
Dominik Bork, Dimitris Karagiannis, Heinrich C.Mayr (Hrsg.): Modellierung 2020

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 109

Model-based Software Cost Estimation

Calculating Time and Effort for Software Evolution Projects

Harry Sneed1, Wolfgang Prentner2

Abstract: Estimating the costs of an evolution project differs from development project estimation

and must follow its own rules. When estimating development project costs the whole system is

taken into consideration. When estimating evolution costs only those parts of the system are

considered that have to be changed or added. The rest is left as it is, but must be included in the test.

The mixing of changed components with new components and old components presents several

challenges to software product management. The main challenge is how to recognize those features

that have to be added or changed – feature analysis. Together they make up the change domain. The

extent of this change domain is the key factor in estimating the costs of change in each new release.

It is measured by means of one or more size metrics such as function-points, data-points and object-

points in order to convert size into effort. The approach used here was to model the change

requirements and then compare the change model with the original requirements model to ascertain

the scope of the change. To this end, both the original and the current requirements had to be

extracted from the requirement text and then modelled. This approach was applied here to calculate

the costs of expanding a national health record system. The preliminary results are presented in this

short paper.

Keywords: Software evolution, Requirement Modelling, Natural Language Processing, Software

sizing, Requirement Metrics, Function-Points, Data-Points, Object-Points, Model-based Estimation.

1 Introduction

The IT system to be evolved here is the security subsystem of an information system for

managing health records of state insured citizens. There are more than 5 million health

records in this particular system. The system has already been in operation for more

than 7 years. It was developed by a local software shop specialized in health

information systems and the same shop is still maintaining it. Recently additional

security requirements have come up which were not considered in the original

requirement analysis, mostly as a result of new data protection legislation. Many of

them deal with access rights, user protection and system security levels. They were not

foreseeable at the time the system was first conceived and if they were, it was decided

to postpone their implementation. Now the law requires for them to be adhered to. The

1 SoRing Kft, Kapitanutca 6, H1123 Budapest, Hungary, Harry.Sneed@SoRing.hu

2 ZT-Prentner-IT, Kagranerplatz 40, A1221, Wien, Austria, Prentner@ZTP.at

110 Harry Sneed, Wolfgang Prentner

national health agencies have no choice but to build them into their current health

administration systems. The alternative would be to build a completely new system

which satisfies all the old requirements plus the new ones, i.e. a complete

redevelopment. In such a redevelopment the entire requirement model must be made

again from scratch. In an evolution project only the new requirements need to be re-

modelled. The old requirements are assumed to be already implemented. If the new

requirements are to be compared with the old ones, then these too must be modelled as

they were here. The reverse engineering of the old requirement document took more

than four times the effort required to model the new requirements.

2 Levels of System Modelling

In any evolving IT system there are at least two levels to be modelled. These are the

requirements and the test. If the evolution team is working according to the book there

will be a design model and a test model. Model-based testing presupposes a test model

from which system test cases can be derived. Model-based cost estimation presupposes

a requirement model from which system size metrics can be derived [Selb09].

Figure 1: Modelling the Requirements

In this evolution project the requirement documentation consisted of two separate

documents in German language:

• A detailed description of the existing security system requirements

(Pflichtenheft)

• A general description of the new security system requirements (Lastenheft).

2.1 Existing System Requirements

The specification of the existing system requirements is a 390 page word document

containing a combination of texts, tables and diagrams. The texts are for the most part

Model-based Cost Estimation 111

short paragraphs prescribing some security feature of the current system such as the

authentication of users who log into the system. The nouns in those paragraphs are often

acronyms defined in an acronym table at the end of the document. Otherwise they are a

mixture of German and English medical terms such as “treatment”, “prescription”,

“medication”, “Arzt”, “Behandlung” and “Ordination”. Often English and German

terms are used alternately to denote the same object types, for instance “treatment” and

“Behandlung”. To comprehend the texts the reader needs to be familiar with both

German and English medical terms as well as with the acronyms used in this context. A

sample from the text might look like this:

