
Interface Definition and Code Generation in heterogeneous

Development Environments from a Single-Source

A Domain Specific Language Approach for Automotive Predevelopment Environments

Dominik Bauch, David Lenz, Pascal Minnerup and Andrei Avram

fortiss GmbH

An-Institut Technische Universität München

Guerickestr. 25, 80805 Munich, Germany

{bauch,dlenz,minnerup}@fortiss.org, andrei.avram@tum.de

Abstract: Typical automotive software development involves a broad spectrum of
development environments and this leads to friction loss, unnecessary efforts and in-
consistencies discovered later in the development process. In this paper we advocate
that language engineering technologies can be used for the interface definition and
code generation in order to glue artifacts and to support the work within such het-
erogeneous development environments. For our implementation we used the domain
specific language stack mbeddr based on the Meta Programming System (MPS) from
JetBrains. We show our preliminary experience with our method gained during the
work on a component-based, distributed advanced driver assistant system. The system
has to be realized for both the automotive specific prototyping framework ADTF in
combination with MATLAB/Simulink and the AUTOSAR RTE middleware. With the
help of the proposed approach, we were able to generate large redundant parts of the
software system including different interface representations with only small modifi-
cations of the existing architecture.

1 Introduction

For the efficient and fast specification as well as implementation of novel software-intensive

and highly integrated advanced driver assistance systems the utilization of a broad spec-

trum of specialized development tools is essential. Virtually all today’s advanced driver

assistance systems are built on top of a component-based software architecture and hence

well-defined interfaces describing the individual’s component communication flow are vi-

tal. But as an inherent consequence of the in general heterogeneous development envi-

ronment, most of the interfaces have to be specified in various manifestations to fulfill the

specific syntactic and semantic requirements of the respective tools. For example, MAT-

LAB/Simulink1 represents its interface with so-called bus objects whereas in a C program-

ming environment typically simple records are used (cf. Figure 1). Although, these inter-

faces will contain semantically identical data they have to be maintained simultaneously

1www.mathworks.com

2133

Common

and abstract

Description of

Project artifacts

C/C++ struct ADTF DDL

and

automatic

Code

Generation

Figure 1: Centralized interface description in affiliation with a code generation framework

for ADTF, MATLAB and AUTOSAR

with different tools. With the project’s progress the individual interface representations

will drift apart and an inconsistent specification is the inevitable consequence.

In addition, typically there are also two parallel and just loosely coupled lines of devel-

opment which will intensify the above mentioned situation. There is on the one hand a

lightweight and agile software engineering process with very short release cycles for the

development of the actual functional code of the new advanced driver assistance system.

This development branch uses an automotive-specific rapid prototyping environment that

allows for an integration of various tools like the Automotive Data and Time-Triggered

Framework (ADTF). On the other hand there is a more heavy weight systems engineer-

ing process fitted for the development of the software’s target architecture and ECU it-

self. Nowadays, the target architecture is typically based on a specific implementation

of the well-known Automotive Open System Architecture (AUTOSAR) standard. At cer-

tain points in the project’s timeline, both development branches with their independently

evolved interface specifications will be merged together. The better the functional code

follows the interface specifications of the target architecture at this moment the less effort

is expected.

In our understanding, to reduce costs and risks for maintenance and integration it is in-

dispensable to introduce a centralized and common specification method, which is able to

ensure high interface integrity even in such complex, distributed and particularly hetero-

geneous development environments. We believe also that it is advantageous for the quality

of the software system if its specification is decoupled from the specific capabilities of

the individual development tools. Within an automotive predevelopment project, there

are also some recurring, error-prone and especially time consuming tasks which should

be automated as far as practicable. Especially with the help of a suitable code genera-

tion framework the mostly trivial source code for the wrappers of the functional software,

needed for its embedding within the target architecture as well as within the rapid pro-

totyping environment, can be derived from an interface specification2. Figure 1 outlines

2Of course, assuming an implementation architecture for the functional code is given

2134

our notion that abstract interface descriptions should serve as a unified representation of

concrete interface definitions as well as a source for platform-dependent wrappers.

Contribution of this paper In the following, we will present an approach based on our

domain specific language Rapid Automotive Predevelopment Interface Definition (RAPID).

