
Residual Investigation:

Predictive and Precise Bug Detection

Kaituo Li1, Christoph Reichenbach2, Christoph Csallner3, Yannis Smaragdakis4

Dept. of Comp. Science1 & FB 12/Informatik2 &

Dept. of CS/Eng.3 & Dept. of Informatics & Telecommunication4

University of Massachusetts, Amherst1 & Goethe University Frankfurt2 &

University of Texas at Arlington3 & University of Athens4

140 Governors Drive1 & Robert-Mayer-Str. 11–152 &

Eng. Research Building, Room 640, Box 190153 & Panepistimiopolis, Ilisia4

01300 Amherst, MA1 & 60054 Frankfurt2 & 76010 Arlington, TX3 & 157 84 Athens4

kaituo@cs.umass.edu

reichenbach@cs.uni-frankfurt.de

csallner@exchange.uta.edu

smaragd@di.uoa.gr

Abstract: We introduce the concept of “residual investigation” for program analysis.
A residual investigation is a dynamic check installed as a result of running a static
analysis that reports a possible program error. The purpose is to observe conditions
that indicate whether the statically predicted program fault is likely to be realizable
and relevant. The key feature of a residual investigation is that it has to be much more
precise (i.e., with fewer false warnings) than the static analysis alone, yet significantly
more general (i.e., reporting more errors) than the dynamic tests in the program’s test
suite that are pertinent to the statically reported error. That is, good residual inves-
tigations encode dynamic conditions that, when considered in conjunction with the
static error report, increase confidence in the existence or severity of an error without
needing to directly observe a fault resulting from the error.

We enhance the static analyser FindBugs with several residual investigations, ap-
propriately tuned to the static error patterns in FindBugs, and apply it to 9 large open-
source systems and their native test suites. The result is an analysis with a low oc-
currence of false warnings (“false positives”) while reporting several actual errors that
would not have been detected by mere execution of a program’s test suite.

Static analysis can be invaluable for detecting software bugs. For example, consider the

following method:

p u b l i c byte g e t T e n t h B y t e (j a v a . i o . I n p u t S t r e a m i s t r e a m) {
byte [] a = new byte [1 0] ;

i s t r e a m . r e a d (a) ; / / t r y t o read 10 b y t e s

re turn a [9] ; / / r e t u r n l a s t b y t e

}

This method reads ten bytes from an instance of Java’s java.io.InputStream class

and returns the last byte read. Here, istream.read(a)will try to read as many bytes as

133

it can fit into a and return the number of bytes actually read—possibly less than 10. If we

are near the end of the input stream, istream.read(a) may return a smaller number,

and a[9] will contain garbage. Fortunately, static checkerers such as FindBugs [HP04]

can detect such bugs (marked ‘Read Return Should Be Checked’, in FindBugs).

Unfortunately, static analyses tend to suffer from false positives [HP04], i.e., they issue

warnings that do not reflect reality. This is also true in our particular example: the Eclipse

system provides a subclass of java.io.InputStream whose read method always

returns the size of the array as return value, causing many spurious FindBugs warnings.

To eliminate such warnings, we propose residual investigation. A residual investigation

is a dynamic analysis that serves as the run-time agent of a static analysis. Its purpose

is to determine with higher certainty whether the error identified by the static analysis is

likely true. The dynamic analysis serves as ‘residual’ of the static analysis at a subse-

quent stage: that of program execution. Unlike past static-dynamic combinations, residual

investigation does not intend to report the error only if it actually occurs, but to identify

general conditions that reinforce statically detected errors. A residual investigation is thus

a predictive dynamic analysis, predicting errors in executions not actually observed. This

permits us to increase confidence in error reports even with relatively small test suites .

In our example, the residual investigation consists of two checks: (a) a dynamic check

that checks for each subclass C of java.io.InputStream if that particular subclass’

read method ever reads fewer than the maximum number of bytes, and (b) a dynamic

check that determines, for each program location ℓ that triggers a read and ignores its

return value, which dynamic types ℓC we observe for the input stream. We then reinforce

the bug report at ℓ iff there exists a C ∈ ℓC that satisfies property (a). Note that this is not

the same as observing an actual fault: we may have observed property (a) in an unrelated

piece of code. This is what makes our analysis predictive: Knowing that C has property (a)

justifies concern about the read return value, and knowing that C ∈ ℓC justifies warning

the user that a fault here is more plausible than suggested by a purely static analysis.

Our full paper [LRCS15] explores residual investigation on six FindBugs patterns as well

as on static race detection. We find our approach to be highly effective at eliminating

false positives and highlighting actual bugs among static bug reports without needing to

observe real faults. For example, FindBugs with residual investigation lowers the false

positive rate from ≥ 90% to ≤ 23% in several large Open Source systems. We observe

similarly dramatic improvements with race detection.

References

[HP04] David Hovemeyer und William Pugh. Finding bugs is easy. In Companion to the 19th
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), Seiten 132–136. ACM, Oktober 2004.

[LRCS15] Kaituo Li, Christoph Reichenbach, Christoph Csallner und Yannis Smaragdakis. Pre-
dictive and Precise Bug Detection. ACM Transactions on Sotftware Engineering and
Methodology, Seite to appear, 2015.

134

