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Abstract: A truly natural language interface needs to be feasible for actual 
implementation. We developed such a new approach for database query and tested it 
successfully in a laboratory environment. The new result is based on metadata 
search, where the metadata grow in largely linear manner and the search is 
linguistics-free (allowing for grammatically incorrect and incomplete input). A new 
class of reference dictionary integrates four types of enterprise metadata: enterprise 
information models, database values, user-words, and query cases using an 
ontology-based meta-structure. The layered information models allow user-words to 
stay in original forms as users articulated them, as opposed to relying on 
permutations of individual words contained in the natural input. These properties 
make the approach scalable to the number of users and the size of the database. A 
graphical representation method turns the dictionary into searchable graphs 
representing all possible interpretations of the input. A branch-and-bound algorithm 
then identifies optimal interpretations, which lead to SQL implementation of the 
original queries. Query cases enhance the metadata and the search of metadata, as 
well as provide case-based reasoning to directly answer the queries. This design 
assures feasible solutions at the termination of the search - i.e., the results always 
contain the correct answer. 

1. The Problem of Natural Language Database Query 

A truly natural language interface for database query has many important promises; but 
they all predicate on its being sufficiently feasible (either in the naturalness or in the 
scalability) for actual applications. This feasibility is still a hard problem in the field. To 
illustrate natural language database query, we list below a number of actual queries from 
mocked end users against a laboratory Computer-Integrated Manufacturing (CIM) 
database that we tested in the research. Many of them were incorrect or incomplete for the 
English language, but could happen easily in actuality. 
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• Just give me only customers who placed orders on PZ1. 
• Get billing address of John Smith. 
• PZ1 customers 
• How about PZ1 orders? 
• Give all order_id and models that John Smith’s orders. 
• Do we have records about John Smith, Jim Kowalski, and William Batt?; they 

are our clients. 
• Not done orders 
• Now I want to know cost of PZ1 and PZ10 
• What models did John Smith order? 
• How about part PZ1? 
• All customers. 

 
In these truly natural queries, not only multiple different interpretations exist for the same 
expressions, the interpretations might not even contain sufficient data to complete the 
query for processing on the database. Thus, the two basic problems facing natural 
language database query are ambiguities in intent and specification, and both require the 
system to possess deep and broad metadata about the underlying database to resolve. 

 
A significant portion of previous results in the field develops specific concept-form-
syntax models either for the users to use explicitly (imposed templates) or for the 
applications to target implicitly (presumed patterns). These models provide precise 
interpretation and mapping to traditional database query languages when the user input 
matches exactly. Thus, they control the ambiguities at the expense of naturalness. We 
might classify these results into five categories according to the technical nature of their 
linguistic models. They include (1) the template-based approach [e.g., SH01], (2) the 
syntax-based approach [e.g., AG97], (3) the semantics-grammar-based approach [e.g., 
COD78; HE78; OW00; WC78], (4) the intermediate-representation-language-based 
approach [e.g., BAT86; GA87; WU92], and (5) the concept-based models such as 
MindNet [RI98], WordNet [FE98], and conceptual dependency [SC75]. Some recent 
works combine these results [MET02] and have also tried to offer more naturalness by 
narrowing the application domain and engaging more natural language forms and rules 
[e.g., RO00; SH01]. 

 
Another fundamental approach developed previously is to use a general linguistics-string 
model to allow for interpretation of free-text queries. A prevailing idea of such models is 
the n-gram-based dictionary, containing all possible uses (permutations) of words found 
in all past queries to interpret new queries. It then maps the interpretation to a semantic 
representation of the database structure and thereby determines the executable queries for 
the original natural language input. Examples include many approaches using relation, 
object, tree, space vector, probabilistic measures, semantic parsing, and other designs to 
relate concepts to strings [JK01; JO95; KI00; ME99; MIT02; WA84; ZH99]. Some other 
results limit the design to particular applications in order to control the size of the models 
[e.g., BE99; JA86; GT82; ME99; MOT90; SI92]. A concern for these results is their 
scalability. When the linguistics used are simplistic, such as containing only synonyms to 
the database objects, the question of multiple interpretations - i.e., the ambiguity in intent 
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- looms large. When, on the other hand, the models are theoretically comprehensive 
enough to deal with ambiguities, they may become too costly to implement for non-trivial 
applications. The size of an n-gram dictionary could increase exponentially as the number 
of queries and users increases. 

