Gesellschaft fiir Informatik (Hrsg.): SKILL 2019,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 1

Theoretical evaluation of the potential advantages of cloud
IDEs for research and didactics

on the example of Eclipse Che

Leonhard Applis !

Abstract: Eclipse Che is a open source cloud-based IDE, inheriting the approach of building cloud
native software within a remote environment. Instead of developing on a local machine, a remote
development-server is accessed via web-browser and the artifacts are compiled into docker-containers.

This paper shortly summarizes the required environment, introduces the concept and workflow of
Eclipse Che and evaluates the benefits and downsides of this approach. Focus is set on a new point of
view, enhancing computer studies and programming classes with this technology.

Keywords: Eclipse Che; Cloud Native; DevOps; Docker; Kubernetes; Higher Education; Software
Development

1 Introduction

Children look into the clouds and count sheep. Developers look into the clouds and check
their applications. Cloud technologies are already state of the art, enabling global players
to run applications on a world-scale. The market-leaders stocked up their portfolios with
a variety of different cloud technologies, ranging from cloud computing, cloud storage,
database-as-a-service or rented authentication. Modern software needs to be scalable,
self-contained, and should run on any device, as well as in the cloud.

As cloud-technology such technologies are referred which achieve five attributes: On-
demand self-service, broad network-access, resource pooling, rapid elasticity and measured
service [Mel1]. Cloud technology usually splits into two components: infrastructure and
services, where Docker and Kubernetes are considered infrastructure and provide a platform
to host services. Most of the attributes are (pseudo-) achievable by the infrastructure alone —
such as restarting containers. Software running as a service can be put into two categories:
Cloud ready — meaning that it can be run in common cloud environments, such as Kubernetes.
The term cloud ready does usually not include live-scalability. Cloud-readiness is mostly
achieved by removing dependencies and either running on bare-linux or being ported into a
docker-container. Lately the term Cloud native came up [Bil7], referring to software which

! Technische Hochschule Georg Simon Ohm, Leonhard.Applis @ Protonmail.com

ClOC)


https://creativecommons.org/licenses/by-sa/4.0/
Leonhard.Applis@Protonmail.com

2 Leonhard Applis

is built from the very first steps to run inside the cloud. This kind of software is usually
running inside a docker-container and both resilient and elastic by design [To17]. Resilience
refers to the ability of handling failure, both from external sources and restarting/configuring
themselves. Elasticity is the ability to request more resources on demand, performing more
computations when required, but also to free the resources if not needed. Cloud-ready
software usually achieves only a certain degree of resilience. Cloud-Native applications
are aware of their context and collect meaningful metrics for the platform that they cannot
reach other services or need more capacities. The applications must also be able to use the
gained resources in a productive and healthy way. Modern cloud-platforms can perform
pseudo-scalability for cloud ready-services by starting multiple instances of the same service.
The cloud-platform performs load-balancing between these instances. This naive approach
can work out fine, but for example starting two services working on the same database will
not yield any real scalability. Another common problem arises when two services are started
on the same machine and need the same port, just to name two problems with cloud ready
software in a cloud environment.

As Cloud is a central element of modern IT-development, it is strange to see that it is not yet
widely teached across universities in Germany 2. There are courses to teach either classic
virtualization or docker-basics, but the knowledge of full-stack cloud-platforms and cloud
native development is sealed behind corporate doors and conference workshops. Meanwhile,
the annual StackOverflow developer-survey [St19] showed, that DevOps-engineers are not
only among the most wanted and best paid jobs but also tend to be the happiest participants.
Every student either wants to be happy or to be rich (some want both), making Cloud an
interesting topic for their career.

There are many reasons why there are not many courses, but the most prominent is
the complexity of the topic: To build a real cloud native application, the developer
must understand virtualization, system-administration, development, infrastructure and
networking. Additionally, the developer needs to use specific tools, know best practices,
tests and work in a team. All these factors make a high stake for entrance, also represented
in the developer-survey [St19] which states that most DevOps engineers have a decade of
experience, usually in operations topics.