„Dem Gesetz entsprechend ist ein Aggregiertes Audit Record Repository (A-ARR) als

zentrales Service zu errichten, das es den Teilnehmern (Bürgern) ermöglicht, Einsicht in

die aufgezeichneten Protokolldaten, die ihre eigenen Gesundheitsdaten betreffen, zu

ermöglichen. Die Protokolldaten werden von der ZGF bzw. von ETS und PAP erstellt

und an das A-ARR mittels https weitergeleitet. Dem Bürgerportal steht eine lesende

SOAP Schnittstelle zum Abrufen aller Protokolleinträge eines Bürgers zur Verfügung.“

Sample 1: Specified Requirement

The texts are enhanced by tables and diagrams. If the text is describing an object there is

often a table defining the attributes of that object, for instance for the term

“Authentication” there is a list of authentication types equivalent to an enumeration.

Authentication R

 # @NotBefore R Time instant from which the assertion is

useable. It is set as the issue instant

 # @NotOnOrAfter R Time instant at which the assertion expires.

Value is set to 4 hours

 # @AudienceRestriction R This element contains the list of Audiences,

e.g., the contexts (services) for whom the STS

issued the assertion. Identity Assertion is used

only with ETS (https://elga-online.at/ETS).

AuthnStatement R

 # @AuthnInstant R Time instant of authentication in UTC

Format:yyyy'-'MM'-'dd'T'HH':'mm':'ss'.'fff'Z'

 # AuthnContext R

 # AuthnContextClassRef R urn:oasis:names:tc:SAML:2.0:ac:classes.*

AttributeStatement R HCP identity attributes and permissions

(Attribute der Identity Assertion)

ds:Signature R Enveloped XML signature of the issuer of the

Identity Assertion

Sample 2: Specified Data Attributes

If the text is describing a process then a process diagram is included to depict the

sequence of steps within that process. The description of a process often turns out to be

recursive as the steps of a process may be themselves sub-processes for which further

diagrams are needed.

112 Harry Sneed, Wolfgang Prentner

Sample 3: Specified Process

To measure the size and complexity of a requirement model it is necessary to

distinguish between objects and actions. An object is a data entity or data set. In the

code entities are implemented as structures or classes. An action can be a process, a use

case or an elementary function. A process is actually a sequence of procedurally related

functions. In the code processes are implemented as procedures, but in object-oriented

systems, procedures are not explicitly defined, thus they are not statically recognizable.

This leads to a semantic gap between requirement specifications and code. Processes or

sequences of elementary functions can only be recognized by dynamic analysis

[GDG06].

The detailed requirement model is detailed because what it is describing already exists

and can be observed in operation. The authors of the detailed requirements are

describing what happens when the system is executed. They are describing what they

can physically observe. The model may not be totally accurate but it is accurate enough

to be used as a basis of measurement. The only truly accurate description of a system is

the code itself. By comparing the requirements with the code one can detect where they

deviate from one another, but only if they are at the same level of abstraction [ChGa01].

In comparing one abstract model with another we are actually comparing two shadows

of the real system.

2.2 Projected System Requirements

The specification of the new system requirements for the security system is not a single

all-inclusive document like that for the current system as a whole, but a set of seven

related documents prescribing what additional features the new security subsystem

should have:

• An 11 page description of the proposed collaboration platform

• A 5 page description of the build process

• A 7 page description of the documentation classes

• A 10 page description of the virtual system architecture

• A 15 page description of the application container

• A 36 page description of the injection passport pilot application

• A 62 page description of the proposed x-Ray exchange service.

That adds up to 146 pages of requirement specifications for the enhanced security

Treatment

GDA/Bereich IMedId/HCP AGW/ZGF

Treatment

Model-based Cost Estimation 113

system. Of course these requirement specifications are less detailed than the current

system specification because the authors are not describing what they see but

prescribing what they would like to have. They cannot physically observe those features

but only imagine how they might be implemented. The objects and actions are therefore

less precisely defined or their exact definitions are left open to be defined at

implementation time (tbds) [Mugr08].