 
In all these approaches, incomplete input could still cause ambiguities in specification 
and/or intent, if the systems do not possess sufficient metadata to "complete the picture" 
for the users. Furthermore, a truly natural language interface can never guarantee 
complete success for all uses at all times - even humans routinely misunderstand other 
humans. Thus, it has to be able to always yield a feasible solution that contains the correct 
answer plus some additional but relevant information, and to continuously improve its 
performance through experience: obtaining (online) users’ responses and/or the cases on 
the users. It follows that interaction with users is always critical for the system to close the 
loop and assure its validity. However, to make the interaction meaningful, the system has 
to possess sufficient metadata in order to provide a useful reference scheme on which to 
base the interaction (e.g., dialogue). Previous results have shown the need for sufficient 
interaction capability to achieve the above goal [COD78; KA84; MIL75; MY76; RU01; 
WC78]. 

 
Therefore, we submit that open, deep and scalable metadata about both the structure and 
application of the databases is a key to solving the problem of natural language query. 
With sufficient metadata, the system could resolve ambiguity in specification and support 
a reference dictionary capable of resolving ambiguity in intent that grows linearly. 
Moreover, with them, the system could develop an efficient interaction with the user to 
assure a feasible closure for query processing as well as to effect continuous 
improvement. We envision the following metadata: query cases as in case-based 
reasoning, an enterprise information model expandable to include any number of semantic 
layers, database objects and values, and open user-words recognized for the information 
model and database objects and values. We then develop a feasible region interpretation 
approach using metadata to achieve natural language database query, as described in 
Section 2 below. We present the core method of the new approach next in Section 3, the 
laboratory testing in Section 4, and discuss some proposed new research afterwards in the 
concluding section. 

2. The Metadata Search Approach 

The four types of metadata: query cases, enterprise information model, database objects 
and values, and user-words, mutually support each other in an integrative manner. 
Database objects (structure, operators, etc.) and values are what the database is; but users 
have to refer to them in one way or another in their queries. Enterprise information 
models represent well-defined applications and the basic concepts of these applications 
for the underlying databases. An information model could be flat, representing only the 
immediate database structure and hence becomes fundamentally not scalable; but it could 
also include scalable layers of semantics on top of the database structure. The more 
scalable and layered, the more completely this subset of metadata captures the concepts 
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users use to make queries. Users would, however, use their own words to refer to these 
concepts and database objects and values when they articulate a request against the 
database. The individual phrases and words user use in their original forms (not 
permutations of the original words that the system derives and generates) are the user-
words. Query cases are past examples of user queries and their correct results. They 
should include minimally the exceptions - i.e., the cases where the system would have to 
engage an interaction with the users to obtain the correct answers. Thus, a case could 
include user, application and other pertinent information to assist its future use in 
interpreting the queries from perhaps the same user, the same application and the like. In 
this sense, cases close the gap between the metadata collected and the ones required at any 
given point of time. The system could use cases to interpret natural queries directly, if 
necessary, in a case-based reasoning manner. Clearly, database values, user-words and 
cases would grow as the use of the database continues; but the growth is proportional 
linearly to the actual queries processed. Other types of metadata could grow, too, to a 
much less extent. The scalable enterprise information model is at the core of the metadata. 
It allows the system to infer the missing information to complete the incomplete queries; 
and it minimizes the need for user-words. Together with cases, they make it possible for a 
sufficient reference dictionary to avoid using n-grams. All together, they promise a 
feasible solution to resolving the ambiguities in intent and specificity. 

