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Detecting anomalies in BACnet network data

Jernej Tonejc1, Jaspreet Kaur2, Alexandra Kobekova3

Abstract: Over the last few years, the volume of data in the Building Automation System (BAS)
networks has increased exponentially. Nowadays, it is possible to obtain several kinds of data from
building networks such as data based on individual service type, specific building location and even
specific time of the day. As a consequence, large volumes of data with more variables have to be
considered when performing the data analysis. This means that there is a need to identify the most
important variables for analysis. In this paper, we introduce a framework which allows the character-
ization of BACnet network traffic data by means of machine learning techniques. This framework is
based on unsupervised machine learning methods, specifically, Principal Components Analysis and
Clustering. Such methods are used because of the large volume of data that needs to be taken into
consideration, preventing the manual labeling of the data which is required for supervised learning
methods. We show the efficiency and effectiveness of the framework in detecting anomalies by per-
forming experiments on different BACnet network traffic data, captured by Wireshark, together with
synthetically generated data.

Keywords: BACnet, data analysis, machine learning, flow mapping, unsupervised learning.

1 Introduction

Building Automation System (BAS) performs the monitoring and controlling of all the

electrical and mechanical equipment of a building, from lighting to HVAC to security

systems. The structure of BAS in a building is composed of an array of mechanical and

electrical devices. All the devices are connected to a central control station, usually a com-

puter, where BAS administrators can get an insight into the whole network. Different kinds

of data are sent across the BAS network, including the values when a piece of equipment

is turned on and off, change in value when some movement is detected in particular areas

of a building, change of temperature within the building spaces, change of temperature of

air or water within the mechanical systems, valve positions, etc.

Due to the continuous growth in BAS networks, huge amount of data is transferred through

such networks every day. Thus, it is becoming an issue for the BAS administrators to per-

form efficient data analysis on such a big amount of data. It is hard to identify correlations

and detect anomalies on such data traces and sometimes most of the anomalies go unde-

tected by the BAS administrators.

To this end, new efficient techniques capable of dealing with huge BAS network traffic

data need to be introduced. This work presents a framework which performs BAS traffic
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analysis by means of machine learning techniques. The framework is graphically depicted

in Fig. 1.
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Fig. 1: BAS network analysis framework. The main components of this framework are the real-

time analyzer and the normalizer. Both real-time network data and the captured data are converted

into an intermediate form (described in Sect. 3), which is then used to generate decision rules for

normalizer with the help of the machine learning methods (described in Sect. 4). This paper focuses

on the components within the dotted rectangle.

The main goal of this framework is to characterize the traffic data and detect anomalies.

Analysis is done on the BAS traffic captured by Wireshark, to differentiate between the

relevant traffic and the anomalies. Unsupervised machine learning techniques are used

because they are quite efficient in performing analysis on the large volume of network

data (and continuously expanding data due to addition of new devices in the network). We

consider the following methods: Principal Components Analysis (PCA), and Clustering.

These methods have proven to be quite useful in detecting anomalies and discovering

patterns while analyzing the network data from other network protocols [DD11].

The network traffic analysis is done on BACnet traffic data. BACnet protocol is one of the

data communication protocols used in BAS [ISO12] and has been implemented in prod-

ucts by more than 800 vendors worldwide. The framework supports analyzing prerecorded

data in pcap format, as well as live capture and on-the-fly analysis using a dedicated ana-

lyzer that outputs the live data in the intermediate format.

The rest of the paper is organized as follows. The related work is discussed in Sect. 2. Sec-

tion 3 explains the structure of BACnet/IP and the machine learning methods used in this

study. Section 4 describes the implementation details of machine learning methods along

with the flow classifiers. The obtained results are discussed in Sect. 5. The conclusions and

future work are presented in Sect. 6.

2 Related Work

Enormous amount of work has been devoted to the application of machine learning and

data mining techniques to solve the problem of network traffic analysis. In [NA08], au-

thors present a survey on the application of machine learning techniques for internet traffic

classification. Several surveys of anomaly detection methods exist, for example, [C+09].

Researchers have experimented with both supervised learning and unsupervised learning

methods because network traffic analysis is rather a broad domain. Some examples of
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supervised learning methods to classify network traffic data include Naive Bayesian clas-

sifiers [MZ05], and Bayesian neural networks [A+07]. These methods are capable of

performing the analysis on a very large set of data but require previous knowledge of the

application domain.