3 Modelling the Security System Requirements

The primary goal of this particular modelling process was to measure the size and

complexity of the proposed system change. Since there was neither a design nor code

for the extended system, the only thing that could be measured was the requirements of

the new security subsystem. These could be compared with the requirements for the

current system as a whole. System cost estimation implies measurement. To make an

objective comparison one must compare numbers and that requires measuring the

objects to be compared – in this case the two requirement documents. In order to

measure a requirement text document the text of that document must first be converted

to a given requirement model that coincides with the requirement-based estimation

methods. Then the two models can then be matched with one another to identify the

differences between them. Thus, the first step in comparing the new requirements with

the existing ones is to extract a numeric model from the requirement text.

Once a numeric model has been created from the descriptive text, the model elements

can be counted and the counts compared. The prerequisite to comparing models is to

identify the model elements described in the text. At the current state of artificial

intelligence this task can only be performed by an intelligent human being. The person

assigned to this work must examine each and every text passage to decide what that text

is all about and what model element is being specified by it.

Based on his many years of experience in analyzing requirement documents in different

natural languages, combined with the knowledge acquired from the literature on

requirement modelling, the first author identified some 30 model types ranging from

use-cases to elementary function steps and from logical data entities to elementary data

items, including services and user-interfaces. A full list of the model element types was

published in a paper by the authors on requirements reengineering [SnPr18].

Based on his or her knowledge of the application and his or her familiarity with the

terms used in the target document, the analyst assigns the text passages to a selected

model type. It is human analyst who decides what a text passage is prescribing. Actually

the analyst is associating the terms used in the text with the terms associated with the

model types. The experienced analyst will soon recognize that the same text patterns are

used again and again to describe model elements of the same type. With these patterns

in the back of mind, the analyst will be able to rapidly scan through the requirement text

and assign the text paragraphs to the appropriate model element types [Lefi11].

114 Harry Sneed, Wolfgang Prentner

Having recognized a model element, the analyst inserts the element type identifier in a

separate line before the text passage or paragraph to which that type applies.

&FREQ-011 Patientenidentifikationen

Alle Patientenidentifikationen werden im Format CX HL7 V2.5 gemäß IHE XDS.b

Profil erwartet.

Sample 4: Requirement Definition

&Regel Die Signatur der Assertion wird gemäß W3C XMLDSig geprüft.

Sample 5: Rule Definition

This action is referred to as marking up the text. It is similar to marking up an XML

document, but much less formal. The end delimiters are left out. A model element ends

where the next one begins. Considering that a page of requirement documentation will

contain on average 6 model elements, it should be possible to mark up a page of

requirement text within 20 minutes, or at the rate of 18 model elements per hour. A

document of 100 pages would require 2000 minutes = 33 hours or some 4 working

days. This is exactly what it cost to mark up the new security requirement document in

this cost estimation project. The marking up of the original security document took

more than 16 working days. This was not only due to the volume but also to the density

of the descriptions [Bria17].

&UseCase: HCP_Assertion_anfordern

Läuft eine Benutzersession ab oder wurde invalidiert, muss auch die HCP Assertion

beim ETS invalidiert werden.

&MainPath: Steps =

1) Ein GDA System oder ein Gateway eines System-Bereichs sendet eine WS

Trust RST Issue Transaktion an die ZGF des System-Bereichs, um sich bei

dem System wieder anzumelden.

2) Im Security Header der SOAP Nachricht befindet sich die Identity

Assertion des lokalen IDPs.

3) Der Apache der lokalen AGW leitet die RST Nachricht zum zentralen ETS

weiter.

4) Eventuelle Fehler werden in einer WS Trust Tabelle zurückgeliefert.

5) Fehlerfälle werden gemäß der Fehlerbehandlungsrichtlinie behandelt.

Sample 6: Use Case Definition

Once a requirement document has been marked up it can be automatically measured.