 
A natural query is reducible to the set of user-words, concepts, database objects and 
values it contains. Conversely, a particular combination of these keywords could represent 
a particular natural query. However, the set of keywords may not always correspond to a 
unique and complete database query that the system can process correctly. The reasons 
include possible multiple mappings of the keywords to database objects/values, and 
incomplete keywords that the systems can complete in multiple ways. This is where the 
search approach comes into play. We first store the metadata into a reference dictionary 
and manage it as a Metadatabase (see the next section), and then use networked graphs to 
represent their logical structure. An interpretation of a set of keywords is an image of the 
set on the logical structure. The approach identifies implicitly all permissible 
interpretations (including the ones derived from the reference dictionary for incomplete 
input) for the set from the dictionary, and evaluates their relative merits to optimize the 
interpretation for the query using the branch-and-bound method. The optimal 
interpretation then leads to a query using the underlying database query language (such as 
SQL). The above approach is free of the need to understand linguistically the human 
meaning of the words and phrases used. It needs only one keyword to start the search 
process, since it could infer possible (multiple) interpretations from the graphs of the 
logical structure that contain it. When the original user query contains a complete set of 
metadata free of ambiguity, such as the ones that satisfies an SQL programmer, no 
derivation is necessary and a solution is readily available. Among all possible 
interpretations for a set of keywords, the one that involves least addition of derived 
keywords (including zero) should be the one most accurate to the user's intent. The 
argument here is simple: users would not be deliberately wordy with respect to their own 
standards, nor misleading, when querying a database. Therefore, minimal sufficiency is a 
good search criterion while the logical structure is the constraint of the metadata search 
algorithms, for a constrained optimization paradigm. 
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The core of the reference dictionary (enterprise information model and initial user-words) 
will be a design-time product; while cases, additional user-words, changes to the 
information model, and database values will be added as the database system evolves. The 
reference dictionary-based logical structure holds four fundamental promises: it generates 
search-ready graphics; it supports case-based reasoning; it assures complete 
interpretations of natural queries; and it simplifies user-words. The last point is worth 
further elaboration. Consider the theoretical complexity of processing only one natural 
query. Suppose the text consists of a stream of n words of which m are recognized 
metadata. There would then be n/m words associated with each known term; these words 
become the candidate user-words for the known terms. The expected number of 
permutations of these new words would be m*(n/m)! for the query. As n grows over time 
with new queries, the number of user-words would grow in this rate - and this is the 
general complexity of a linguistic dictionary. Obviously, the system wants to increase the 
number m (hits) since the bigger m is, the fewer (exponentially) the possible groupings of 
words would be, resulting in fewer new user-words considered or added to the dictionary. 
Information models with rich (layered) semantics provide a large m for the initial design 
of user-words, and consequently lead to less ambiguity, fewer possible interpretations, 
and fewer new user-words. When m reaches a reasonable scale, permutations of user-
words become less necessary. Cases do not directly change m, but do help resolve 
ambiguity due to insufficient user-words, and hence help to reduce the need for new user-
words. Information models and cases represent a tightly structured, efficient kernel of 
meaning with which the users will be familiar. 

 
The above argument shows a strong probability that the new method is scalable to the 
number of users (queries) and the size of the database, since the reference dictionary 
grows linearly. This scalability gets stronger when the meta-structure of the reference 
dictionary itself allows for open and scalable management (addition, deletion, and 
modification) of enterprise metadata as the underlying database systems evolve. This 
indeed the case as we will discuss in the next section. 