Instead, we use unsupervised machine learning methods in our work which can easily

identify new anomalies. Unlike supervised learning methods, these techniques do not de-

pend on labelled training data. These approaches are quite simple and effective in sup-

porting the network traffic data analysis. Our analysis mechanism for BAS network traffic

data describes the network behavior in a way that enables an extraction of a set of rules.

The rules support the administrator to efficiently identify relevant and irrelevant commu-

nication among the BAS traffic data. The unsupervised learning methods also have some

drawbacks compared to the supervised methods, for example, they generally produce more

false positives, and can limit the performance of some specific tasks because of the use of

general notions. Some examples of unsupervised learning methods for network traffic data

analysis include Clustering algorithms [E+06], Random Forests [DD11], One-Class SVM

[DD11] etc.

In another work [M+14], the authors present a comparison of different machine learning

methods like Conditional Restricted Boltzmann Machine (CRBM), Artificial Neural Net-

works (ANNs), and Hidden Markov Models (HMMs) for estimating energy consumption

in the buildings. They showed the evaluation of performance of CRBM in the context of

building automation systems and proved that CRBM outperforms ANNs and HMMs.

In [P+14], authors propose an anomaly-based intrusion detection system for BACnet/IP

networks using Repeated Incremental Pruning to Produce Error Reduction (RIPPER) as a

learning method. The features used for learning are similar to the features we use in our

methods, however, the algorithm is a supervised learning algorithm and requires the input

data to be tagged, and as such, it is less capable of detecting new or unknown types of

anomalies.

3 Structure of BACnet/IP data

This section briefly describes the structure of the BACnet/IP network data and introduces

the machine learning methods that we use to analyze the data.

3.1 Data selection and processing

In the case of BACnet/IP data over Ethernet, the data is encapsulated in User Datagram

Protocol (UDP) layer. Each packet contains communication and control values. An impor-

tant feature of BACnet networks is the requirement that there exists a unique message path

between any two nodes on an interconnected BACnet network [ISO12]. One can there-

fore speak of flows between BACnet devices, and each flow is defined by the BACnet

addresses of the communicating devices. As shown in Fig. 1, the data can either come
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from real-time capture or from a prerecorded data. The prerecorded data is captured using

Wireshark and stored in a raw pcap format. In order to convert the raw data into the

intermediate format, a fair amount of preprocessing is needed. In case of real-time capture

and processing, a dedicated traffic analyzer outputs the data directly in the intermediate

format. Figure 2 shows the structure of a typical BACnet/IP packet.
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Fig. 2: BACnet/IP data is contained within the UDP datagram as a BACnet Virtual Link Layer

(BVLL), which contains the Network layer Protocol Data Unit (NPDU) and the Application layer

Protocol Data Unit (APDU) with data.

For a detailed explanation of the structure of NPDU and APDU, we refer the reader to

[K+15]. For our analysis we chose the same fields as were suggested in [T+15]. For the

sake of completeness, we list the fields in Fig. 3, grouped by the layer in which they appear.

The fields that are present in every valid BACnet/IP packet are shown in bold.
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Fig. 3: The fields as features, organized by the layers in which they are present. In addition to the

above fields, a timestamp is recorded for each packet (both in recorded pcap data as well as during

the real-time analysis), bringing the total number of features per packet to 40.

BACnet packets do not have a fixed structure, as the presence of many fields depends

on the values of various control bits and fields. For example, the APDU fields Service

Choice, Unconfirmed Service Choice, Error Choice, Reject Reason and Abort Reason are

never present at the same time, as each exists only for a specific value of the PDU Type

field. We simply use the value zero for the missing fields.

The selected fields contain all the essential features of each BACnet/IP packet. Before we

can use the network data in machine learning methods, we need to process it. The purpose

of processing the network data is twofold:

1. to prepare the data for subsequent machine learning analysis, and

2. to aggregate and export the data in a form suitable for visualizing the flows and

creating the model for the flow-based anomaly detection.
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All of the fields in BACnet/IP data have a natural representation as unsigned integers. We

perform only the following processing. We split the MAC addresses into the Organiza-

tionally Unique Identifier part and the vendor-specific identifier, each using three bytes of

the MAC address, and encoded as 32-bit integers. The IP addresses are encoded as four

8-bit integers to reflect the natural structure of IP-based networks. The BACnet source and

destination addresses could be up to 7 bytes long, so we encode them using 64-bit integers.