The text parser will not only be able to recognize and count the nouns but also to count

the model element types, i.e. it can count individual functional and non-functional

requirements, use cases, actors, inputs, outputs, interfaces, data objects and data

attributes. The tool for analyzing the marked-up text and counting the model entities has

Model-based Cost Estimation 115

been described in previous papers [Sned05]. From these counts it can derive data-points,

function-points, object-points and usecase-points. These are the essential size metrics

for determining the extent of a requirement model. The model sizes will not necessarily

coincide with the code sizes as the model is only a shadow of the actual system.

However by measuring the size of a shadow one can make some assumptions about the

size of the real object depending upon the time of day. In the case of a requirement

model, it depends upon the state of the requirements at the time when the model is

measured. Unfortunately we cannot assume that the requirement document will be

consistent with the live system. Some requirements may have never been implemented

or were only partially implemented. Unfulfilled requirements make up for a good part of

the technical debt [Ster10].

This does not hold for the model of the projected requirements, i.e. those that are yet to

be fulfilled. They reflect how big the system extension would be if all of the new

requirements were fulfilled. One can get an impression of the relation between the size

of the original model and the new enhanced model by comparing their size metrics with

one another [Sned10]. In table 1 the number of entities in the current requirement model

are listed out next to the number of entities which are to be added in the extended

requirement model. The new requirement documentation only includes the additional

entities, i.e. the delta of the extended model. Of course the existing model will also be

affected by the enhancements made, so additional costs have to be planned for adapting

and testing existing artifacts impacted by the system enhancement.

Require. Entity Type Current Entity Count Added Entity Count Total Count

User interfaces 80 8 88

System interfaces 154 30 184

Data Objects 133 61 194

Data Attributes 1929 193 2022

Object States 406 192 598

Actions 1139 217 1356

Business Rules 892 197 1089

Business Processes 98 19 117

Actors 12 6 18

Use Cases 101 20 121

Use Case Paths 40 9 49

Use Case Steps 484 56 540

Logical Test Cases 101 20 121

Function-Points 3868 1134 5002

Data-Points 15347 4971 20318

Tab. 1: Requirement Model Entity Counts

116 Harry Sneed, Wolfgang Prentner

4 Estimating System Enhancement Costs

By comparing the size metrics of the existing requirement model with those of the

projected model it was possible to determine the degree of change. The size of a system

can be viewed from two points of view:

• Functional point of view

• Data point of view [CMPB05].

The functional point of view is reflected in the number of function-points and use case-

points. The data point of view is expressed in data-points and object-points.

4.1 Counting Function-Points in the new Requirement Model

Function-Points are actually weighted counts of the model inputs and outputs plus the

weights of the data entities and internal interfaces defined in the model. When the

requirement model is extracted from the requirement text all the user interfaces,

incoming messages and service requests are marked as being inputs and all the user

interfaces, reports, outgoing messages and service responses are marked as being

outputs. Inputs weigh from 3 to 6 points, outputs weigh from 4 to 7 points, data entities

weigh from 5 to 15 points and internal interfaces weigh from 5 to 10 points, depending

on the complexity of the requirement model as a whole. These weighted counts are

added up to give the number of requirement function-points [IFPG99]. Of course the

counting rules have to be simplified in order to automate the counting. The complexity

of individual inputs and outputs cannot be measured. Instead the complexity of the

model as a whole is applied to every input and output. If the complexity of the model is

greater than 0.6 all of the outputs of that model will be assigned 7 points and all of the

inputs 6 points. This simplification is already made in the Cosmic Function-Point

method where all inputs and outputs have the same weight of 1.

In the model of the projected security subsystem 1134 function-points were counted,

indicating a difference of 3.4 to 1 between the size of the original requirement model for

the system as a whole and the size of the new model of the security subsystem. Carrying

this difference over to the effort involved, it means that the extended security features

should cost no more than 30% of what the original system had cost.

4.2 Counting UseCase-Points in the new Requirement Model

Use Case-Points are weighted counts of the use cases and actors defined in the model.