 
The core logic of the metadata search approach proceeds this way. Given a graph R = <V, 
E> of the reference dictionary where V is a set of vertices consisting of cases (C), user-
words (U), information models (M), and database values (D); and E is a set of edges 
connecting them: 

 
Step 1: Identify an ordered k-tuple Ikeyword = (t1, t2, …, tk) where ti is a word/phrase 
(keyword) in the input that also belongs to U, M or D of R; i = 1, 2, …,k; and k is a 
number of keywords found in the input. Associated with each element ti is the set of 
referenced M or D (each element of Ikeyword may refer to many elements in M or D). 
Denote this set as Vi. Therefore, we have an ordered k-tuple Vkeyword = (V1, V2, …, Vk) 
where Vi is a set of referenced M or D for ti. 
Step 2: Determine the most similar past case by matching keywords of the query with 
problem definitions of past cases. If a perfectly matched case is found, then apply the case 
solution and go to Step 5. Otherwise, if the similarity measure of the most similar case is 
sufficiently significant (say at least 60%), then modify the case to obtain a solution and go 
to Step 5. 
Step 3: Determine a minimal combination set of elements of V1, V2, …, Vk. 
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Step 4: Search for the best interpretation by using the branch and bound method. 
Step 5: Map the result to the database query language. Obtain the results of the query and 
confirm them with users. 
 
Note that the case-based learning mechanism engages user in dialogue as needed. Its 
outcome becomes new cases and user-words added to C and U, respectively. The above 
logic consists of a few postulates. 

 
Postulate 1: Necessary Condition  
The natural query input contains at least one keyword found in R. 
Postulate 2: Sufficient Condition  
The natural query input contains an unambiguous set of keywords necessary for forming 
an accurate SQL statement for the query.  
Postulate 3: Optimality  
When all other things are equal, the best interpretation of the natural query input is the one 
requiring minimum traversal on the logical structure of R. 

 
Although the sufficient condition guarantees the logic to succeed, the approach actually 
works under the necessary condition in most cases in our testing. Postulate 3 also allows 
for adding new criteria such as operating rules for the database to the search. 

3. The Core Methods and Algorithms: An Illustrative Example 

The above basic logic is implemented in a set of core methods and algorithms, including 
an ontology-based meta-structure of the reference dictionary, a graphical representation of 
the metadata in the reference dictionary, a branch-and-bound search algorithm, and a 
case-reasoning logic. The details are available from the literature [BO02]. We give a 
conceptual overview here. The meta-structure is based on the Metadatabase model 
[HU96], using the Two-Stage Entity-Relationship ontology of information modeling 
[HU96]. The Metadatabase is shown open and scalable to incorporating heterogeneous 
databases into the integration environment. Thus, the reference dictionary is capable of 
integrating multiple information models and accommodating their evolution online. This 
research adds some extensions, namely cases and user words, to the previous model. A 
case in the case-based reasoning paradigm typically consists of three components: a 
problem definition, a solution, and its outcome. In this research, the reference dictionary 
contains the complete domain knowledge needed, so the problem definition is expanded 
but the outcome is dropped. New problems would use the problem definition to find the 
(best) matching cases and apply the associated solutions to them. A set of keywords and 
their recognized vertices for a query describes the problem definition, and its 
interpretation defines the solution. 

 
The graphical representation defines the logical structure of a database on a graph G, a 
sub-graph of the reference dictionary graph. Given a natural language query Q, the 
natural language interface performs an interpretation in several steps. It first scans Q to 
recognize the keywords (entries in the reference dictionary) in the natural query, i.e., the 
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recognized keyword. It then determines their corresponding recognized vertex sets in G 
and identifies all query images of Q on G based on these vertex sets. Since Q may be 
ambiguous (e.g., incomplete and multi-valued mapping) to G, each of its recognized 
keywords could correspond to multiple recognized vertices, resulting in multiple query 
images. Further, a recognized vertex may not always connect to other recognized vertices 
in a way covering a complete range of data semantics (database value, attribute, entity, 
and relationship) with a unique path. Therefore, it could have multiple semantic paths. 
Taking these data semantics into account, we obtain all possible semantic paths for a 
query image, called the feasible graphs. The refinement of feasible graphs leads to 
connected feasible graphs and complete query graphs. A complete query graph represents 
an executable interpretation of the natural language query Q according to the logical 
structure G. The optimization algorithm implicitly searches all possible interpretations to 
determine the final query graph for execution. 