Luckily a new open-source software, Eclipse Che, is on the rise to enable everyone for cloud
native development. Che is unlike a normal Eclipse-distribution: It is hosted on a server
and developers get access with their browser. Instead of installing dependencies, compilers
etc. locally, a common workspace is set up, which is shared among the programmers. The
software build is run inside a docker-container, making it cloud native by default. With
Version 7 upcoming and prominent support from RedHat, Eclipse Che is not a prototype
anymore. The latest distributions of RedHats OpenShift are shipped with Che in default.
Therefore, it is worth looking at this possible game-changer. With the first part of this paper,
the structure and ideas of Che are explained in more detail, the second part of this paper

2 https://www.hochschulkompass.de/studium/studiengangsuche lists currently only 10 german universities with
courses on cloud computing, about 30 courses on virtualization



theoretical evaluation of the potential advantages of cloud IDEs for research and didactics 3

covers general arguments about this approach and gives a detailed overview of reachable
benefits for education.

2 Eclipse Che

2.1 Environment and Requirements

Che is hosted as a server-application and is already cloud native. The only requirements are
that either Docker, Kubernetes or OpenShift are available for the installation. The differences
between these will shortly be summarized.

Docker? is a container-platform, where a container is a standardized unit of of software
including the code, dependencies and core-functionalities. A container runs on an OS-
Virtualization, originating from LXC, has declared interfaces and can be parameterized. One
of the core features is to connect containers for bigger projects, e.g. one database container
and one web-server-container, which are connected into a virtual network. Docker is mostly
famous for this docker-engine, but enriches it with monitoring and logging, as well as the
ability to move containers onto different machines.

Kubernetes# is a container-orchestration-system based on Docker. Kubernetes picked up
the growing problem in managing multiple docker-containers by simplifying resource-
management. Additional to deployment and monitoring of container-groups it provides
auto-restart mechanisms and scaling based on (custom) metrics. When run on Kubernetes,
Che is hosted as a single docker container in the existing platform. The term pod, also later
used in this paper, refers to a suite of connected containers. An example pod would be a
simple two-tier web-application, where the database and web-server are two different, but
connected containers.

OpenShift> provides a software-suite around Kubernetes with the goal to automate cloud
native development and delivery. Notable additions include Jenkins, Gitea, Sonarqube
and lately Che. Regarding Che there are no notable changes in handling, as Che is
simply run on the build in Kubernetes. When run on Kubernetes or Docker Che will
require two additional containers for authentication with KeyCloack. For OpenShift the
standard-openshift authentication is used.

Eclipse Che can be run on any base-technology on localhost — this is rather for demonstrations
as well as for developers working on the Che-Code. When run (locally) on docker, the
plugin CheDir enables a portable workspace, which can be used on any docker based Che.

3 https://www.docker.com/
4 https://kubernetes.io/
5 https://www.openshift.com/



4 Leonhard Applis

2.2 Technology and Workflow

A normal IDE is software on a computer which makes programming easier than doing it in a
plain text-editor and commandline. Common tasks for an IDE are dependency management,
debugging, refactoring and auto-completion. It is important that an IDE is not required to
develop - Vim can write Java files, the JDK can compile and the JRE can run everything
manually from console. With that in mind,an IDE is just a tool-stack to make things (a
lot) more comfortable — but it also has requirements such as the JDK, the .Jars needed
in the classpath etc. as they are only utilized by the IDE. This stack can be considered a
workspace as it contains everything required to work, with the IDE making the workspace
comfortable to use. Eclipse Che does not work like a normal IDE. Che consists of three
main components shown in Figure 16.