The weight of a use case is determined by the number of paths and steps specified for

that use case. Every use case must have at least one path and each path must have a least

one step. There is no limit to the number of paths and steps a use case may have, but

normally there is no more than two paths – the normal path and the exceptional path –

each with some 3 to 10 steps. The authors of the use-case method assign 5 points to the

Model-based Cost Estimation 117

cases with up to 3 steps, 10 points to use cases with 4 to 7 steps, and 15 points to use

cases with over 7 steps. In addition system actors are weighted from 1 to 3 points

depending on their type of interface, whether batch, message or dialogue. The weights

of the use cases and actors are summed up to give the total number of use case-points

[Karn93].

In the model of the existing system as a whole there were 2035 use case points. In the

model of the projected security system 220 use-case-points were counted. That indicates

a ratio of 9:1 from the existing entire requirement model to the proposed partial one.

That indicates that the system extension would only cost 10% of what the original

system cost. This cannot be true. It results from the fact that the use-case method was

intended for estimating frontend development. The planned security subsystem is

mainly a backend solution. Thus, the use-case method does not apply here.

4.3 Counting Data-Points and Object-Points in the Requirement Model

The data point of view is reflected in the number of data-points and object-points. At the

requirement model level these two counting procedures are very similar. Data elements,

i.e. nouns, are weighted by 1, data objects by 2, user interfaces, reports and messages by

4 to give the number of data-points [Sned05b]. To compute object-points the number of

data groups and messages are weighted by 4, the number of use cases by 8, and the

number of actions by 3 [Sneed96]. In the model extracted from the original requirement

document there were 15.347 data-points counted whereas in the model extracted from

the requirement specification of the new security subsystem 4971 were counted. With

object-points, it was 8669 object-points in the original model for the system as a whole

as opposed to 2043 in the new partial model for the security subsystem. This gives a

relation of 3.0 to 1 for data-points and 4.2 to 1 for object-points.

Model-Type Funct-Points Data-Points UC-Points Object-Points

Original 3868 15347 2035 8669

Extension 1134 4971 220 2043

Ratio 3.4:1 3.0:1 9.2:1 4.2:1
Tab. 2: Size of System Change Model relative to Original System Model

It is notable that function-points and data-points come to a similar ratio although the two

methods are counting quite different model types. Function-points are counting data

flows whereas data-points are counting data-elements. Use case points are counting

paths and steps whereas object-points are counting data-groups. Object-points are more

difficult to identify at the requirement level as data groups are not always explicitly

defined. Thus the ratio of 4.2 to 1 deviates somewhat from the ratios of 3.0 and 3.4 to 1.

Object-Points are more easily countable at the design level where the data structures are

closer to the implementation in a programming language with well-defined model types

such as packages, modules, classes, interfaces and methods. The use-case point count

deviates significantly from the other counts. This is because there are only 20 use cases

which can be assigned specifically to the security subsystem. The other use cases which

118 Harry Sneed, Wolfgang Prentner

pass thru the security subsystem actually belong to other subsystems.

Unfortunately a requirement model is by definition fuzzy. The size counts cannot be

more precise than the requirement text. If the text is inexact, inconsistent and

incomplete the model extracted from that text will also be inexact, inconsistent and

incomplete. The point to be made here is that even fuzzy, informal and imprecise

requirement specifications can be captured in a requirement model and that this model

can be used to measure the approximate size of the software to be developed. The

question is whether it is better than nothing at all. Here an attempt was made to capture

the size of the planned change relative to the system as a whole using fuzzy size metrics

[Cohn06].

5 Estimating absolute Costs of System Enhancement

An alternative approach to estimating the costs of enhancing the security system is to

convert the requirement size metrics into effort based on a benchmark productivity

table. Such a benchmark table was provided by the David Consulting Company for

users in the USA [BuDe08]. Here one can see that productivity varies between 9 und
25 Function-Points per person month. This range coincides with the productivity
of the GEOS Project in Vienna where the developers produced an average of 1,1
Function-Points per work-day [SnHa05].

