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Abstract: Software services offer many opportunities like reduced cost for IT infras-
tructure. They also introduce new risks, for example the clients lose control over their
data. While data can be secured against external threats using standard techniques,
the service providers themselves have to be trusted to ensure privacy. In this paper,
we examine methods that can increase the level of privacy a service offers without the
need to fully trust the service provider.
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1 Introduction

Due to advances in networking and virtualization technology, new paradigms of providing
IT infrastructure and software have emerged – among them the so-called Cloud Comput-
ing. The National Institute of Standards and Technology [NIS09] defines Cloud Comput-
ing as “a model for enabling convenient, on-demand network access to a shared pool of
computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction”. Cloud Computing enables clients to use Software as a Service and to out-
source their data, thus cutting the cost of maintaining an own computing center.

Inherent to Software as a Service, however, are privacy problems [Pea09, HHK+09]: By
using services, clients lose control over their data. The threat copy or misuse of the clients
data on the server exists and keeps many potential customers from using Cloud Computing
in critical or sensitive scenarios (e.g., scenarios comprising business secrets or customer
data). Current security mechanisms focus on protecting the data transfer to and from the
service provider.

Protecting a pure storage service against insider attacks is easy. Encrypting all data on the
client before uploading it to the server provides a sufficient level of protection based on the
used encryption [Bla93]. This, however, prevents the server from performing any mean-
ingful operation on the data. Hence, more complex services require advanced techniques
for providing privacy.

In this paper, we will examine techniques and methods that potentially can increase the se-
curity of services. In Section 2, we will describe the required properties of solutions. We
will examine different methods in Section 3 and evaluate them according to the require-
ments described in Section 2. We will examine and evaluate applications of these methods
in secure database outsourcing scenarios in Section 3.3. In Section 4, we will examine

159



potential candidates for formal security properties for services. Section 5 concludes.

2 Requirements

In this chapter we discuss the required properties of solutions for the privacy problems
inherent to most services. Basically, solutions for the presented problem should provide
provable security and practicability.

2.1 Requirement 1: Provable Security

Formal notions and proofs are provided for cryptographic methods. While providing secu-
rity in the sense of classical cryptography is infeasible for nontrivial services (e.g. services
more complex than pure storage services), solutions for the privacy problem described in
Section 1 should provide provable security. This means that we need a formalization of the
level of privacy provided. Furthermore, we need to prove that a solution provides this level
of privacy (fulfills the formal notion). For a database service such a weaker, yet probably
sufficient level of privacy may be that an adversary cannot learn the relations between the
attribute values.

2.2 Requirement 2: Practicability

There are cryptographic solutions for problems involving parties that do not fully trust
each other. In most cases, however, they are inapplicable due to their complexity. We strive
for solutions that are practical and do not cancel the benefits of outsourcing. Consider a
solution providing a high level of privacy, but due to its complexity it is more efficient to
execute the service on the client. It will be hard to convince customers to use such a service
even it provides privacy. Also the provided level of privacy has to be easy to understand,
since this is vital to the acceptance of the solution, too.

3 Methods to Enhance the Security of Services

There are methods from different fields, that potentially can enhance the security of ser-
vices. In this section, we will present methods from the field of software engineering and
cryptography. In the field of secure database outsourcing there are applications of these
methods. We will also present these applications in this section.
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3.1 Software Architecture

There are approaches that enhance the security of services by separating it, and deploying
the parts of different servers [HILM02, ABG+], assuming the servers do not cooperate
maliciously. There are two different ways to separate a service, namely serial and parallel
separation [Hub10]. For concrete services these separations have different performance
implications depending on the usage profile. In most cases, however, a particular sepa-
ration for itself does not yield security guarantees. Nevertheless, we believe a separation
of a service in combination with cryptographic methods can yield provable security with
feasible performance overhead.

3.2 Cryptographic Methods

Aside from encryption which is uses in many scenarios to prevent eavesdroppers from
learning the anything about the information sent over a channel, cryptography offers ad-
ditional methods and protocols to engage privacy and security issues. In the remainder of
this section, we will discuss these methods.

There are encryption schemes that produce ciphertexts with homomorphic properties:
Consider for example Textbook-RSA [RSA78]. Multiplying two ciphertexts and decrypt-
ing the result yields the same result as decrypting the two ciphertexts and multiplying the
plaintexts. However, Textbook-RSA is not considered secure [BJN00]. In 2009, Craig
Gentry discovered a fully homomorphic encryption that supports multiplication as well as
addition [Gen09], and theoretically solves our privacy problem for scenarios involvin only
one client: The client could simply use the proposed encryption scheme, and the service
provider could adapt its service to work on encrypted data using this scheme. However,
this is not feasible since the size of the key scales with the size of the circuit of the algo-
rithm which the service calculates. It is more efficient to execute the service on the client
than to use homomorphic encryption.