Browser Che Server Workspace

= et g

it

IDE Machine
Plugins Projects
<> I ®
$—

APls WS Master Commands ~ SSH

Fig. 1: Che Workflow

1. Workspaces, including Runtimes and IDEs
2. A browser-based IDE

3. An administrative server

A workspace is like the above mentioned common workspace. It is a single machine, as a
container, containing the project files, compilers, package managers and an IDE-Interface.
There are two big differences to a normal development-setup:

. The required items for the workspace are explicitly declared, making the workspace
itself a docker image

6 source: https://en.wikipedia.org/wiki/Eclipse_Che#/media/File:Eclipse_Che_-_Workflow.PNG


https://en.wikipedia.org/wiki/Eclipse_Che#/media/File:Eclipse_Che_-_Workflow.PNG

theoretical evaluation of the potential advantages of cloud IDEs for research and didactics 5

. The IDE is not graphical — it is a REST-API performing actions like a normal IDE,
such as build, writing to files and installing packages.

An additional distinction is about building software. Instead of building the .Jar in the
remote-workspace, it is build inside a container in the remote-workspace. While this sounds
a bit confusing, it makes sense to separate the actual runtime from the workspace. This
is also what happens on a local machine — the executable is compiled and run separately.
Having these runtimes inside a docker-container comes with great benefits, outlined later in
this paper.

The second component is the web-based IDE, which is basically a web-page performing
the required REST-calls and utility-tasks for the developer. It is sent by the administrative
server when an authorized user accesses the workspace via browser. These two components
can be enriched with plugins. Common plugins are language-extensions which support
syntax-highlighting etc. or package managers with their regarding lifecycles. The difference
to a normal IDE plugin is that it has two components: One in the workspace-API and one in
the hosted web-IDE. Che offers a suite of common plugins dependent on the project. When
starting a Maven-project, the workspace is initialized with Maven and Java.

The last component is the Che-administration server. In the administration-server workspaces
are orchestrated and monitored. The authorization is also done at the admin-server and
not by every workspace. The workspaces can be shipped onto multiple separate machines.
The runtimes do not necessarily need to be on the same machines as their workspace.
Instead of the web-based IDE, a desktop IDE can be connected to the workspace. This is
done by mounting the workspaces-filesystem in the desktop IDE. This will grant access to
auto-completion and other features, but will miss Che specific helpers the web-IDE offers.
This feature looks to be rather a proof of concept.

A single workspace can contain multiple projects, whereof every project will have its own
runtime. Projects can either share a versioning control or be separated. You can build whole
pods in a single workspace with the single containers being the sub-projects. You can also
compose applications inside the workspace, meaning that the resulting container of a project
can be the base-image of another project. A workspace can be shared among multiple users.
Both will work on the same remote filesystem, altering files simultaneous. Due to changes
being transmitted as HTTP-requests, the current implementation when working on the same
file is a last write wins-policy. For version 7 a multi-cursor file-editing will be provided, like
it's common in OneDrive-documents. This is not to be mixed up with having multiple users
work on the same project but on their own workspace. The code, and the workspace itself,
can commonly be shared with any versioning tool such as Git. It’s mostly dependent on the
team which kind of cooperation they prefer.

Eclipse Che originates from the Eclise-Theia project. Theia focussed (only) on the idea
of having a remote workspace and access it via browser. Che uses Theia and enriches it
with idea of capsulation and containerization. An alternative to Eclipse Che is Amazons



6 Leonhard Applis

Cloud97, which is free for students. Microsoft is currently working on a similiar solution,
the plattform Coder® is on a state similiar to Eclipse-Theia. Che is the only completely free
and open sourced Cloud-IDE.

3 General Benefits and Handicaps

The primary goals of Che are twofold: First it reduces failure when migrating software into
the cloud and enhances the experience of working in a rich remote environment. Second is
to set up people into existing projects faster and fail safe.

3.1 Reproducibility and Maintenance

The University of Arizona showed [CP16], that about 50% of software inspected was
not able to build. Common reasons are missing, changed or faulty dependencies, leading
to the common term of dependency hell as well as unclear documentation. Experienced
programmers are usually able to overcome these issues, given enough time. This continues
to be an issue [C114], and without a different approach probably always will be.