In case of a malformed packet with address longer than 8 bytes we truncate the value to 64

bits. There is no loss of information for valid packets and the anomalies in addresses can

still be detected as the value of the address length field falls outside the valid range. These

preprocessing steps convert the 40 features into 48 numerical columns.

Due to completely different scales of data in various fields, e.g., the values for valid BAC-

net addresses could vary from 0 to 72057594037927935, for Hop count from 0 to 255

and for Indication from 0 to 1, we need to normalize the values, as some of the machine

learning methods rely on Euclidean distance between the data points. In particular, PCA

and distance-based clustering methods are affected by disproportionate scale for different

features.

3.2 Machine learning methods

In order to detect new and unknown traffic anomalies, we need to use unsupervised ma-

chine learning methods, as the sheer volume of data prevents any manual tagging of

individual packets. There are various machine learning methods that are well-suited for

anomaly detection in the network traffic [C+09, DD11]. In this paper, we focused on the

following:

1. Clustering methods. We focus on the distance-based clustering methods, in particu-

lar, k-means and expectation maximization (EM). In k-means, the data is partitioned

into k clusters, such that a point in a given cluster is closer to that cluster’s centroid

than to any other cluster’s centroid. For EM, one first needs a probabilistic model,

for which the parameters need to be estimated. The parameters are then determined

in such a way as to maximize the expectation of the log likelihood.

2. Principal Component Analysis. Each packet is treated as a point in a 48-dimensional

space. The objective is to project the data on a lower dimensional space, retaining

as much variance as possible.

The principal component analysis was used as a preprocessing step before the clustering.

The clustering methods were used as a classifier, where the small enough clusters were

marked as anomalous.

3.3 Network flows

The communication in BACnet can either be a direct communication between two de-

vices or a broadcast message (local, remote or global). The broadcast messages can be
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viewed as communication with a special device and are simply treated the same way as

other communication in our analysis. The flows can be defined in terms of the source and

destination MAC addresses, source and destination IP addresses or source and destination

BACnet addresses. Different underlying structures of the BACnet network are revealed

when using different flow definitions. For each such flow, a multidimensional statistical

model is constructed to characterize the types of messages and their probabilities of occur-

rence, as well as to determine the expected packet sizes. Due to the mostly static nature of

the building automation networks, such flow maps enable efficient anomaly detection. For

the flow-based anomaly detection to work we need to make sure we can map the network

when no anomalies are present, to obtain the base state of the network. The anomalies can

later be detected using analytic methods, where we directly compare the current flow map

with the original one, as well as the statistical properties of the individual flows, such as

the message type probability distribution, and the packet frequency based on the flow and

message type.

4 Implementation Details

In this section, we describe the details of the implementation, together with the data

sources that were used to train and test our methods.

4.1 Data sources

As mentioned in Sect. 3, the pcap data needs to be processed to make it accessible to

the machine learning methods. The preprocessing was implemented in C for efficiency

reasons, following the BACnet standard [ISO12]. The result of the preprocessing is the

intermediate format, which is simply a CSV-file with 48 columns. The same format is used

when analyzing the packets in real time. For certain machine learning methods, namely k-

means, EM and PCA, we also scale the data in each columns so as to make the values in

that column lie between 0 and 1.

We use two types of sources for training and evaluating our methods. The first source is our

BAS lab, which contains several BACnet devices. The traffic is recorded using Wireshark

on a PC which is connected to the mirror port of a local switch. We recorded two days

worth of traffic. On the first day, only the normal behavior of the lab was present, i.e., no

deliberate anomalies were introduced. On the second day, we performed several scans of

the BACnet network using a free demo version of a tool called BACeye. The two pcap

files contain about 1.2 million BACnet packets each. The preprocessing step took about 6

seconds in total. The amount and variety of data is limited due to the small size of our BAS

lab. For comparison, the number of packets that we observed in a large university network

is about 16 million per day, or about ten times more than in our lab setup, so the lab setup

is a relatively good approximation of an actual building automation network.