 
The graphical representation method yields a feasible region poised for search. As long as 
the search method employed is bound within the region, then any results obtained are 
guaranteed to be a feasible solution relevant to the original query. The solution may not 
offer pinpoint precision, i.e., may contain additional information not requested in the 
original query, but will nonetheless include the correct answer and the additional 
information will be meaningful. A case would be a query to get the cost of part ID 111222 
that returned an answer of all information for the part including the cost. The answer is 
clearly feasible and useful to the user. 

 
The search algorithm itself follows the Branch-and-Bound logic, as illustrated below in 
the processing of the first natural language query example presented in Section 1: Just 
give me only customers who placed orders on PZ1. Henceforth this query is referred to as 
Query 1. 
 
Suppose keywords (words and phrases matching some entries in the reference dictionary 
or some vertices in graph G) and their recognized vertices (a set of G vertices matching 
keywords) for this query are as shown in Table 1. 

Table 1. keywords and their minimal vertex sets for Query 1. 

Keyword Vertex 
CUSTOMERS S CUSTOMER 
ORDERS S ORDER 
PZ1 V opsI_100|PZ1, V ppsI_54|PZ1, V sfcI_11|PZ1,  

V sfcI_5|PZ1 
 
The followings are possible query images generated from Table 1. 

 
QI 1: { S CUSTOMER, S ORDER, V opsI_100|PZ1 }  
QI 2: { S CUSTOMER, S ORDER, V ppsI_54|PZ1 }  
QI 3: { S CUSTOMER, S ORDER, V sfcI_11|PZ1 }  
QI 4: { S CUSTOMER, S ORDER, V sfcI_5|PZ1 }  
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The search graph of branch-and-bound search for Query 1 is shown in Figure 1. It 
branches from root vertex where its lower bound (LB) = 1 to all possible query images 
(QI1-QI4). See [BO02] for details on the evaluation function LB(). Among these query 
images, the QI1 has the least lower bound. Therefore, the next vertex to explore is QI1. 

 

QI3
LB=6

ROOT
LB = 1

QI1
LB = 5

FG11
LB = 5

FG12
LB = 5

QG121
Z = 5

QG111
Z = 5

QI2
LB=6

QI4
LB=6

 
Figure 1: The search graph for Query 1 

There are two possible feasible graphs can be inferred from QI1. Both FG11 and FG12 
have LB = 5. Since this lower bound is still lower than of any other vertices visited, the 
branch-and-bound search branches from FG11 and FG12. The branch from FG11 give the 
query graph QG111 with cost = 5 as shown in Figure 2. The branch from FG12 also gives 
the query graph QG121 with cost = 5 as shown in Figure 3. No other vertices visited can 
give a cost lower than this. Therefore, both QG111 and QG121 are considered as 
interpretation candidates for Query 1. 
 

I opsI_100
PART_ID

PZ1

E ORDER_ITEM E ORDERE PART E CUSTOMER

 

Figure 2: The query graph QG111 for FG11 
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I opsI_100
PART_ID

PZ1

E ORDER_ITEM E ORDERE PART E CUSTOMER

 

Figure 3: The query graph QG121 for FG12 

Consider QG111 and QG121, both of them contain the same attribute and value and the 
same entity/relationship solution path. The only difference is the attribute and value 
belonging to the different entity/relationship in the path. This happens because an attribute 
could be a key in one entity/relationship and a foreign key in other entities/relationships. 
Since it does not make any difference in semantics between QG111 and QG121, they are 
considered equivalent. Therefore, one of them can be removed. 

 
Suppose the QG121 is removed, then the QG111 is the final solution. This interpretation 
is then mapped to the following SQL query. See [BO02] for mapping rules. 
 