This problem is solved, if the software is built inside a docker-container and follows
the principles of self-containment and image-immutability [Bil7]. The self-containment
principle dictates that at build-time every required dependency is given, and a fully functional
image is created. A containerized maven-application would include java, maven and every
required maven package to run the application in the current state. The image-immutability
means to forbid alternations to the environment. No installations at runtime, no change
in ports, no creation of database-schemas. These two principles, while being optional,
lead to always reproducible and functional artifacts. The main challenge is to migrate
existing software and fulfill these properties. Typically, after making the first iterations of
the software on a local machine, containerization will yield to 100 problems at once, not
only being frustrating but taking tons of time.

With Che, this kind of Big-Bang-Migration is not possible, as from the very first step it is
working inside of a docker-container. The properties above can be hold with every change to
the image and checked in a normal review-process. Problems will arise one at a time and be
solved one at a time, whether they are about code or operations. Che therefore embraces the
core-ideas of DevOps [Jal6] and agile software development [Eb16]. That being said, of
course it’s possible to big-bang-migrate into Che, causing the normal problem mentioned
above. However, once the errors are resolved, every further development will work more
agile by design.

7 https://aws.amazon.com/cloud9/
8 https://coder.com/



theoretical evaluation of the potential advantages of cloud IDEs for research and didactics 7

The artifacts (whether containers or pods) produced with Che are self-contained and
immutable, therefore every result is reproducible. Any further development is incremental
on the existing images and keeps old artifacts stable. As the code is fully build inside
containers and are already run remotely, the famous “It works on my Machine!” is eliminated.
This does not only enhance deployments, but also has a big impact on quality assurance and
the motivation of developers. You can keep multiple projects in a single workspace and
launch multiple pods at once, running the full environment. The behavior of this multi-pod
is unified and testable, making a stable release of full environments possible. This is one of
the primary goals of the DevOps approach [Jal6].

3.2 Sharing Results

The topic docker for reproducible research has already been promoted [Bol5] and
successfully applied to complex topics [St13] such as machine learning. As Clark et
al. [C114] have used code of several repositories provided from their university, most of the
projects can be expected scientific or experimental, therefore 50% of the research results
were not reproducible.

The idea to not only ship code, but ship the experiment as a whole makes reproduction
much easier. With Che (and using best practices for containers) the experiments done will
be containerized and therefore reproducible. Even more complex environments including
multiple components can be made in the same paradigms forming a pod.

Che also offers a whole new way of sharing the results: If peers wants to inspect the code,
they can be granted accounts and get hands on the experiment without any setup. In an
further attempt, a common guest-account can be established for anyone interested with
read-only rights. This does not only help cooperation and understanding, but is also a good
way to verify the results.

3.3 Faster Setup

Onboarding new teammembers is made easy with Che. A newly joining member does
not need to install IDEs, languages, tools and packages, they only needs access to their
Che-Account and a singular workspace with every dependency build for them. Depending
on the complexity of the project this required at most an hour. While this may seem long, the
setup time is dependent on the complexity of the workspace. Setting up a complex workplace
will also take more time manually. The work for this is done automatic and remote, so the
user is free to dive into the documentation or have some coffee. His workspace will be able
to launch the latest version immediately. It is also notable, that the (technical) onboarding
of developers and operators is streamlined into one single process.



8 Leonhard Applis

The combination of a quick setup and the usability of every enhancement makes Che
especially interesting to recruit troubleshooters into projects, which solve some of the very
specialized tasks. With the artifacts being reproducible, the expert can quickly inspect the
subject and analyze problems. With their changes being also in docker, they will be visible
and functional for the whole team. Therefore, the hardest common problems regarding
quick help are addressed and solved. As an additional minor benefit, it is easy to hibernate
resources using Che with Kubernetes or Openshift. The workspaces collect metrics like
any other container and are therefore scalable on demand. The ability of down-scaling the
development resources has a big impact on the overall workload. As a further example, the
workspace could be shut down out of normal business-time. This attribute is crucial for a
rented infrastructure, which is paid usually on both workload and storage.