The second source of data is a set of artificially generated intermediate format files. As a

basis we take the traffic recordings from our lab for a different day, then add various levels
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of synthetically generated anomalous traffic. The proportion of the anomalous traffic is

0.1%, 0.5%, 1% and 2%, with anomalous records either bunched up or roughly uniformly

dispersed throughout the files (this affects the timing information of those packets). We

analyzed the attacks in [K+15] and based our anomalies on the following possible attacks:

• Covert channels using different message types to convey information (CCM)

• Covert channels using reserved bits (CCR)

• Using APDU service choices for writing properties or modifying objects (WP)

• Using incorrect bit combinations and strange values for BACnet address lengths (IB)

We generated 100,000 records for each combination, for a total of 33 (=1+2×4×4) files,

including the file without modifications.

4.2 Implementation of machine learning methods and validation

The analysis of the network data was done after the preprocessing step. For the machine

learning methods, we extracted all 40 listed features from each BACnet/IP packet, per-

formed the preprocessing steps as indicated in Sect. 3 and obtained a 48-dimensional vec-

tor. We then used Weka [H+09] to perform the selected machine learning algorithms. We

performed the algorithms on large enough traffic recordings to capture the typical network

behavior. Later, we check for each additional packet how well it fits into the model that was

learned. This allows us to detect anomalies in the traffic as they do not fit the parameters

that were extracted from the sample data. For the learning to be successful, the training

data really needs to be representative, otherwise too many false positives are detected.

The data was split into a training set and a testing set. For the lab data we split it into

100,000-line chunks, then trained the algorithms on a randomly selected 66% of the data

in one chunk, performed validation on the remaining 34% of the same chunk and then

tested the remaining chunks. For the synthetically generated data, we performed the same

66%–34% training/validation split on the file with 1% of anomalous data, then tested the

files with different proportions of anomalous data. In addition, we combined the 1% files

with all the different types of anomalies and trained the methods on that (with the same

training/validation split), then tested all the individual files to evaluate the ability of the

so-trained methods to detect various anomalies.

We performed the following machine learning algorithms:

• k-means with k = 5 (km5) and k = 10 (km10) clusters

• EM clustering with k = 5 (EM5) and k = 10 (EM10) clusters

• PCA, followed by k-means with k = 5 (Pkm5) and k = 10 (Pkm10) clusters

• PCA, followed by EM clustering with k = 5 (PEM5) and k = 10 (PEM10) clusters
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As stated in Sect. 3, we used the clustering methods as classifier, where we marked every

cluster smaller than 2% of the total data as anomalous. This was based on the assumption

that at most 2% of the data is anomalous. This can potentially lead to many false positive

results if the number of clusters is too large, since the non-anomalous clusters also get

smaller as the total number of clusters increases.

To evaluate the quality of the chosen machine learning methods, we used the standard qual-

ity measures, such as sensitivity, specificity, precision, accuracy and the F1-score, derived

from the confusion matrix

Packet is anomalous Packet is normal

Packet predicted anomalous TP FP

Packet predicted normal FN TN

where TP denotes the true positives, TN true negatives, FP false positives, and FN false

negatives. The sum of all four quantities equals the number of the analyzed packets.

The F1 score is the harmonic mean of the sensitivity and precision and given the expected

nature of the anomalous data, we expect that the accuracy does not say much about the

quality of the machine learning methods. Therefore we use the specificity (SPC) and the

F1 score, together with the Matthews correlation coefficient, which is considered one of

the best measures for two-class classification [Pow11]. The three measures can can be

computed directly from the above confusion matrix as

SPC =
TN

FP +TN

, F1 =
2TP

2TP +FP +FN

, MCC =
TPTN −FNFP

√

(TP +FN)(TP +FP)(TN +FN)(TN +FP)
.

4.3 Analyzing the flow data

As mentioned in Sect. 3, when analyzing the flows, the packets can be grouped based on

their source and destination addresses. Additionally, the packets can be split into two sets:

packets without APDU (these are network layer messages) and packets with APDU. These

two sets give rise to the network-layer flows and application-layer flows. Each device

that sent or received a message represents a node in a directed weighted flow graph. The

nodes can be identified using their MAC addresses, their IP addresses or their BACnet

addresses. The directed edges of the graph are the flows. Different choices of the node

identifiers and types of flows give rise to several different flow graphs for the same packet

recording. Additionally, we can assign weights to the edges based on various features,

for example, normalized total number of messages in that particular flow, total number of

bytes exchanged, the inverse of the average inter-packet arrival time, etc. The graph data is

exported as Graph Exchange XML Format (GEXF), as well as Javascript Object Notation

(JSON) format.