It is a possible solution to the problem of inconsistencies with interface specifications

within heterogeneous and distributed development environments along with component

based architectures. Using this domain specific language (DSL) as a kind of glue-code,

we are able to establish reliable links between different development and documentation

tools whereupon only one common and centralized description of the relevant project ar-

tifacts exists. Furthermore, we leverage the information content of RAPID, in conjunction

with the knowledge about a project-wide established implementation architecture for the

functional code, to generate ready-to-use software component wrappers. This code gen-

eration allows the seamless integration of our functional code in the automotive-specific

rapid prototyping environment ADTF as well as in an AUTOSAR target architecture.

In the following sections of the paper we introduce the sketched approach in detail and dis-

cuss its integration into an automotive predevelopment process. Within Section 2, related

work is discussed. Section 3 gives a brief overview of the tools and techniques used for

the implementation of our DSL approach. Subsequently, Section 4 describes our domain

specific language and illustrates its usage with an example. Furthermore, we present our

preliminary experiences and outline the integration into an automotive development pro-

cess. Finally, the last section summarizes our work and highlights ideas for future tasks.

2 Related Work

Amongst others, we see our observations and hypotheses stated in Section 1 as well as our

drawn conclusions in general confirmed by the author of [1]. In this paper, Broy identified

and described the most important key challenges future automotive software engineering

projects will have to cope with. Some of the fields which are addressed by our paper in a

pragmatic way, namely an improved development tool integration and a sophisticated in-

terface specification method together with a fitting requirements engineering, are explicitly

mentioned by Broy.

The authors of [2] point out that domain specific abstractions in requirement models can

help by the integration of continuous and discrete systems. Whereas models of continuous

systems can be used for code generation, the models of discrete systems are very helpful

for an unambiguous interface specification and the description of relationships between

components (especially when the models are enriched by a behavior specification) but

with the main drawback that two artifacts, model and code, have to be maintained and

synchronized. The approach proposed in our paper addresses exactly this issue and ensures

at all times a coherent and consistent view on the interfaces. Hence, all information about

the interfaces’ specifications is deposited in one centralized source.

2135

In [3], the authors present a vision on how an integrated model-based tool environment

should look like in order to ensure a seamless development process. Especially in the

automotive domain, the process is mostly imposed by the tools available and thus many

proprietary software and file formats dominate the domain. As each tool is specialized

for one development step, models have to be repeatedly (mostly manually) transformed or

rebuilt throughout the process. This leads to information-loss, redundancy, inconsistency

and thus to inefficiency. Although the authors show how tools have to be designed to

overcome these drawbacks, the description is on an abstract level and more a guideline and

roadmap towards an improved model-based process. In contrast, our work aims at focusing

on a concrete aspect of this process, i.e. the interface definitions, and shows how model-

based design can overcome inconsistencies between different branches of development.

An overview about Domain Specific Languages is presented in [4]. As in our approach, the

paper identifies maintainability and portability as some of the main advantages of domain

specific languages. Additionally they point out that DSLs allow optimization improve

the testability. The main challenges of DSLs are seen in implementing a DSL and the

availability of DSLs. Our research adds some practical experience about designing and

using DSLs.

Such practical experience has also been produced by other research groups. In [5] a DSL

is presented that provides real time and validation properties that are particularly useful

for embedded computing. The research focuses on designing a language that allows high

confidence in the developed software. The approach described in [6] includes generating

middleware specific code out of a domain specific XML document. The goal of that paper

is to manage the complexity and heterogeneity of distributes online games.

There are several approaches of creating interface definition languages. Well known ex-

amples are the AUTOSAR Textual Language Framework [7] or the OMG interface spec-

ification language [8]. These interface specification languages can express very complex

interfaces, but are either not able to store all information necessary for the code generation

presented in this paper or require a large overhead to express it. Furthermore we want

to exploit the advantages of language engineering for making a compact and extendible

language that can evolve with the predevelopment needs.

3 Language Engineering Tools

For realizing the domain specific language RAPID defined in Section 4 we rely on the

existing Meta-Programming-System (MPS) from JetBrains [9] and on the language stack

mbeddr [10]. In this section we briefly introduce these tools and the concepts behind them.

3.1 Meta Programming System

MPS is a language workbench [11], i.e. a framework that allows the definition and exten-

sion of domain specific languages and provides tools to work with them.