 Projektart Produktivität

Client/Server Entwicklung 17 Function-Points pro PM

Mainframe Weiterentwicklung 13 Function-Points pro PM

Websystementwicklung 25 Function-Points pro PM

E-Business Systementwicklung 15 Function-Points pro PM

Standard-Softwareentwicklung 18 Function-Points pro PM

Data Warehouse Entwicklung 9 Function-Points pro PM

Tab. 3: Function-Point Productivity in the USA

Every software development organization should have its own productivity table of past

projects giving the relation of requirement size metrics to the effort required to

implement them. From this table the organization can project the effort required for

future projects by matching the sizes. If it took n person months to implement m

function-points in the past, it can be assumed that it will take a similar effort to

implement m function-points in the future. Deviations can be traced to different

influence factors which are included in the cost calculation. This is the standard

approach to converting function-points into effort as propagated in the literature since

Model-based Cost Estimation 119

1983. The tool used for converting function-points into effort was SoftCalc, a tool

originally developed by the first author in 1990 [DuFo96].

SoftCalc does not assume a linear relation between points and effort. On the contrary,

there is a separate productivity table for each estimation method in which the relation of

points to person-months is recorded. It is via this table that the point count is related to

the effort as shown in the following table.

Project

 Type

Project

Technology

Project

Subject

Nr

Units

Person

Months

 Units

perPM

Total Costs

(in €)

Redevelop 4GL-Synon Logistic 32.383 1200 30 16.000.000

Reimple Object Transport 12.067 694 17 11.104.000

Reimple Object Public 9.298 270 34 4.330.498

Redevelop Procedural Payroll 17.898 520 34 6.240.000

Convert Cob2Java Insurance 31122 513 60 615.600

Tab. 4: Function-Point Productivity in Austria

For the security system extension 1134 function-points were counted in the new

requirement model. Based on the productivity from the original system, this amounted

to 72 person months. Adjusting this raw estimate by the

• Influence, resource, risk and overhead factors

lead to a final effort estimation of 88,6 person months for the proposed system

enhancement. The influence factors used here are those proposed by the IFPUG

convention plus those added later on by the OMG.

• data communication (original IFPUG)

• system type (has been added)

• system performance (original IFPUG)

• multi mandate (has been added)

• transaction rate (original IFPUG)

• product reliability (has been added)

• product usability (original IFPUG)

• business criticality (has been added)

• process complexity (original IFPUG)

• system reusability (original IFPUG)

• migration necessity (original IFPUG)

• system security (has been added)

• installation multiplicity (original IFPUG)

• system adaptability (original IFPUG)

120 Harry Sneed, Wolfgang Prentner

Sample 7: Absolute Function-Point Estimation

The absolute estimation by data-point converted the 4971 data-points of the extended

requirement model to 56 person months which were then adjusted to 61,4 PMs by the

data-point influence-factors and the project overhead. The 10 data–point influences were

defined by Sneed in the original data-point paper.

Sample 8: Absolute Data-Point Estimation

Model-based Cost Estimation 121

6 Estimating relative Costs of System Enhancement

The final step in estimating the costs of the security system enhancement was to

compare the absolute effort estimation with the relative effort estimation and to

reconcile the two estimations with one another. The absolute effort estimation obtained

by joining the actual function-point count of the new requirement model with the

current function-point productivity table was 88.6 person months. The relative effort

estimation obtained by comparing the size of the extended function model with the size

of the original function model was 85 person months, almost exactly the same as with

the absolute effort estimation of 86.5 person months. The absolute effort estimation with

the current data-point productivity table was 61.4 person months. The relative effort

obtained by comparing the extended data model with the original data model was 94

person months, a difference of 50% to the absolute cost estimation. This indicates that

for this particular requirement document the function-point estimation is more reliable.

7 Justifying the Costs of model-based Estimation

It cannot be denied that this estimation could have been done with less cost.