We can learn the normal state of the BAS network by analyzing the data for which we

know there are no anomalies. Later, we can perform anomaly detection by comparing the
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current flow graphs with the saved ones. We visualize the flow graphs and the differences

using the Javascript framework D3.js. In addition to comparing the differences between the

flow graphs, we also run a community detection algorithm on each graph. The algorithm

used is from [B+08]. It attempts to maximize the modularity Q of the graph, defined as

Q =
1

M
∑
i, j

[

Ai j −
kik j

M

]

δ (ci,c j),

where Ai j is the weight of the edge between nodes i and j, ki is the sum of the weights on

the outgoing edges at node i, ci is the community to which node i is assigned, M is the sum

of all weights of all edges and δ is the standard Kronecker δ -function. The algorithm starts

with each node in its own community and proceeds iteratively by assigning a node to the

community that maximizes the increase of the modularity at each step. When assigning

the weights to the edges it is important to normalize them to take into account the specifics

of BAS, as there is usually more activity during business hours as compared to the night

or weekend.

5 Results

In this section, we present the results of the various analyses that were performed on the

data.

5.1 Evaluation of machine learning methods

As stated in Sect. 4, we use the standard quality measures for machine learning methods,

together with the Matthews correlation coefficient. The results for various methods are

presented in Tab. 1. Due to the space constraints, only a subset of the results is shown.

The results for 10 clusters were not significantly better in any case and in some cases

(specifically, PEM10), the results were actually worse since some small clusters with non-

anomalous data were classified as anomalous, increasing the number of false positives.

When training with one type of an attack, only the results of testing against the data with

0.1% of anomalies are shown. The results for 0.5%, 1% and 2% are generally better. When

training against all the attacks at once, the results for 0.1% and 2% are given.

Since we know what kind of anomalies were introduced into the data, we are able to

compute the values of the confusion matrix. We expect that the methods perform similarly

when applied to the data for which the anomalies are truly unknown. For all the data sets,

between 1 and 3 clusters were marked as anomalous, with 2 clusters (out of 5) in majority

of the cases. For k-means, the training step took less than 3 seconds in all cases, for both

k = 5 and k = 10. For EM, the training took about 40 seconds for k = 5 and about 80

seconds for k = 10, for each dataset. When combined with the PCA, the training for EM

took 3, respectively 12 seconds. Testing was in all cases fast. When using PCA, we always

took the first three principal directions, covering about 70–80% of the variance. From the

table it is clear that by far the best method is k-means with k = 5, preceded by PCA. The
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Algorithm Train set Test set MCC Specificity F1 score

