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Introduction
Computer algebra (CA) techniques are now widely

used in scientific research. In the area of theoretical
physics and particularly high-energy physics, the stan-
dard mathematical formalism is largely based on tensor
algebra and substantial part of analytical calculations
consist of algebraic manipulations with abstract tensors
(or more generally, objects with indices). From the stand-
point of CA, the main distinctive feature of tensorial
expressions arises from the presence of dummy indices
(summation indices): contractions between these indices
form a graph of multipliers, instead of a simple list of
multipliers in case of ordinary non-tensorial expressions.
For illustration consider the following tensors, where the
Einstein convention holds (implied summation over re-
peated indices) and for the sake of simplicity we assume
that both Tabcd and Tabc are fully symmetric and don’t
distinguish co- and contravariant indices:

Tabmj Tdefi Tabc Tcdj Tinm Tefn (11a)
Tmnij Tebfa Tmic Tadb Tdne Tfcj (11b)
Tabmj Tdefi Tabc Tcef Tinm Tdjn (11c)

One can prove that tensors (11a) and (11b) are equal
while (11c) is different. This can be directly observed
from the graph representation of the expressions (Fig. 4):
each multiplier T corresponds to a graph vertex and in-
dex contraction between two T ’s to a graph edge between
the corresponding vertices.

Figure 4: Graph representation of expressions (11a),
(11b) (left) and (11c) (right). Vertices correspond to
multipliers T and edges (lines) indicate index
contractions.

From this perspective it is clear that testing whether
two tensorial expressions are equal is in general at least
as hard as testing whether corresponding graphs are iso-
morphic (graph isomorphism (GI) problem).

In most practical cases in physics we rarely deal
with completely symmetric tensors: usually, tensors have
sophisticated permutational symmetries or do not have
symmetries at all. In the latter case the problem of tensor
comparison (matching) can be significantly simplified:
each dummy index has a distinctive property – an un-
ordered pair (µ, ν) where µ, ν are the positions of the
dummy index within the indices of the multipliers (for
example, (1, 3) for index a in product Tabc Tcba), so by
comparing sets of such pairs we can test whether two
expressions can be matched within polynomial time.

On the other hand, in case of nontrivial symmetries
the problem of tensor matching becomes even more com-
plicated than the GI problem. For example, if tensors
from the first example are not fully symmetric but have
more specialised symmetries, e.g. Tabcd = Tbacd = Tcdab
(forms a permutation group with order 8) and Tabc =
Tbca (the simple alternating group) then (11a) becomes
unequal to (11b), while the corresponding graphs are still
isomorphic.

In the general case a tensor has symmetries forming
a permutation group G. In comparing products of such
tensors, suppose we found a possible match between two
vertices and denote the corresponding set of possible
matches of their edges as permutation α. Then, in addi-
tion to GI, we also have to test that α ∈ G (membership
testing). While membership testing can be done in poly-
nomial time (see e.g. Sect. 4.4 in [1] for details), there
is still no known polynomial-time algorithm for the GI
problem.

Summarising, we see that even such a basic opera-
tion as atomic comparison (i.e., testing equality without
using any specific transformations or simplifications) of
tensorial expressions is very complicated, which drasti-
cally complicates implementation of standard CA trans-
formations like e.g. reduction of similar terms, which is
straightforward in the case of non-tensorial expressions.

Today there is a wide range of packages (e.g. xAct[2]
for Mathematica or Maple’s Physics package) and stan-
dalone tools (e.g. Cadabra [3, 4]) that cover different
topics in symbolic tensor calculus. As far as we know, all
open-source packages are based on the so-called index
canonicalisation approach for handling and simplifying
tensorial expressions. The idea of this approach is widely
used in scalar CASs and consists of putting each expres-
sion into a unique canonical form (thereby making com-
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parison a trivial operation). In the case of scalars this is
generally achieved by sorting of monomials (e.g. lexico-
graphically), while in the case of tensors it is complicated
by the presence of symmetries and contractions. If ‘≺’
denotes (e.g.) lexicographical ordering on the set of all
indices, the canonical form of an expression (which can
be obtained by reordering multipliers, renaming of dum-
mies, and permuting indices using symmetries defined
for tensors) can be defined as the ≺-least configuration
of indices written in the order in which they appear in
the expression.