Constructing a requirement model just to estimate enhancement costs is indeed

somewhat extravagance. Therefore, the total effort of 32 person days (18 PDs for

marking up the original requirement document + 4 PDs for marking up the new

requirement document + 8 PDs for adjusting the analysis tools + 2 PDs for summarizing

and reporting the results). An expert on Java programming with experience in

developing security software might have read through the requirements and come to a

conclusion on the costs within a day. On the other hand, such an estimate cannot be

readily explained. There are neither facts nor numbers behind it. It is based on intuition

and human judgement. For smaller projects it may work. The requirement document

here is too big and too complex for an average developer. He or she needs a model to

structure their thoughts and to make meaningful associations. Besides the requirement

model provides other advantages above and beyond cost estimation. Sizing a system is

only one reason for modelling. There are several other reasons such as establishing a

baseline to trace requirements through a finished system.

8 Comparing estimated with actual Costs

All papers on cost estimation are confronted with the demand to compare the estimated

costs with the actual costs. This author would be more than glad to satisfy that demand

but there are two major barriers to overcome. One barrier is that of timing. In the case of

large scale projects like this one there is a major time gap between the time the project

is estimated and the time it is completed. This project is still pending, meaning it has yet

to start. Therefore, there is no data to compare. The purpose of the estimation project

was to collect data on whether the project would be feasible. The calculated data was

122 Harry Sneed, Wolfgang Prentner

compared with the costs projected by the responsible health department managers.

When they perceived that the effort calculated was within plus/minus 20% of what they

projected they were satisfied. The cost estimation had served their purpose.

What could have been done was to transpose the costs of developing the current system

to the planned new subsystem based on the ratio of their sizes. According to a

comparison of the two requirement models, the new system should cost circa 1/3 of the

original system as a whole. If the original system had taken 240 person months to

development then the new subsystem would take at least 80 person months, provided

the same persons are working on the project. This is a good example of cost estimation

by analogy [ShSc97]. But then follows the other barrier.

The other barrier is that of organizational confidentiality. No organization is particularly

open about their development costs, their productivity and their product quality. These

topics are highly sensitive. In this respect industry is more secretive than the military.

Thus, even if the project had been completed it would still be very difficult to get data

on the accumulated costs. Managers are concerned that the data will in some way be

used against them. For this reason project consultants are obliged to sign several non-

disclosure agreements before they are allowed to take part in a project. Unfortunately,

this also applies to projects in the public domain like this one.

9 Conclusions and further Work

The effort estimation of a system enhancement project reported on in this paper shows

how difficult it is to predict the costs of evolution projects on the basis of fuzzy

requirement specifications. The estimators were confronted with two fuzzy requirement

documents – one for the existing security system and one for the proposed security

system. One solution might have been to measure the size of the existing code, which

was actually done, and to match the code metrics to the actual costs. Then one might

have guessed how much less the system extension is compared to the original system.

As measured here by comparing the two requirement models, it was 1/3 of the original

system. Then it should cost no more than 1/3 of what the original system had cost.

Unfortunately, you cannot compare an informal model with a formal one. They simply

do not match, especially if they are at different semantic levels. At the code and for the

most part at the design level, the model entity types are of a technical nature, e.g.

modules, procedures, tables and files. At the requirement level model entity types are

more of a business nature, e.g. business processes, use cases, business rules, logical

entities, data attributes and business interfaces. In some cases they may match to

corresponding technical model types. In many cases they do not match. The reason for

having two models is that there are two classes of users – business users and technical

users, each with their own language. They could in fact be united, only business-

oriented persons insist on speaking their own language. So the IT world remains divided

with all the consequences that go along with a divided world – redundancy,

inconsistency and lack of traceability [Parn77].

Model-based Cost Estimation 123

Bibliography

[AB00] Abran,A.; Khelifi,A.; Buglione,L.: A System of Reference for Software Measurement

with ISO 19761 (COSMIC FFP) in: Abran: Software Measurement – Research and

Application, Shaker Publ., Aachen, 2004, pp. 89-108

[Anda01] Anda, B.: Comparing Effort Estimates based on Use-Case Points with Expert Estimates,

Proc. of IEEE ICSE 2001, Computer Society Press, Toronto, Oct. 2001, S. 218

[Bria17] Briand, L.: “Analyzing Natural Language Requirements – The not too sexy but

curiously difficult research that industry needs“, 23rd Int. Conference on Requirements

