] Mylopoulos, J. Borgida, A. Cohen, P. Roussopoulos, N. Tsotsos, Jr. and H. Wong,
"TORUS: A Step Towards Bridging the Gap between Data Bases and the Casual User,"
Information Systems, 2:1, 1976, pp.49-64.

[OW00] Owei, V., “Natural Language Querying of Databases: an Information Extraction Approach
in the Conceptual Query Language,” Int. J. Man-Machine Studies, 53, 2000, pp.439-492.

[RI98] Richardson, S.D., W.B. Dolan and L. Vanderwende, “MindNet: Acquiring and Structuring
Semantic Information from Text,” In ACL’98 CONF 17, 2, 1998, pp. 1098-1102.

[RO00] Rosenfeld, R., X. Zhu, S. Shriver, A. Toth, K. Lenzo and A. W. Black, “Towards a
Universal Speech Interface,” In Proc. ICSLP 2000, 2000.

[RU01] Ruber, P., “Asking Naturally,” Knowledge Management, 4:8, 2001, pp. 62-63.
[SA83] Salton, G. and Mcgill, M., “Introduction to Modern Information Retrieval,” Mcgraw-Hill,

New York, 1983.
[SC75] Schank, R.C., “Conceptual Dependency Theory,” In R.C. Schank, Conceptual Information

Processing, pp. 22-82, American Elsivier, North-Holland, 1975.
[SH01] Shankar, AJ. and Yung, Wing, “gNarLi: A Practical Natural Language Interface,”

http://www.people.fas.havard.edu/~shankar2/stuff/gnari.html, 2001.

54

http://www.people.fas.havard.edu/~shankar2/stuff/gnari.html

[SI92] Shimazu, H., S. Arita, and Y. Takashima, "CAPIT: Natural Language Interface Design
Tool with Keyword Analyzer and Case-based Parser," NEC Res. & Develop, 33:4, 1992,
pp.679-688.

[WA84] Wald, J.A. and Sorenson, “Resolving the Query Inference Problem using Steiner Trees,”
ACM Transactions on Database Systems, 9:3, 1984, pp. 348-368.

[WC78] Waltz, D.L., "An English Language Question Answering System for a Large Relational
Database," Communications of the ACM, 21:7, 1978, pp.526-539.

[WU92] Wu, W. and D.M. Dilts, “Integrating Diverse CIM Data Bases: The Role of Natural
Language Interface,” IEEE Trans. Systems, Man, and Cybernetics, 22:6, 1992, pp.1331-
1346.

[ZH99] Zhang, G. Chu, W.W. Meng, F. and Kong G., “Query Formulation from High-level
Concepts for Relational Databases,” In N. W. Paton and T. Griffiths (eds), Prodeedings in
User Interfaces to Data Intensive Systems, pp. 64-74, The IEEE Computer Society, 1999.

55

	page411: 40
	page421: 41
	page431: 42
	page441: 43
	page451: 44
	page461: 45
	page471: 46
	page481: 47
	page491: 48
	page501: 49
	page511: 50
	page521: 51
	page531: 52
	page541: 53