Secure Multiparty Computations [GMW87,CCD88] are cryptographic solutions for prob-
lems where two or more parties cooperatively want to compute a certain function over a
set of data without any party learning anything about the input of other parties except what
is learned by the output. The problem is that for each party, the computation cost is higher
than computing the whole function on the complete input without any other party. This
makes the concept of multiparty computation for outsourcing services too expensive and
in fact pointless if the client is the only one with private input.

There are methods to retrieve information from an outsourced database without the server
learning anything about the information queried [Gas04]. However, these methods are also
infeasible in most cases: If the database server must not learn anything about a query, the
query issued to the database must contain every cell. Otherwise the server learns which
cells do not contribute to the result of the query, and thus learns something about the result
set, if no special-purpose hardware is involved [KC04]. The need to iterate over every
cell for every query execution makes private information retrieval impractical. If for every
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query, the database service has to touch every cell, the service does not scale.

For many scenarios pure software solutions do not provide enough protection. It is be-
lieved, that hardware can be made more tamper resistant than software. Therefore many
solutions to security problems involving secrets incorporate dedicated hardware [DL07,
BS03]. Assuming the hardware can be trusted, there are solutions to security problems,
that are otherwise infeasible or impossible. In the context of secure service outsourcing,
the Trusted Computing approach [TCG] is very interesting. In theory a lightweight tamper
resistant piece of hardware the so-called trusted computing module can be used for en-
suring that the software running on the machine is certified. This, in principle, can solve
many problems such as software protection and digital rights management. This, however,
does not solve the problem of building a service that provides privacy for the clients data,
but the problem of verifying that the desired software is actually running on the server.

3.3 Approaches for Secure Database Outsourcing

Since many services rely on databases, the problem of secure database outsourcing emerged
early in 2002. Classical cryptographic notions are not applicable to encrypted databases
under practical constraints because in general it is infeasible to realize a database that
complies with these notions [KC04]. However, there are approaches that try to provide
some level of privacy. We believe that the methods developed in this context are the most
advanced ones that try to solve the privacy problem of outsourcing. Most of them com-
bine cryptography with special architectures in order to achieve a higher level of privacy.
They implicitly introduce an adapter deployed on the client, that encapsulates en- and
decryption as well as distribution of data according to the proposed approach. From an
architectural point of view, you can distinguish between two classes of approaches, which
we term coarse indices approach and distribution approach.

The idea of the coarse indices approach [HILM02, DVJ+03, CDV+05, HMT04, BBO07]
is to encrypt the database on a tuple level. In order to support efficient query processing
indices are created. These indices are coarse-grained. They contain keywords, ranges, or
other identifiers and encrypted row ids where the keywords occur in the database. In most
approaches, these indices are kept in the adapter. An adapter deployed on the client handles
query transformation and sorts out false positives. Figure 1 depicts the architecture of the
coarse indices approach. When issued a query, the adapter first queries the coarse-index
tables and decrypts the results. Then, it queries the encrypted database with the results
from the index tables and recieves encrypted tuples. These tuples potentially contain false
positives due to the coarse indices. The adapter decrypts these rows, sorts out the false
positives, and retuns an exact anwser to the clients query. Since the adapter handels (en-
and) decryption and query transformation, this is transparent to the client application. This
approach supports efficient execution of exact match and range queries. It is unclear,
however, what level of privacy this approach provide for realistic scenarios. Since we
need solutions that provide provable security (c.f. Section 2), these approaches for itself
are insufficient.
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Figure 1: The architecture of a secure outsourced database proposed for example in [HILM02,
DVJ+03]. The adapter provides and requires a standard SQL interface. The overall database service
consists of the database service on the server and the adapter on the client.

The idea of the distribution approach [ABG+,CdVF+] is to distribute the database to sev-
eral servers in order to fulfill previously defined privacy constraints. When these contraints
cannot be fulfilled, encryption can be used. A database is called secure, of all privacy con-
straints for this individual database are met. Consequently this approach does not provide
a general but rather a individual security guarantee. The classes of queries this approach
supports to execute efficiently depend on the chosen distribution scheme and encryption
methods used. In the worst case, it is either not possible to execute any class of queries
efficiently, or the approach does not provide provable security. Therefore this approach is
not a solution that fulfills out requirements (c.f. Section 2).

4 Anonymity Properties and Notions for Databases

In the previous section, we have seen different approaches that try to solve the secure
database outsourcing problem. They, however, either do not provide security guarantees,
or have strong assumptions about the input data or hardware, and are therefore not appli-
cable in most cases. In order to provably provide a service that provides privacy for its
clients data, we need a formalization of the level of privacy provided. In this section, we
will examine different anonymity and security notions for databases with respect to their
security and applicability to service outsourcing scenarios.