Canonical forms for the expressions from the first
example are:

Tade Tabc Tfmn Tfij Tbcdi Tejmn (12a)
Tade Tabc Tfmn Tfij Tbcim Tdejn (12b)

where (12a) is a canonical form of (11a), (11b) and (12b)
of (11c). The corresponding index configurations

S1 = (a, d, e, a, b, c, f,m, n, f, i, j, b, c, d, i, e, j,m, n),

S2 = (a, d, e, a, b, c, f,m, n, f, i, j, b, c, i,m, d, e, j, n)

are the ≺-least of all permutations of indices that can
be obtained by shuffling multipliers, renaming dummies
and permuting indices using the symmetries of tensors
Tabcd and Tabc.

It can be shown [5, 6] that the problem of tensor
canonicalisation is equivalent to the problem of finding
canonical representatives of double cosets in permutation
groups, which isNP-hard in general. Another important
drawback of the approach is that it is applicable only to
the products of simple tensors, so if e.g. a product con-
tains a sum as one of its multipliers, expanding out the
brackets is required for canonicalisation of the expres-
sion. Finally, the canonical form depends on the partic-
ular names of the indices, which renders it unsuitable
in conjunction with substitutions involving summation
indices: even if both, substitution rule and target, are writ-
ten in canonical form, they may have completely differ-
ent order of indices and multipliers. For example, before
TabcTeab = Fce can be substituted into TabpTacqTbpc,
one still has to match the left-hand side in target to yield
FcaTacq, which is not trivial even though all expressions
are written in canonical form (in the presence of symme-
tries, this becomes even more complicated).

Here we discuss the computer algebra system Red-
berry [7] which is focused on algebraic manipulations
with tensors and uses a graph-based approach for han-
dling such expressions. From a graph-theoretical point of
view a problem of comparing two tensorial expressions
is equivalent to the GI problem, and e.g. substitution
(matching a subexpression in the target expression) is
equivalent to a subgraph isomorphism problem. The GI
problem also has exponential complexity in the worst
case but very efficient algorithms are known [8, 9] which
work in polynomial time for all practical cases.

Besides a new approach, one of the main motiva-
tions in the development of a new system was to provide
abilities for the user to implement custom functionality;
we started development six years ago when we failed to

find an appropriate customizable tool for our research in
gravity. Cadabra was a perfect candidate but it does not
provide a programming language for implementing even
simple user routines (looping, if–else, functions, etc.).

Redberry provides a basic computer algebra toolset
(algebraic manipulations, substitutions, basic simplifica-
tions etc.) as well as tools for calculations in high-energy
physics: Dirac and SU(N ) algebra, Levi-Civita simplifi-
cations and one-loop counterterm calculation in quantum
field theory. Redberry is written in Java; for the user
interface we implemented a simple domain-specific lan-
guage in Groovy. Comprehensive details on Redberry
installation and usage can be found in [7] and on the
Redberry website. Here we are going to focus only on
CA aspects.

Working in Redberry

Basic examples
Consider a “toy” example to highlight the basics:

// define symmetries of Riemann tensor
addSymmetry 'R_abcd', -[[0, 1]].p
addSymmetry 'R_abcd', [[0, 2], [1, 3]].p
// input tensorial expression
expr = 'R_ibcd*R^bcd_j - R_dcbi*R_j^dcb'.t
// print expression
println expr

B 0

In the first two lines we specify symmetries of the Rie-
mann tensor (Rabcd = −Rbacd = Rcdab) using permuta-
tions written in disjoint-cycle notation (minus in the first
line indicates antisymmetry); the .p converts a list of in-
tegers into internal representation of permutation and .t
parses the preceding string expression into the internal
tensor representation (as one can see, Redberry distin-
guishes covariant and contravariant indices and standard
LATEX curly braces are not required for inputting tensor
indices). Redberry automatically detects that the two
terms in expr are equal and reduces the sum.