2136

After defining the syntax and semantics of a language in form of a meta model in MPS,

one can also use MPS to write models in this language. All the information of a model

is stored in a so-called abstract syntax tree (AST) representing the elements of the syntax

of the defined DSL. In contrast to plain text editors in traditional IDEs for programming

languages, MPS implements a projectional editor for the language syntax. That means

that one modifies the AST directly instead of relying on parsers to generate this tree from

plain text. Parsers can be very complicated to build and to maintain. Projectional editing

has the advantage that the written code is correct by construction. In other words, only

syntactically and semantically correct input is allowed. This is ensured by the type system

derived from the meta model. The prevention of incorrect input makes the use of a DSL

straight forward and makes it less error-prone and thus usable for domain experts that are

not familiar with general purpose programming languages like C.

Within the MPS framework, it is possible to define generators that transform the spec-

ified model into arbitrary representations. One of those representations can be conven-

tional type definitions, e.g. C-structs or Matlab bus objects, but also more sophisticated

functional (wrapper) code. This approach allows generating different views of the same

information for different development environments. This ensures that changes have to be

made only for the model and all representations can be regenerated in a coherent manner.

This concept of MPS with projectional editing and generation of artifacts can be seen in

Figure 2.

 !"#$%&#'"()#%*'#$++,$-.+&#/-)%0'12/#-$

3$-.+&#/-)

4
4
4

5+)+$%#-$6

5+)+$%#-$7

Figure 2: MPS projectional editing concept. The editor changes the AST directly. Gener-

ators build different representations of the model.

3.2 mbeddr

mbeddr provides an environment within MPS for embedded software development in C.

It offers higher-level extensions for the C-language like state machines, unit tests, etc.

as well as static checks and verification mechanisms. It aims at making C extendable

without adding additional runtime-costs. For our approach, we use the ability of MPS to

extend a DSL in order to use the already defined semantics of datatypes and structures of

mbeddr. Also parts of the existing code generation for C can be re-used and extended for

our purposes.

2137

4 RAPID — The proposed DSL

The tools described in Section 3 are the basis for defining our DSL RAPID. This section

presents the meta model of the interface description. Next, it describes the generation of

wrapper code and other development artifacts based on an instance of this meta model. An

example will illustrate the whole process.

On the one hand, the meta model of the interface description has to support all information

that is necessary for generating the wrapper code and other needed development artifacts

of the automotive project. On the other hand, it should remain simple in order to allow fast

adaptation to new requirements of the specific project and simple creation of projectional

editors. In contrast to general purpose interface definition languages like OMG’s IDL [8],

the meta model presented in this section is optimized to fulfill these requirements.

Figure 3 shows the meta model of the interface description. The root class is the system

specification (system spec). It is the starting point from which a user can reach all other

artifacts and it is, in principle, a collection of all component interfaces of the whole soft-

ware system. The system specification can contain an arbitrary number of these interface

specifications (interface spec in Figure 3). Each instance of an interface spec includes the

data types used (records spec), the incoming connection ports (inputports spec) and the

outgoing connection ports (outputport spec). Finally it contains a mapping specification

(mappings spec) that the generator code can use to map the results of triggered input port

functions to output ports, handle timer events and store status information.

 class CodeGen

system_spec

Interface_spec

+ timer_cycle :float = 1.0

records_spec
inputports_spec

outputports_spec mappings_spec

Signal

+ type :com.mbeddr.core.expressions.strcuture.Type

record

specification_element

+ description :string

Port

InputPortOutputPort InOutPortMapping

timercom.mbeddr.core.udt.structure.StructDecleration

elements are derived

from specification_element

StatusPort

1..*

0..*0..*

1..*1..*1..*

1..*

0..*

+sub_records

0..* 1..*

Features of mbeddr

Figure 3: RAPID meta model

The members of the records spec, outputports spec, mappings spec and inputports spec

are derived from a common specification element that offers documentation capabilities.

A record, which is based on the mbeddr’s declaration of structs, contains Signals and

2138

nested records (sub records). Signals refer to some of the built-in data types defined in

mbeddr. For the ports used in the InOutPortMapping, there are two kinds of special values.

The StatusPort is a virtual outport that defines the wrapper code should not forward the

mapped input directly to the functional code, but store it to be available at any place in

the component. The timer is a special inport that is not triggered on receiving data from

another component, but triggered periodically.