Engineering, Foundation for Software Quality, LNCS 10153, Springer, 2017, p. 131

[BuDe08] Bundschuh, M./ Dekkers, C.: The IT Measurement Compendium, Springer Verlag,

Berlin, 2008

[CMPB05] Chen, Z.; Menzies,T.; Port, D.; Boehm, B.: „Finding the right Data for Software Cost

Modelling“, IEEE Software, Nov. 2005, p. 38

[ChGa01] Chechik, M.; Gannon, J.: „Automatic Analysis of Consistency between Requirements

and Designs“, IEEE Trans. on S.E., Vol. 27, Nr. 7, July 2001, p. 651.

[Cohn06] Cohn, M.: Agile Estimating and Planning, Prentice-Hall, Upper Saddle River, N.J.,

2006, p. 35

[DuFo96] Dumke, R.; Foltin, E.: Softwarequalität durch Meßtools, Vieweg Verlag, Wiesbaden,

1996, p. 97-104

[GDG06] Greevy, O.; Ducasse, S.; Girba, T.: “Analyzing Software Evolution through Feature

Views”, Journal of Sw Maintenance&Evolution, Vol. 18, No. 6, Dec. 2006, p. 425

[IFPG99] International Function-Point Users Group, Function-Point Counting Practices, Release

4.1, IFPUG, Westerville, Ohio, 1999

[Jantz08] Jantzen, K.: “Verfahren der Aufwandsschätzung für komplexe Softwareprojekte von

heute”, InformatikSpektrum, Band 31, Nr. 1, 2008, p. 35

[Karn93] Karner, G.: Metrics for Objectory, Master’s Thesis, University of Linköping, Sweden,

Nr. Lith-IDA-Ex-9344:21, Dez. 1993, p. 21

[Lefi11] Lefingwell, D.: Agile Software Requirements, Addison-Wesley, UpperSaddle River,

N.J., 2011, p. 258

[Mugr08] Mugridge, J.: „Managing Agile Project Requirements with StoryTest-driven

Development“, IEEE Software, Jan. 2008, p. 68

[Parn77] Parnas, D.: “The use of precise Specifications in the development of Software“, Proc. of

IFIP Congress-77, North-Holland, Amsterdam, 1977, p. 860

[Selb09] Selby, R.: „Analytics-driven Dashboards enable leading Indicators for Requirements

and Designs of Large-Scale Systems”, IEEE Software, Jan. 2009, p. 41

[Sned96] Sneed, H.: „Estimating the Development Costs of Object-oriented Software“, Proc. of

124 Harry Sneed, Wolfgang Prentner

7th European Software an Control Metrics Workshop, Wilmslow, GB, 1996, June

1996, p.135

[Sned05] Sneed, H.: “Reverse Engineering deutschsprachiger Fachkonzepte”, Software-Technik

Trends, Vol. 25, No. 2, May, 2005, p. 45

[Sned05b] Sneed, H.: Software Projektkalkulation–Praxiserprobte Methoden der

Aufwandsschätzung verschiedener Projektarten, Hanser Verlag, München, 2005, p. 41

[Sned10] Sneed, H.: „Vergleich zweier Aufwandsschäztungen nach Function-Point und UseCase

Point“, DASMA Metrikon2010, Shaker Verlag, Kaisersläutern, Nov. 2010, p. 52

[SnHa05] Sneed,H.; Hasitschka,M.; Teichmann,M.-T.: Software-Produktmanagement, dpunkt

Verlag, Heidelberg, 2005.

[SnPr18] Sneed,H.; Prentner, W.: ”Requirements Reengineering”, Objektspektrum, Nr. 6, Dec.

2018, p30

[ShSc97] Shepperd, M.; Schofield,C: “Estimating Software Project Effort using Analogies”, IEEE

Trans. on SE, Vol. 23, No. 12, Nov. 1997, p. 736

[Ster10] Sterling, C.: Managing Software Debt – Building for inevitable Change, Addison-

Wesley, Boston, 2011