Similar to many scalar CASs (and in contrast to the
majority of tensor software), Redberry puts any interme-
diate and resulting expression into some standard form
(SF) (for instance, reduces similar terms in sums), which
drastically improves the overall performance of huge
calculations. Consider another example:

expr='(A_abc-A_bac)*T^cb + (A_iaj-A_aij)*T^ji'.t
println expr

B 0

Here we see that Redberry automatically matched
dummy indices and figured out that (Aabc − Abac) is
antisymmetric with respect to a, b. The graph algorithms
used in Redberry make reduction to SF extremely fast
and light-weight, so one need not take into account per-
formance of such a seemingly complicated simplifica-
tion.
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Substitutions and transformations

Let’s turn to substitutions and definition of func-
tions. Consider a simple substitution Rab = Rmamb
in RbaRam:

subs = 'R_ab = R^m_amb'.t
expr = subs >> 'R_ba*R^am'.t
println expr

B R^d_bda*R^ca_c^m

A rather tricky index relabelling and matching was done
automatically to obtain the correct result RdbdaRcacm.

Redberry allows to perform substitutions with any
kind of left-hand side (sums, products etc.) of any com-
plexity, taking into account index symmetries and con-
tractions (and even symmetries that arise from the struc-
ture of expressions):

addSymmetry 'R_abc', -[[0, 2]].p
subs = 'R_abc*(R^ba_d - R^ab_d) = F_cd'.t
expr = subs >> 'R_cab*F^c_d*(R^dab + R^abd)'.t
println expr

B -F^cd*F_cd

Redberry admits tensorial functions depending on
tensorial arguments as left-hand side of substitutions
(performs matching of function arguments):

s = 'F_ij[x_m, y_m] = x_i*y_j'.t
t = 'T^ab*F_ab[p^a - q^a, p^a + q^a]'.t
println s >> t

B T^ab*(p_a-q_a)*(p_b+q_b)

As one could already observe, substitutions are ap-
plied using the right shift >> operator. This notation is
also valid for all other types of transformations, such
as in the following code which simplifies an expression
containing a metric tensor:

tr = Expand & EliminateMetrics & 'd^a_a = D'.t
expr = 'g^mn*g^ab*g^gd*(p_g*g_ba + p_a*g_bg)

*(p_m*g_dn + p_n*g_dm)'.t
println tr >> expr

B 2*(1+D)*p^d*p_d

The “and” operator & used in the first line joins trans-
formations into a single one that sequentially expands
brackets, eliminates contracted metrics and substitutes
the space dimension D. Built-in notations for the metric
g_ab and Kronecker delta d^a_b are used.

Redberry has dozens of built-in transformations both
tensor-specific (symmetrization, simplification of met-
rics, tensor differentiation etc.) and general-purpose
(polynomial factorization etc.) that are specifically
adapted to tensor algebra.

High-energy physics features

Redberry was originally written for computations in
high-energy physics and gravity. For this, Redberry pro-
vides tools for dealing with noncommutative objects like

Dirac or SU(N) matrices. A trace of Dirac matrices is
calculated e.g. as follows:
defineMatrices 'G_a', 'G5', Matrix1.matrix
dTrace = DiracTrace[[Gamma: 'G_a', Gamma5: 'G5']]
expr = 'Tr[p^a*p^b*G_a*G_b*G_c*G_d*(1+G5)]'.t
println dTrace >> expr

B 4*p^b*p_b*g_cd

First, we tell Redberry that tensors G_a and G5 (Dirac’s
γµ and γ5) are noncommuting matrices (one can also de-
fine e.g. spinors) of type Matrix1 (the type is required
to distinguish e.g. Dirac and SU(N) matrices). Then we
define the trace transformation in the specified notation
for Dirac matrices and apply it to the expression.