/∗ Swi tch t u r n s i g n a l ∗ /

i n t e r f a c e s p e c T u r n S i g n a l

t i m e r c y c l e = 0 . 1 s

r e c o r d s s p e c

record T u r n S i g n a l S e t t i n g s

s i g n a l i n t e r v a l : u i n t 1 6 /∗ I n t e r v a l i n s e c o n d s ∗ /

s i g n a l a c t i v e : b oo l /∗ A c t i v a t e t h e t u r n s i g n a l ∗ /

i n p u t p o r t s s p e c

port t u r n S i g n a l S e t t i n g s P o r t : T u r n S i g n a l S e t t i n g s

o u t p u t p o r t s s p e c

port t u r n S i g n a l S t a t e P o r t : T u r n S i g n a l S t a t e

mappings spec

mapping t i m e r => t u r n S i g n a l S t a t e P o r t

Listing 1: Example of an interface specification for a turn signal controller. But in principle

due to the concepts of projectional editing the formatting of the DSL can be arbitrary.

Listing 1 shows an example of an interface specification for a turn signal controller. The

turn signal controller is a simple component that expects a turn signal setting as an input

and switches the turn signal on and off according to this setting. For example the signal

setting can specify that the controller should switch the turn signal on and off every half

second. The corresponding software component includes an input port for setting the turn

signal behavior and an output port stating, whether the light is currently active. Listing

1 defines the types TurnSignalState and TurnSignalSettings for these ports. Additionally

there is a mapping (turnSignalStateMapping) stating that at every timer event, the wrapper

code should write a new value to the turnSignalStatePort. Finally, the interface definition

specifies the cycle time of this timer event as 0.1 seconds. Hence, the actual user can

command the turn signal controller to switch the turn signal on and off at any interval that

is a multiple of 0.1 seconds.

This short and simple RAPID specification suffices for generating the ADTF and poten-

tially AUTOSAR wrappers.3 In ADTF the software engineer can configure the software

system by connecting software components in a filter graph. Each software component

is represented as an ADTF filter. As described in the introduction we use this filter as

a wrapper for the actual functional code. Figure 4 shows an excerpt of our architecture

allowing such a separation of functional code and wrapper code. The MessagePassing-

Interface contains a sending method for each OutPort defined in RAPID. Plus, for each

StatusPort, it offers a getter method for reading the stored value. The ADTF filter as well

as the AUTOSAR wrapper has to implement these methods. Additionally, the filters con-

3with wrapper we refer to code that embeds the functional code to an AUTOSAR conform environment

2139

MessagePassingInterface

ADTF Filter

AUTOSAR SwComponent

Functional Component

Figure 4: Excerpt of our implementation architecture for functional code and correspond-

ing wrappers

tain code for initialization, creation of the pins, processing incoming data and converting

it to the target C structs. Code generators can generate all this code using the information

of the RAPID files.

The remaining part is the Functional Component (compare Figure 4). For this component,

a framework is generated including initialization and deinitialization functions plus one

receiving function for each input port defined in RAPID. These port functions are also

defined in an interface of the functional component. This way, any change of the generated

interface is immediately recognized by the compiler and the software developer is forced

to update the functional code, too.

Furthermore and as depicted in Figure 4, the Functional Component has only a reference

to the abstract MessagePassingInterface. Hence, it does not know, whether it is using

ADTF or AUTOSAR for communicating with other components. Thus, the developer

does not have to cope with the implementation details of the specific middleware and they

can reuse the same functional code for ADTF and AUTOSAR. Only for the final serial

deployment the software engineers should remove the abstraction layers introduced for

platform independence and optimize the functional code. In the example used for this

paper, the output port turnSignalStatePort is mapped to a timer. Therefore, the generated

interface for the functional code also includes a method with TurnSignalState as return

type that the wrapper code will trigger periodically.

All in all, the code generation replaces the error-prone activity of writing more than 400

lines of repeating code by hand. These 400 lines of code do not include the completely

identical functions that a software engineer can implement in a common base class for all

ADTF filters.

Besides the in detail explained generation of platform dependent wrapper code, there exist

also several artifacts in a heterogeneous development environment describing the same

interface:

• Software systems implemented in C/C++ need C interfaces,

• components implemented in MATLAB/Simulink need Simulink Bus Objects,

• debugging and connection tools in ADTF need ADTF data definition language

(DDL) files and

• the project management needs to include the interfaces in the requirements specifi-

cation, amongst others, to make contracts with suppliers for a later series develop-

ment.