SELECT DISTINCT PART.COST, PART.DESCRIPTION, PART.PART_ID, 
ORDER_ITEM.ORDER_LINE_ID, ORDER_ITEM.CUST_ORDER_ID, 
ORDER_ITEM.DATE_SCHED, ORDER_ITEM.QUANTITY, 
ORDER_ITEM.OI_STATUS, ORDER_ITEM.PART_ID, 
ORDER.CUST_ORDER_ID, ORDER.DATE_DESIRED, 
ORDER.OD_STATUS, ORDER.CUST_ID, CUSTOMER.CUST_ID, 
CUSTOMER.CUST_NAME, CUSTOMER.B_ADDR, CUSTOMER.S_ADDR  
FROM ORDER, CUSTOMER, ORDER_ITEM, PART  
WHERE ORDER.CUST_ID=CUSTOMER.CUST_ID and 
ORDER.CUST_ORDER_ID=ORDER_ITEM.CUST_ORDER_ID and 
ORDER_ITEM.PART_ID=PART.PART_ID and  
(PART.PART_ID = 'PZ1'); 

4. Extension: Case-Based Reasoning and Interaction 

In theory, the system could accumulate all natural queries it has processed (using the 
above method) into a case-base. When the case-base has grown to a sufficient size, the 
designer would have a choice to shift to relying mainly on case-based reasoning to answer 
new queries and uses the interpretation algorithm only as a backup. This design would be 
reasonable since the growth of cases is linear. However, in this research, we still regard 
initially cases as a secondary tool to support the primary means of metadata search. As 
such, the role of case-based reasoning is to assure a closure to the user and in a sense a 
learning capability to the system. Therefore, we consider in this paper only the need to 
build new cases for natural queries that the system failed to provide a single (query graph) 
answer or the user rejected the answer. An interaction with the user is the means to 
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achieve this end. The interaction capability is more a last defense than a regular way of 
solution; however, it could improve the performance in the worse than average cases 
when the repository of the cases grows. When an interaction becomes necessary, the 
system asks the user for additional information to solve the query correctly. There are 
three possible causes of failure: (1) incorrect recognized vertex for a recognized keyword, 
(2) no recognizable keywords in a query, and (3) insufficient keywords. A metadata-based 
interaction identifies the cause and guides the user to define new user-words to fix it. For 
the first cause, it provides the pertinent metadata (information model) describing the 
possible recognized vertices for the keywords found so that the user could either designate 
the intended vertex for a keyword or redefine the keywords. For the second cause, it walks 
the user through the enterprise information model from high level down to associate new 
user-words to vertices of information models. For the last cause, it similarly guides the 
user to provide additional keywords for the query. In all these cases, the interaction adds 
new user-words as well as building cases to the reference dictionary. The system will 
repeat this cycle until it yields a correct result. Another design to resolve the case of 
multiple query graphs for a query is to present all possible solutions to users in terms of 
natural language for them to choose the intended solution. If the number of alternative 
solutions is relatively large, it presents all possible scopes of solutions for users to choose 
to narrow down the possible solutions before asking them to choose the intended solution. 
When the system obtains the correct result, it completes the case with problem definition, 
solution definition, and other information according to the structure of cases in the 
reference dictionary. The method of case-based reasoning uses the cases built and 
accumulated either to assist the metadata search or to answer directly the queries. The 
method includes (1) a matching mechanism to match a query and a case, (2) criteria to 
decide whether to reuse the most similar case, and (3) a mechanism to reuse the case. We 
adopt standard results in the information retrieval field, with modifications to 
accommodate equivalent keywords, to match a query with a case, viz., the vector space 
model [SA83] and its COSINE measure of similarity. The actual design will be a major 
task of the proposed research. 

 
The above extensions also add to the basic scalability of the new method, in the sense that 
they facilitate the performance in actual implementation. We verify the claims about 
scalability through a laboratory test, as discussed next. 

5. Verification at a Laboratory 

We implemented the core algorithms in a software system running on a UNIX-Oracle 
Server. The reference dictionary and the application database - a Computer-Integrated 
Manufacturing (CIM) system - both reside in Oracle. The software itself has two 
components: the user interface, coded in HTML and Java Script to be compatible with 
major Web browsers, and the core algorithms, using Java Applets embedded in the user 
interface in a browser-based computing manner. The implementation developed so far 
solves primarily natural language queries that have a basic SQL solution. That is, the 
basic SQL uses search-conditions in the WHERE clause that either (1) are an expression 
of the form “attribute1 = attribute2” or “attribute = value,” or (2) a combination of such 
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expressions with the logical operators “AND” and “OR.” These results are sufficient to 
show the feasibility of the metadata search approach but are insufficient for implementing 
the approach in practice. 