Another interesting out-of-the-box feature is the abil-
ity to solve equations with tensors. Computing the sum
over polarisations for a spin-2 particle requires solution
of the following system of equations:

Jabcd p
a = 0, Jabc

c = 0, JabcdJ
abcd = 5,

where J is an unknown tensor with symmetries Jabcd =
Jbacd = Jcdab and p is the momentum of the particle
(with papa = m2, where m is its mass). In Redberry one
can do:
addSymmetries 'J_abcd', [[0,1]].p,[[0,2],[1,3]].p
eq1 = 'J_abcd * p^a = 0'.t
eq2 = 'J_abc^c = 0'.t
eq3 = 'J_abcd * J^abcd = 5'.t
rules = 'd^n_n = 4'.t & 'p_a*p^a = m**2'.t
opts = [Transformations: rules,

ExternalSolver : [
Solver: 'Mathematica',
Path : '/usr/bin']]

result = Reduce([eq1,eq2,eq3], ['J_abcd'], opts)

B [[J_{abcd} = (1/2)*m**(-2)*p_{a}*p_{d}*g_{bc
..........

The result can further be simplified using the relation
Jab = −gab + papb/m

2:
println(( 'g_ab = -J_ab+p_a*p_b/m**2'.t

& ExpandAndEliminate) >> result)

which gives the final well-known solution

Jabcd = ± ((JacJbd + JadJbc)/2− JabJcd/3)

The Reduce function converts tensorial equations into
equations with pure scalars (by representing unknown
tensors in the most general decomposition allowed by the
symmetries, e.g. Jabcd = c0 gabgcd + c1 papbpcpd + . . . )
and passes this scalar system to an external routine if
specified (Mathematica or Maple) or just returns it as is.
One can specify additional assumptions for Reduce, in
our case the space-time dimension was 4 and papa = m2.
Note that the result will have exactly the same symme-
tries as specified for the unknown variables (first line of
the code); in our example this is crucial since without
the first addSymmetries we would obtain additional
solutions.

Readers interested in seeing more examples are re-
ferred to [7]. Also, many examples including Feynman-
diagram calculations, obtaining Feynman rules from the
Lagrangian, calculating one-loop counterterms in general
field theory etc. are available on Redberry website.

15

http://redberry.cc


Under the hood
Symmetries and permutation groups

For handling symmetries of tensors, Redberry imple-
ments algorithms for working with permutation groups.
These algorithms are also closely related to graph algo-
rithms for comparing expressions (graph isomorphism
problem) and finding of symmetries of tensors (graph
automorphism problem). The implementation uses bases
and strong generating sets (see e.g. Sect. 4.4 in [1]) and
provides methods for coset enumeration, searching for
centralizers, stabilizers, etc.:
// define a Permutation group from generators
gr = Group([[0,1],[4,5]].p, [[3,4,5],[1,2]].p)
// get order of group
println gr.order()

B 36

// find setwise stabiliser of {2,3,5}
println gr.setwiseStabilizer(2, 3, 5)

B Group( +[[0, 1]], +[[3, 5]] )

// define some other PermutationGroup
oth = Group([[2,3],[1,4]].p,[[3,4,5]].p)
// find intersection of groups
intrs = gr.intersection(oth)
println intrs

B Group( +[[3, 4, 5]], +[[1, 2], [4, 5]] )

The permutation-group package in Redberry implements
the most complete set of algorithms and data structures
available for such problems as open source in Java; more
details can be found on the Redberry website.