2140

<a d t f : d d l x m l n s : a d t f =” a d t f ”>

<h e a d e r><d e s c r i p t i o n>Swi tch t u r n s i g n a l< / d e s c r i p t i o n>< / h e a d e r>

< s t r u c t s>< s t r u c t name=” T u r n S i g n a l S e t t i n g s ”>

<e l e m e n t . . . name=” i n t e r v a l ” t y p e =” t U I n t 1 6 ” />

<e l e m e n t . . . name=” a c t i v e ” t y p e =” t B o o l ” />

< / s t r u c t>< / s t r u c t s>

< / a d t f : d d l>

(a) ADTF description of the record TurnSignalSettings

t y p e d e f s t r u c t T u r n S i g n a l S e t t i n g s

{
i n t 1 6 i n t e r v a l ; / / I n t e r v a l i n s e c o n d s

b o o l e a n a c t i v e ; / / A c t i v a t e t h e t u r n s i g n a l

} T u r n S i g n a l S e t t i n g s ;

(b) C description of the struct TurnSignalSettings

(c) Tabular representation of TurnSignalSettings

Figure 5: Different representations of the TurnSignal interface

Without code generation, developers have to maintain all these semantically equal descrip-

tions manually and inconsistencies are unavoidable. The interface description language

presented in this paper solves this problem by creating a single source of information as

we are able to generate all the above listed artifacts with the help of RAPID. Listing 5a

shows how the struct TurnSignalSettings is represented in ADTF with its DDL format,

the C/C++ version is depicted in Listing 5b and Figure 5c shows a tabular representation

that a project leader can use for importing it to a requirements management tool. The

implementation of the corresponding generation files is straight forward, as each of these

representations mainly contains the same information. If a new representation is necessary

that contains additional information, developers can add this information to the RAPID

meta model. This way, RAPID offers the tools necessary for keeping many development

artifacts consistent.

4.1 Experience with the code generation

We tested the code generation on our sub-project, a part of a distributed advanced driver

assistant system. The sub-project consists of a total of 17 components with 119 ports. For

developing the code generation we found several places in the source code that we had to

change, because we had implemented slightly different architectures for similar wrapper

code. The code generation enforced to implement a common architecture. Some of these

architectural inconsistencies were even undetected defects in the source code. Further-

2141

Implementation

Repository

Interface Repository

Generator Code

Repository

Meta Model

Repository
Change Meta

Model

Change

Generator

Code

Change

Interface

Definition

Change

Functional

Code

Change

AUTOSAR

Configuration

Change

Interface

Definition

[�] [�]

Change

Interface

Definition

Change

Functional

Code

Change

AUTOSAR

Configuration

Sub-Project TurnSignal

Change

Interface

Definition

[�] [�]

Sub-Project HeadLights

Change

Interface

Definition

Change

Functional

Code

Change

AUTOSAR

Configuration

Change

Interface

Definition

[�] [�]

Figure 6: Hierarchy of RAPID artifacts. The higher a modified artifact is located in the

hierarchy, the higher the impact on other teams.

more, we had to rename variables and some namespaces to a common naming pattern that

code generators can describe and update our C include hierarchy to a systematical pattern.

As we had already strictly separated functional code and wrapper code no other changes

were necessary.

4.2 Integration into the Development Process

As described in the introduction, there are typically two or more independent develop-

ment lines and many independent teams using different development tools like MAT-

LAB/Simulink, ADTF or an AUTOSAR tool chain. The previous section described how

RAPID code generation can generate the different artifacts needed by these teams. The

process engineers should integrate this code generation into the development process. The

following section describes this integration.

Figure 6 visualizes the general principle of integrating the interface definition and code

generation framework into the development process. The engineers working on a specific

development line (i.e. the functional prototype of the sub-project TurnSignal depicted

in Figure 6) should not directly change the generated interfaces or other generated code.

If possible, developers should make the changes in the non-generated functional code:

the implementation repository level shown in Figure 6. If the change requires modifying

the interfaces, they should change the RAPID files and regenerate the language specific

generated interface code. Automatic build scripts should include the regeneration and the

developers should check in RAPID files to a common version control repository. As soon

as the other teams update and rebuild their projects, the automatic build script will gen-

erate their language and domain specific interfaces, too (compare common box ”‘Change

2142

Interface Definition”’ in Figure 6). If the interface change causes a problem for one of the

projects, this is recognized at this early stage and not postponed to the integration process.

Generating the code with mbeddr and build scripts is possible by using ANT scripts4. In

order to ensure that no developer uses old generated code files, version control should

exclude the generated code.