km5 IB IB-0.1% 1.0 1.0 1.0

WP WP-0.1% 0.9284 0.9998 0.9259

CCM CCM-0.1% 0.8908 0.9997 0.885

CCR CCR-0.1% 1.0 1.0 1.0

AA IB-0.1% 0.9284 0.9998 0.9259

IB-2% 0.9959 0.9998 0.996

WP-0.1% 0.9284 0.9998 0.9259

WP-2% 0.9962 0.9998 0.9963

CCM-0.1% 0.9284 0.9998 0.9259

CCM-2% 0.9959 0.9998 0.996

CCR-0.1% 0.9284 0.9998 0.9259

CCR-2% 0.9959 0.9998 0.996

BACeye BACeye 0.9912 0.9998 0.9912

no-BACeye — 0.9998 0.0

EM5 IB IB-0.1% 0.245 0.9985 0.2357

WP WP-0.1% 0.6265 0.9998 0.6215

CCM CCM-0.1% 0.8511 0.9996 0.8403

CCR CCR-0.1% 0.8511 0.9996 0.8403

AA IB-0.1% 0.8157 0.9998 0.8155

IB-2% 0.8884 0.9998 0.8856

WP-0.1% 0.8999 0.9998 0.8959

WP-2% 0.9818 0.9998 0.9821

CCM-0.1% 0.533 0.9998 0.5212

CCM-2% 0.7078 0.9998 0.6763

CCR-0.1% 0.6042 0.9998 0.5977

CCR-2% 0.7 0.9998 0.6664

BACeye BACeye 0.9225 0.9985 0.9202

no-BACeye — 0.9986 0.0

Pkm5 IB IB-0.1% 0.9284 0.9998 0.9259

WP WP-0.1% 0.9284 0.9998 0.9259

CCM CCM-0.1% 0.9284 0.9998 0.9259

CCR CCR-0.1% 0.9284 0.9998 0.9259

AA IB-0.1% 1.0 1.0 1.0

IB-2% 1.0 1.0 1.0

WP-0.1% 1.0 1.0 1.0

WP-2% 1.0 1.0 1.0

CCM-0.1% 1.0 1.0 1.0

CCM-2% 1.0 1.0 1.0

CCR-0.1% 1.0 1.0 1.0

CCR-2% 1.0 1.0 1.0

BACeye BACeye 0.9933 0.9999 0.9934

no-BACeye — 0.9999 0.0

PEM5 IB IB-0.1% 0.8511 0.9996 0.8403

WP WP-0.1% 0.8908 0.9997 0.885

CCM CCM-0.1% 0.8908 0.9997 0.885

CCR CCR-0.1% 0.8908 0.9997 0.885

AA IB-0.1% 0.8573 0.9996 0.8475

IB-2% 0.9909 0.9996 0.9911

WP-0.1% 0.8573 0.9996 0.8475

WP-2% 0.9912 0.9996 0.9913

CCM-0.1% 0.8573 0.9996 0.8475

CCM-2% 0.9914 0.9997 0.9916

CCR-0.1% 0.8573 0.9996 0.8475

CCR-2% 0.9917 0.9997 0.9918

BACeye BACeye 0.9825 0.9997 0.9825

no-BACeye — 0.9996 0.0

Tab. 1: The quality measures for the various machine learning algorithms. The methods and data sets

are defined in Sect. 4. AA stands for All Attack types. Since no-BACeye test data contains no true

positives or false negatives, the Matthews coefficient cannot be computed in this case.
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best results were obtained when the classifier was trained on all the attack types at once.

The cluster centers that are obtained in the training step can later be used for real-time

analysis of each incoming packet.

5.2 Visualization of the flow data

In addition to detecting anomalies using machine learning methods, we can detect anoma-

lies by constructing directed flow graphs and running the community detection algorithm

on the graph, in order to obtain the large-scale structure of the graph. Figure 4 shows the

difference between the flow graph of a network without anomalies (left) and the flow graph

when the program BACeye is run at some point in time (right). The anomalies are detected

and marked automatically by comparing the current flow graph with the original one. We

compare the nodes, the edges, and the statistical properties of each edge that appears in

both flow graphs.

Fig. 4: Flow graph of a network without anomalies (left) and with anomalies introduced by running

the program BACeye. Clearly visible are the new nodes, new flows, and the change in size of the

existing nodes.

6 Conclusions and Future Work

We have shown that machine learning methods can be effective in detecting BAS network

traffic anomalies. In addition, the communication flows have natural structure that lends

itself to an efficient probabilistic description, which simplifies the detection of anomalies.

Combined with dynamic visualization techniques, it enables the operators of BAS to detect

anomalies early and act accordingly.

We focused on the following unsupervised machine learning methods: k-means and ex-

pectation maximization, both with or without a preceding principal component analysis.

There are other algorithms that could also be used, for example one-class support vector

machine, random forests, density-based clustering algorithms like CLIQUE and MAFIA,

self-organizing maps using artificial neural networks, as well as a whole class of super-

vised and semi-supervised methods, for example k-nearest neighbor, Kalman filters, and

Bayesian networks among others.

The selected features mostly come from the header values of the packets in our analysis,

i.e., they primarily reflect the structure of the network and the kinds of communication
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and not so much the actual application data. We intend to include more features from

the application level in the future, in order to detect anomalies in the performance of

the hardware controlled by the BAS and not just the communication anomalies. This is

important when trying to detect and thwart more sophisticated cyberattacks, where the

attackers try to affect the BAS hardware.

Our plan is to test the developed methods on real-life traffic recordings, and to expand

our test setup to include more devices with a more diverse set of anomalies. We also plan

to implement the decision rule extraction in a way that can be directly used in a real-

time traffic normalizer. Both flow-based rules and machine learning-based rules will be

extracted.
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