3.4 Different Workflow

Additionally, the missing default “build and run” is a paradigm-shift for many developers,
which will take a while to get used to. Clark et al. [C114] describe this rather as a change in
the mindset, than in actual technology:

"The primary shift that’s required is not one of new tooling, as most developers already
have the basic tooling they need.
Rather, the needed shift is one of philosophy."

Intuitively this is true: Every developer needs to setup their own workspace — the skills
to do this are already there. The only difference is to setup the workspace in a common,
documented and descriptive way.

Another problem with Che is the uncommon debugging. As the code is running in a
remote-runtime, the common breakpoints and value checks are missing. Instead, one either
must be familiar with the languages commandline-debugging or write good logs and metrics.
While this will slow down development, it also offers some benefits: The debugging and
error-analysis inside the container is the same as it would be in the productive environment.
Having meaningful logs with different loglevels and collecting valuable metrics is in general
a good attribute for software in any circumstance. It just means additional effort and
know-how.

4 Benefits for Education

In addition to the previous mentioned benefits, there are more points about Che that are
especially important for educational purposes, such as courses in the university, professional
school or research departments. For simplicity only universities will be addressed.



theoretical evaluation of the potential advantages of cloud IDEs for research and didactics 9

4.1 New motivational and intuitive Courses

Eclipse Che provides the possibility to learn primary cloud-technologies hands on and in a
simple and supportive manner. Che makes it possible to teach students fundamentals of
modern software development. Depending on the courses subject, one can either provide
scalable software or a running environment. With suitable material provided, it’s easy to
learn cloud native development, DevOps or Cloud-Operations. Even complicated topics,
such as micro-services and IoT-applications can easily be adapted inside Che [Iv18] and
performed as for example as group-projects with a common goal. The student will need to
understand cloud-components as well as team-work to succeed with Che.

The produced artifacts can simply be shipped as containers, giving comfortable access to the
teaching staff. With both the product and the code inside the workspace easily accessible, the
teaching staff can grant faster and better feedback for the students, which can have massive
impact on learning [HSMS85][HLK18]. Additionally, the teacher can provide automated
end-to-end tests with tools such as Jenkins or TravisCI. Given such an environment, the
student will immediately get objective feedback, whether their code fulfills the requirements.
This immediate feedback is a big motivator and has a positive impact on the learning
experience [Fi05]. With a clear reason on the usefulness of the task, the visible progress
and the direct impact of personal effort should lead to intrinsic motivation, which studies
show to have a strong effect on education [DR93].

As a requirement, it’s necessary to provide a meaningful and fun task. Fortunately, such
tasks are not that rare in development. Other studies have shown that only automated and
unified testing is not beneficial to education in general [Cr88]. But the tools provided by
Che and CI/CD slim down the overhead until both personal feedback and automated can be
supplied. If the whole classroom utilizes this system, the educator can also monitor who is
having trouble in an automated manner. With a single investment for the tests, feedback for
every student is granted at every time. With the single investment of providing a running
Che instance (and a short lecture how to use it), feedback on the artifacts and code can
be immediately granted to every student, without having the overhead of setting up the
workspace. These investments can be done before the course starts at any time and can be
reused.

4.2 Equality and Accessibility

With access to a university Che workspace, every person can develop the same software
in the same environment. A well known problem is the necessity of an IOS-build-device
for IOS-appdevelopment. Students which are limited in their access to the university-
laboratory or cannot afford a mac are therefore handicapped. Another rising problem are
GPU-accelerated machine learning algorithms. Depending on the task, training neural
networks can be 20 times faster if a CUDA-compatible graphics card is used. While these



10 Leonhard Applis

technologies are great and important for many applications, the required technologies are
exclusive due to their costs.