Mappings

The central entity used internally in Redberry is a
mapping of indices between two tensors, i.e. a set of rules
on how to rename free indices of one tensor to obtain
another (e.g. {a → c, b → d} for tensors Tab and Tcd).
Mapping is a result of expression matching (graph iso-
morphism testing in the case of products) and Redberry
uses these mappings for comparison, substitutions, and
many other routines. Consider the two monomials

Rpq
abRabcdR

cjpq and Rbc
qpRiqapR

jicb,

where Rabcd = Rcdab = −Rdacb. One can check that if
indices are renamed as {d → a} or {d → j, j → a} in
the first tensor, the result is minus the second tensor (to
within dummy-index relabelling and shuffling of indices
according to symmetries). In Redberry this can be found
out as follows:
addSymmetry 'R_abcd', [[0,2],[1,3]].p
addSymmetry 'R_abcd', -[[0,1,3,2]].p
lhs = 'R_abcd*R_pq^ab*R^cjpq'.t
rhs = 'R_iqap*R_bc^qp*R^jicb'.t
mappings = lhs % rhs
mappings.each { m -> println m }

B -{_d->_a, _j->_j}
B -{_d->^j, _j->^a}

The object mappings constructed from two input ten-
sors using the % operator allows to iterate over all pos-
sible mappings from lhs onto rhs. The minus in the

output indicates that one needs to negate the result after
relabelling lhs in order to obtain rhs.

Programming capabilities

One of the main motivations for developing Redberry
was to provide ability for the users to implement addi-
tional functionality; for this purpose Redberry provides a
wide range of specialized methods (besides basic things
like looping). Consider implementation of a simple sub-
stitution using mappings and tree traversal:

subs = { expr, rule ->
expr.transformParentAfterChild { node ->

//map l.h.s. onto current node
mapping = rule[0] % node
mapping.exists ? mapping >> rule[1] : node

}
}
rule = 'T_ab = A_ai*B^i_b'.t
expr = 'k^j*T_ij*(2*T^ia + T^ai)'.t
println subs(expr, rule)

B k^j*B^c_j*A_ic*(B^bi*A^a_b+2*B^ba*A^i_b)

The method transformParentAfterChild tra-
verses the expression tree (from bottom to top) and ap-
plies the specified function to each node. For the rule
argument we test whether one can map its left-hand side
to the current node and if the answer is yes, we replace
it with the right-hand side in which we rename indices
according to the obtained mapping (again using the >>
operator). Note that the appropriate relabelling of dummy
indices is performed automatically and the user doesn’t
need to care about possible clashes of dummy indices.

Performance
It is interesting to compare the performance of

Redberry with other tools in the field, especially be-
cause, as far as we know, other packages use the index-
canonicalisation approach discussed in the Introduction,
while Redberry is based on graph algorithms. To com-
pare performance we generated sums of 200 terms of dif-
ferent complexity (of the form TabcFbcad . . . with vary-
ing number of multipliers) and measured the time needed
to reduce similar terms in such sums. We studied the
dependence of time on the number of multipliers (Fig. 5)
and on the total number of indices in products (Fig. 6).

As can be seen from Figs. 5 and 6, Redberry outper-
forms the other systems in all cases except situations with
large number of symmetric tensors with many indices
(the reason of this performance degradation is already
investigated and will be fixed in an upcoming release).

Further development

Redberry has been actively developed for six years
and the source code contains more than 130k lines
already; it is covered by more than 1000 unit tests
and many real-world computations in physics were per-
formed using Redberry.
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Figure 5: Performance of different systems for
increasing number of multipliers. Filled symbols: no
symmetries specified for tensors. Open symbols: all
tensors symmetric or antisymmetric (Maple 18 is able to
simplify only very trivial tensors with symmetries, so we
excluded Maple in this case).

Figure 6: Performance of different systems for
increasing total number of indices. Legend as for Fig. 5.

Currently we are working on the improvement of
graph algorithms, implementation of a complete pattern
matching (like in scalar CASs) and improvement of over-
all stability and usability of the system. The high-energy
physics package is frequently updated with new tools for
real computations.

Redberry is an open-source package and licensed
under GNU GPL v3. The source code repository is
at http://bitbucket.org/redberry/redberry and the issue
tracker at http://youtrack.redberry.cc.

Comprehensive documentation with lots of examples
can be found on http://redberry.cc.
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