In some cases changing the RAPID description will not suffice, because the information

that the developer needs to change is contained in the code generators. The code genera-

tion framework should be a separate version controlled project that is included into other

projects using for example git sub modules5. As the code generation is included in an

automatic build script, changes to the generators will have an effect on all other teams

depending on it very quickly. As indicated in Figure 6, a large number of projects might

depend on these generators.

The same applies to the project management information specified in a requirements man-

agement tool. If a bad specification is found in the specification file, requirements engineer

should not make the change directly in the requirements management tool. Instead, they

should make the change in the RAPID files and regenerate the requirements specification

document. This ensures consistency between the functional software and the requirements

and hence the project team can use the working prototype as a proof for a good require-

ments specification.

5 Conclusions and Future Work

In this paper we presented the domain specific language RAPID together with a powerful

code generation framework that has the capability to better integrate tools of a hetero-

geneous development environment. We showed that RAPID can act as a single-source

for required artifacts within a software-intensive industrial automotive pre-development

setting. As a result, no more information about interface specifications is duplicated and

hence modifications have only to be done at one dedicated place. Consistency in the re-

sulting interface specification for the individual tools is built in. Furthermore, language

engineering is able to embrace the concepts of the developer’s domain. Therefore, in our

context, using language engineering for the system specification is a powerful and at the

same time very intuitively usable to instrument.

As shown in Section 4.2, such an approach can be seamlessly embedded in an already

established distributed development process. One reason for this is the very compact and

natural (in terms of our domain) design of RAPID that allows easy and pretty fast migra-

tion of existing code. Furthermore, the possibility of code generation out of the domain

specific language is particularly easy with the leveraged framework because there is no

need to parse complicated syntactical constructs thus the design of the language can be

chosen arbitrarily.

Up to our measurements, we have reduced the amount hand-written code, which is nec-

4http://confluence.jetbrains.com/display/MPSD30/HowTo+--+MPS+and+ant
5http://git-scm.com/book/en/Git-Tools-Submodules

2143

essary for the interface specification and the implementation for a wrapper (filter) for the

ADTF environment in our setting, by a factor of eight. We assume that the factor in terms

of working hours is even higher due to fact that developers can focus on the actual impor-

tant things of their work.

We are currently extending our code generation framework so we will be able to gener-

ate AUTOSAR RunnableEntitys from a RAPID interface specification. This will be done

in the same fashion as we did for the ADTF filters. With this extension we can embed

our functional code within the rapid prototyping environment of the agile line of devel-

opment as well as within the systems engineering line of development. This is achieved

fully transparently and without any additional effort. Additionally, an implementation of

the proposed connection to requirements documentation tools, e.g. DOORS from IBM

Rational, as well as to the tools used for the ECU system specification is a valuable goal

which will increase productivity and in particular quality of the overall process and, by im-

plication, the product’s quality more and more. Finally, we will assure our position about

saving working hours with the help of a case study done within our project about a highly

integrated advanced driver assistance system.

References

[1] M. Broy, “Challenges in automotive software engineering,” in Proceedings of the 28th inter-
national conference on Software engineering, pp. 33–42, 2006.

[2] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software engineering for automotive
systems: A roadmap,” in 2007 Future of Software Engineering, pp. 55–71, 2007.

[3] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu, “Seamless model-based
development: From isolated tools to integrated model engineering environments,” Proceedings
of the IEEE, vol. 98, no. 4, pp. 526–545, 2010.

[4] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An annotated bibliogra-
phy.,” Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000.

[5] K. Hammond and G. Michaelson, “Hume: a domain-specific language for real-time embedded
systems,” in Generative Programming and Component Engineering, pp. 37–56, 2003.

[6] T.-Y. Hsiao and S.-M. Yuan, “Practical middleware for massively multiplayer online games,”
Internet Computing, IEEE, vol. 9, no. 5, pp. 47–54, 2005.

[7] Artop User Group, “ARText — An AUTOSAR Textual Language Framework.” https://
www.artop.org/.

[8] Object Management Group, “OMG formal specifications.” http://www.omg.org/

spec/.

[9] Jetbrains, “Meta programming system (MPS).” http://www.jetbrains.com/mps/.

[10] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr: an extensible c-based programming
language and IDE for embedded systems,” in Proceedings of the 3rd annual conference on
Systems, programming, and applications: software for humanity, pp. 121–140, 2012.

[11] M. Fowler, “Language workbenches: The killer-app for domain specific languages,” 2005.

2144