This hindrance for education is usually addressed with 10S-laboratories and/or cloud-
resources paid for by university. The topic of socio-economic factors is beyond the scope
of this work, but the impact has been analyzed by the PISA Studies [OE15b], which state
that socio-economicly handicapped students fail three times more likely to achieve a basic
level of performance. According to PISA, this rate has not significantly changed since the
studies started in 2006. Germany scored better on the impact of socioeconomic-factors on
education in 2015 than it did in 2006 but is worse than the global average [OE15a]. The
Mac-Laboratories and rented cloud space are technically a good attempt at inclusion. But
students which are required to get to university to do their assignments are less likely to do
so. Making assignments mandatory, providing extrinsic motivation [DR93] has usually a
negative impact on the subjective experience.

A different problem comes with machine-learning, which is usually a process of trial and
error to some extend. Long waiting times disconnect the action from the result being not
beneficial for the learning process [HSM85][DR93].

With studies showing basics of good learning experiences [Fi05][Cr88] and the impact of
motivation [HSM85][DR93], it is mandatory for institutions to provide the best possible
environment. While many socio-economic factors cannot be grasped at the university or by
the educators, those originating in the students’ economic background can be addressed.
Most universities already provide free services, such as software-suites, e-libraries or cloud
storage.

Simply providing a technical correct solution (like laboratories) is not enough to provide a
good environment. One student with a better socio-economic background who can afford a
300$ GPU will have a better baseline for their education. This is simply put unfair. With
Che, universities can provide a free, good and accessible development environment for
every student.



theoretical evaluation of the potential advantages of cloud IDEs for research and didactics 11

5 Conclusion

Cloud technology will be dominant in the foreseeable future. Not everything will be best fit
for cloud, but most of the everyday software benefits from the concepts. With more and
more tools making it easier, it’s just a matter of time until cloud-tec becomes standard
instead of bonus.

With Eclipse Che many problems about teaching students these Cloud Skills and reducing
the initial scope for learning, are addressed. While the impacts on motivation and the actual
learning results are only hypothetical, most of the technical requirements are solved by Che.
As Eclipse Che is cutting edge it whatsoever lacks many quality of life features, has some
bugs, and the preferred design is undefined to some extend.

It somewhat is a chance: Instances such as a university can have massive impact on the
design of Che and drive the project to some extend for their own needs. With faculties
working on the open source project, either providing code and features, or just testing Che
in educational environments, both quality issues and missing features can be solved. Now
cloud development is only for corporations. There is hardly any chance to successfully learn
it at university. With Che there is another chance to “get back into the game” — and provide
corporation-free education.

While this sounds harsh towards companies, unbiased education for students is not a nice
thing to have, but a core concept of education in general. Only if that is true, the students
can make unbiased decisions and make unbiased research. Being dependent on Google for
Universities is in a similar way disturbing, as if a biology faculty would be sponsored by
Bayer. One can only imagine a grim future if the curriculum is influenced by profit.

Future Work

As this paper only argues about the possible improvement of education using Che, it should
be therefore tested. A study could be hold on both the acceptance and effect of a CI/CD
based development course with Che in comparison to a conventional course. These studies
could be done with universities and corporations, which may yield very different results.

Additionally, it should be inspected whether the studies on general motivation and education
hold for I'T-students.

When moving the scope from student to educator, a study can be hold about the time
spent of the teacher on which part of the course and whether a positive effect on effective
feedback-time can be achieved.



12 Leonhard Applis

Bibliography

(Bil7]

[Bol5]

[Cl14]

[CP16]

[Cr88]

[DR93]

[Eb16]

[Fi05]

[HLK18]

[HSMS5]

(Iv18]

[Jal6]

[Mell]

[OE15a]

[OE15b]

[St13]

[St19]

[Tol7]

Principles of Container-Based Application Design. https://www.redhat.com/cms/
managed-files/cl-cloud-native-container-design-whitepaper-£8808kc-201710-
v3-en.pdf, last seen 2019-05-04.