The anonymity properties k-anonymity, l-diversity, t-closeness and differential privacy are
motivated from privacy preserving database disclosure. In this scenario, a trusted instance
wants to disclose a database that contains data about people whose privacy must be pro-
tected. Therefore the database has to be transformed into a database fulfilling a particular
anonymity property (offline). In the case of differential privacy, the results of queries are
altered (online). Figure 2 depicts the architecture of the offline scenario of privacy preserv-
ing database disclosure, where an anonymizer transforms a database d into d′. Although,
these properties are originated from privacy preserving database disclosure outsourcing,
they might be applicable to secure database outsourcing.
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Figure 2: Offline scenario for privacy preserving database disclosure. An anonymizer transforms a
database d, and discloses the result d′. Clients then can query d′

4.1 k-anonymity, l-diversity, and t-closeness

In 2002, Latanya Sweeney [Swe02] defined the property k-anonymity. The intention of
k-anonymity is that any individual in the database can only be mapped to at least k rows.
Therefore attributes of datasets are classified into identifiers, so-called quasi-identifiers,
and sensitive information. A anonymized table must not contain attributes classified as
identifiers. The property k-anonymity is defined as follows:

Definition 1 k-anonymity
A database adheres k-anonymity if for each row, there are at least k − 1 other rows with
the same attribute values of the quasi-identifiers. Rows with the same attribute values of
their quasi-identifiers are called a equivalence class.

In order to achieve k-anonymity, attribute values can be generalized and rows can be sup-
pressed.

Different weaknesses of and attacks on k-anonymity have been identified [MKGV07]. So-
called Homogeneity Attacks as well as Background Knowledge Attack can be used to break
k-anonymity. If an attacker knows that a particular individual is in the disclosed database
and all sensitive information cells of the k corresponding rows have the same value (al-
ternatively: the attacker can rule out particular values by background knowledge), she can
infer information that intuitively should be protected by the property of k-anonymity. Con-
sider for example the table in Figure 3. This database adheres 2-anonymity. If an attacker
knows an individual that is 30 years old and lives in area code 3524 and knows that he is
in the database, she can infer that the individual has the flu.

Because these attacks the property of l-diversity [MKGV07] has been defined. l-diversity
constrains the attribute values of the sensitive information column in an equivalence class:

Definition 2 l-diversity
A database adheres l-diversity if in each equivalence class, there are at least l “well-
represented” values in the sensitive information column.

There are different interpretations of “well-represented” [MKGV07]. Although l-diversity
has been defined in order to eliminate homogeneity and background knowledge attacks,
they are still possible. For example if the used interpretation of “well-represented” does not
consider semantic similarities as for example “gastritis” and “stomach pain” (c.f. Figure 3).
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quasi-identifier sensitive information
age area code disease
15-34 352* flu
15-34 352* flu
35-40 345* gastritis
35-40 345* stomach pain

Figure 3: A medical database adhering 2-anonymity the attributes age and area code have been
generalized in order to achieve 2-anonymity.

Because of the weaknesses of l-diversity, t-closeness has been defined [LL07]:

Definition 3 t-closeness
An equivalence class is said to have t-closeness if the distance between the distribution of
a sensitive attribute in this class and the distribution of the attribute in the whole table is
no more than a threshold t. A table is said to have t-closeness if all equivalence classes
have t-closeness.

t-closeness shifts the problem of defining a resilient anonymity property to the problem
of finding a resilient distance measurement for distributions. Moreover, if t is small, the
table contains not more information than the distributions of attribute values, which is in
contrast to the initial intention of disclosing whole databases instead of just summaries.

4.2 General Problem of k-anonymity, l-diversity, and t-closeness

Besides the weaknesses and attacks described in Section 4.1, k-anonymity, l-diversity, and
t-closeness have another fundamental weakness.They describe the result of an anonymiza-
tion process, not the process itself. An attacker can, knowing the anonymization process,
learn information from the disclosed database that should intuitively not be learned from a
database adhering k-anonymity, l-diversity, or t-closeness. In the remainder of this section,
we will provide two examples. Consider for example the database depicted in Figure 4.
In general, a database has more than one versions adhering k-anonymity. Figure 5, for

name age area code disease
Alice 31 3524 flu
Bob 31 3456 flu
Carol 35 3524 gastritis
X 35 3456 stomach pain

Figure 4: A medical database

example, depics two versions of the database in Figure 4 adhering 2-anonymity.
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age area code disease
3* 3524 flu
3* 3456 flu
3* 3524 gastritis
3* 3456 stomach pain

(a)

age area code disease
31 3* flu
31 3* flu
35 3* gastritis
35 3* stomach pain

(b)

Figure 5: Databases adhering 2-anonymity derived from the table in Figure 4

Consider an anonymization process as follows. If “X” = “Eve”, disclose Table 5(a), other-
wise disclose Table 5(b). Now, although the results adhere 2-anonymity, an attacker learns
if Eve is in the database just by knowing the anonymization process and looking at which
attribute was generalized.