 
We tested the prototype system with 10 users to substantiate the feasibility of the 
metadata search approach. The participants included professionals not associated with 
Rensselaer as well as undergraduate students and graduate students at Rensselaer. Their 
background in databases ranges from strong to virtually none. We provided the 
participants with the descriptions, information models, and contents of the CIM database; 
but were otherwise completely detached from them so as to allow them to ask as many 
questions as they wished against the database in any text forms. An answer to a question 
is correct when it includes all information the user required. In this implementation, the 
reference dictionary of the testing case included only information models, database 
values, and less than 200 user-words that we created by ourselves in advance. 

 
The system solved every query listed in the first section, The Problem. It used a limited 
number of new user-words to solve every additional query listed below. It failed 
originally to produce correct answers to these queries; however, it solved every one when 
the boldface words/phrases that the users articulated were added to the reference 
dictionary as user-words (only one entry for each word or phrase). Without them, the 
system produced either multiple interpretations for the user to select or a single 
incomplete interpretation. Either cases contained the correct interpretation. There were no 
other queries users generated that the system failed to solve correctly. 

 
• William Batt's contact 
• Michael Goin address 
• Not done yet transaction 
• Buyers of PZ10. 
• How many people order pz1? 
• Is Jim Kowlaski billing address and mailing address the same? 
• What is Craig Norman billing address and home address? Please also list all of 

his orders. 
• What are the products associated with order no 00001? 
• Show the detail Craig Norman’s order, part description, quantity, and where to 

ship it? 
• List all in-process orders and their details. 

 
The important fact about these new user-words is their consistency with the basic logic of 
metadata search: they do not require n-gram and their number grows linearly. The result 
shows, the concept of metadata search is sound and the approach is scalable. It also 
supports the claim that enterprise information models with layered semantics reduce the 
number of user-words required and enhance the metadata search. 

 
All queries tested satisfy the necessary condition and the sufficient condition postulated in 
Section 2. The response times of all queries were between 1 and 10 seconds, running the 
software from a Web client site against the Oracle server. 
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6. Beyond the Current Results 

Many scholars consider natural language interaction a major pillar of Information 
Technology in the new century. However, the field has not been as active as it should be, 
because in part of past frustrations. The research reported here contributes to enterprise 
database systems, which have good applications in the field of Internet-based information 
services. In a broader sense, the work might show that natural language processing is 
actually feasible, in the sense that it almost always produces a useful answer (feasible 
region-bound) to almost any relevant query, and that companies can use it at reasonable 
cost. The preliminary results suggest that natural language processing could apply to a 
significant domain where many enterprise users need completely intuitive user interfaces 
(allowing for ambiguous, incomplete, and incorrect articulation) to fully reap the benefits 
of online enterprise information. The continued research on this line promises to show the 
viability of having end users querying databases in their own languages. The medium of 
query could either be free text typed in the system or be natural sentences spoken to it. 

 
The continuing research will first extend the core method to include the full range of SQL 
capabilities, especially the other standard operators not included yet, derived-attributes 
and expressions, and date-related and other temporal selection criteria. We need to 
develop a large-scale case-base to provide a parallel approach for query interpretation. 
Second, research on implementation tools and methodology to help acquire the metadata 
and maintain the reference dictionary is required. Third, opportunities exist in connecting 
the system to voice interaction using even commercially available voice technologies to 
allow for voice query of databases. They also exist in the exploration for applications, 
especially in the Web-based settings. Finally, the possibilities of creating sufficient 
metadata to represent the application domain of information retrieval outside of databases 
deserve exploration. Research in this area would engage directly the progress on the 
general problem of human computer interaction. 
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