Boettiger, Carl: An Introduction to Docker for Reproducible Research. SIGOPS Oper. Syst.
Rev., 49(1):71-79, January 2015.

Clark, Dav; Culich, Aaron; Hamlin, Brian; Lovett, Ryan: BCE: Berkeley’s common
scientific compute environment for research and education. In: Proceedings of the 13th
Python in Science Conference (SciPy 2014). pp. 1-8, 2014.

Collberg, Christian; Proebsting, Todd A.: Repeatability in Computer Systems Research.
Commun. ACM, 59(3):62—69, February 2016.

Crooks, Terence J.: The Impact of Classroom Evaluation Practices on Students. Review of
Educational Research, 58(4):438-481, 1988.

Deci, E.; Ryan, R.: Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung fiir
die Pddagogik. Zeitschrift fiir Padagogik, 39(2):223-238, 1993.

Ebert, C.; Gallardo, G.; Hernantes, G.; Serrano, N.: DevOps. IEEE Software, 33(3):94-100,
May 2016.

Fink, L: Creating Significant Learning Experiences : An Integrated Approach to Designing
College Courses / L.D. Fink. 01 2005.

Hutfilter, A.; Lehmann, S.; Kim, E. J.: Improving skills and their use in Germany. (1516),
2018.

Hughes, Billie; Sullivan, Howard J.; Mosley, Mary Lou: External Evaluation, Task Difficulty,
and Continuing Motivation. The Journal of Educational Research, 78(4):210-215, 1985.

Developing Multi-Pod Apps with Kubernetes and Che. https://che.eclipse.org/using-
eclipse-che-to-develop-multi-container-apps-eb45b32ffes5b, last seen 2019-05-04.

Jabbari, R.; bin Ali, N.; Petersen, K.; Tanveer, B.: What is devops?: A systematic mapping
study on definitions and practices. In: Proceedings of the Scientific Workshop Proceedings
of XP2016. ACM, p. 12, 2016.

Mell, P.; Grance, T. et al.: The NIST definition of cloud computing. 2011.

Country Note Germany — Results from PISA. http://www.oecd.org/pisa/PISA-2015-
Germany .pdf.

PISA 2015 — Ergebnisse im Fokus. http://www.oecd.org/berlin/themen/pisa-studie/
PISA_2015_Zusammenfassung.pdf.

Stodden, V. et al: Reproducibility in computational and experimental mathematics - .
Examining reproducibility in computer science. 2013.

Stack Overflow Developer Survey 2019. https://insights.stackoverflow.com/survey/
2019, last seen 2019-05-04.

Toffetti, Giovanni; Brunner, Sandro; Blochlinger, Martin; Spillner, Josef; Bohnert,
Thomas Michael: Self-managing cloud-native applications: Design, implementation,
and experience. Future Generation Computer Systems, 72:165 — 179, 2017.


https://www.redhat.com/cms/managed-files/cl-cloud-native-container-design-whitepaper-f8808kc-201710-v3-en.pdf
https://www.redhat.com/cms/managed-files/cl-cloud-native-container-design-whitepaper-f8808kc-201710-v3-en.pdf
https://www.redhat.com/cms/managed-files/cl-cloud-native-container-design-whitepaper-f8808kc-201710-v3-en.pdf
https://che.eclipse.org/using-eclipse-che-to-develop-multi-container-apps-eb45b32ffe5b
https://che.eclipse.org/using-eclipse-che-to-develop-multi-container-apps-eb45b32ffe5b
http://www.oecd.org/pisa/PISA-2015-Germany.pdf
http://www.oecd.org/pisa/PISA-2015-Germany.pdf
http://www.oecd.org/berlin/themen/pisa-studie/PISA_2015_Zusammenfassung.pdf
http://www.oecd.org/berlin/themen/pisa-studie/PISA_2015_Zusammenfassung.pdf
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