Consider as another example a database about a city comprised of three city parts A, B,
and C with 7, 9 and 20 inhabitants, respectively. The database consists of a quasi-identifier
the city part, and a binary sensitive information attribute p. Let the anonymization process
merge city parts as long as the database does not adhere 2-diversity and try to minimize
the number of merges. If all city parts are merged in the disclosed database, an attacker
can infer information based on the number of people with p according to the table in
Figure 6. Consider for example 8 people with p living in the city. If anybody in city part A

# people with property p information attacker can infer
1 (nothing to infer)
2 - 7 all inhabitants with p live in the same city part
8,9 nobody living in part A has p
10 - 15 all inhabitants with p live in part C
16 - 20 all inhabitants with p live in part C

or all inhabitants of A and B have p
21 (impossible)

Figure 6: Information an attacker can infer depending on the number of people with attribute p in
the disclosed database adhering 2-diversity.

had p and without loss of generality nobody in C had p the anonymization process would
have stopped after merging A and C. In the other case (people in B and C have p) the
anonymization process would have stopped immediately.

These examples show, that, knowing an anonymization process, an attacker can infer in-
formation that should be protected by l-diversity.
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4.3 differential privacy

In contrast to k-anonymity, l-diversity, and t-closeness that describe the result of the
anonymization process, differential privacy [Dwo06] describes the anonymization process
itself. This fixes the problem described in the previous section. The intention is to mini-
mize the risk of an individual joining a database. Formally, differential privacy is defined
as follows [Dwo08]:

Definition 4 differential privacy
A randomized function K gives ε-differential privacy if for all data sets D1 and D2 differ-
ing on at most one element and all S ⊆ Range(K):

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S]

Informal, this means that if a function adheres diffential privacy, the probability of getting
different results from data sets differing on at most one row should be less than a certain
threshold.

In practice this notion is achieved by adding noise to results. Therefore a trusted instance
called “curator” is placed between clients and the database (cf. Figure 7). The curator
forward the clients’ queries and adds noise according to assumptions about the universe of
all possible databases.

client curator d

q

K(q(d))

q

q(d)

Figure 7: An architecture for differential privacy. A trusted curator is placed between the clients and
the database d and transforms query results in order to achieve differential privacy

This is also the biggest drawback of this notion. In order to achieve differential privacy by
adding noise, you have to know every entity that possibly can be added to your database.

4.4 k-Ind-IPC

Another notion, that describes the anonymization process instead of the result is k-Ind-
IPC [HHK+10]. Intuitively, k-Ind-IPC hides relations within an equivalence class:

Definition 5 k-Ind-IPC
Let d and d′ be databases, where d’ can be gain by partitioning d into parts of at least k-
rows, permuting the attribute values indepentdently within each column and each part and
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uniting the resulting. A anonymization function f provides k-Ind-IPC if for all databases
d and d′. f(d) is indistinguishable from f(d′)

For a more formal definition please refer to [HHK+10].

Since this notion is motivated from secure database outsourcing, there are methods for
outsourcing databases that provide k-Ind-IPC [Hub10]. These methods combine the ap-
proaches presented in Section 3.3 and involve separating the database service, deploying
the parts on different servers and deploying an adapter on the client. Only a limited set
of queries, however, can be executed efficiently and, due to the separations of duties ap-
proach, different servers are needed.

5 Conclusion

In this paper, we presented methods that potentially can solve the privacy problems in-
herent to service outsourcing. We evaluated these methods with respect to performance
and provable security. Then, we presented approaches for secure database outsourcing,
that apply these methods. We have seen that thees approaches imply special architectures.
Most these concrete approaches do not provide a practical security guarantee. Therefore
we examined potential candidates for formalizations of security notions for outsourced
databases. Differential privacy and k-Ind-ICP seem viable candidates. Since differential
privacy, however, is originated from a different scenario, it is unclear how this notion can
be applied in a secure database outsourcing scenario.

For future work we want to examine how to build databases that provide k-Ind-ICP or
differential privacy, and what architectures these notions imply. We also want to examine if
and how differential privacy and k-Ind-ICP relate. This can lead to a better understanding
of these notions and also to new methods that support them.
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