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Abstract: The paper is a survey of the computational intelligence methods and their
application to the data analysis problems. Neural networks, fuzzy sets, neuro-fuzzy
systems, and genetic algorithms are considered. The advantages and disadvantages of
the soft computing tools as well as specific issues of their application to data process-
ing are analyzed, and the directions for their further improvement are outlined. New
clustering algorithms that can operate under substantial uncertainty and cluster overlap
are proposed.

1 Introduction

The amount of information already stored in the modern databases is huge and is measured
in terabytes. Virtually infinite amount of information is available to anyone anywhere
through the Internet. The information needs to be summarized and structured in order to
support effective decision making.

When the amount of data, dimensionality, and complexity of the relations in it are beyond
human capacities, there is a need for intelligent data analysis techniques, which could
discover useful knowledge from data. Data analysis is a step in the process of knowl-
edge discovery in databases (KDD) [KJ]. This step involves the application of specific
algorithms for extracting patterns (models) from data. The additional steps are data prepa-
ration, data selection, data cleaning, incorporation of appropriate prior knowledge, and
proper interpretation of the results of mining [MPMO02].

2 Data Analysis Problems

Data analysis is the process of extraction of previously unknown, non-trivial, practically
useful, and interpretable knowledge, required for decision making, from “raw” unstruc-
tured data in large arrays or databases.

In general, the problem that is solved in data analysis consists in detection of regularities in

15



data of different nature. More particularly, this involves regression, prediction, classifica-
tion, clustering, rule generation, summarization, dimensionality reduction, visualization,
etc.

Data analysis is complicated by the following factors:

the amount of data is huge;

the data is heterogeneous (quantitative, qualitative, textual, etc), often with gaps;

the nature of the dependencies, “hidden” in the data, can change in time, i.e. the
data can be non-stationary; abrupt changes are possible, that must be detected (fault
detection);

the data can be distorted by unknown disturbances (stochastic, chaotic, quasiperi-
odic, etc.)

All this puts forward the following requirements to the data analysis tools:

e the results must be concrete and understandable;

o the tools must be user-friendly and require minimal knowledge of mathematics and
programming skills;

e if the amount of data is very large and growing in time, it is advisable to use se-
quential processing with variable memory (in order to allow forgetting of the ~old”
information).

Since the data are often imprecise, their distributions and the hidden relations are unknown
and very complex, there is a need for the tools that can cope with the lack of information,
complexity, and imprecision. Among such methods, the computational intelligence tech-
niques proved to be very effective.

3 Computational Intelligence Techniques

The term Computational Intelligense encompasses a number of methodologies, mainly ar-
tificial neural networks (ANNs), fuzzy sets, genetic algorithms (GAs), and their hybridiza-
tions, such as neuro-fuzzy computing [JSM97], neo-fuzzy systems [MY99, YUTK92,
BKKO3], wavelet-neuro systems [ICP03, ZB92, BV03a, BVO3b] e.a.

3.1 Neural Networks

ANN is a data processing system consisting of a large number of simple, highly intercon-
nected processing elements (artificial neurons) in an architecture inspired by the structure
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of the cerebral cortex of the brain [Abe96]. There are tens of artificial neural network
architectures. The most popular architectures in the data analysis application are multi-
layer perceptrons (MLPs) [Roj96], radial basis function networks (RBFNs) [MD89] and
self-organizing maps (SOMs) [KohO1].

MLPs are used for regression, approximation and classification. They usually have no
more than three layers (one output layer, and two hidden layers). The efficiency of the
MLPs is explained by their universal approximation properties in conjunction with rela-
tively compact representation of the modeled system. However, the training of the multi-
layer networks may be very slow.

RBFNs can also be used for classification and regression. They contain only one hidden
layer. The training of RBF networks is usually faster than that of the multilayer networks,
but the number of neurons required can be very large with high dimension of the input
space (the curse of dimensionality). However, they can perform well with reasonable num-
ber of processing units, if they are properly constructed via usual clustering approaches,
such as k-means method [MD89, Mac65].

With neural networks, knowledge acquisition is done by network training. Namely, by
gathering input-output data for pattern classification or function approximation and train-
ing the network using these data by the learning algorithm, the desired function is realized.
The most popular learning procedure for the MLPs (and for some RBFNG5) is error back-
propagation [RHW86], which consists in iterative finding of the set of tunable parameters
(weights and biases) that provide the minimum of error function via gradient-based non-
linear optimization. The term stands for propagating backward the differences between the
desired and actual network outputs through the hidden layers for the calculation of partial
derivatives of the error function with respect to the network parameters.

SOMs are used for clustering, classification, and visualization of linearly separable high
dimensional data. Their learning method is called competitive learning [KohO1].

Among the other ANNs, recurrent networks should be mentioned. They are quite close in
architecture to the MLPs, but contain output-to-input connections (feedbacks) with delays.
The recurrent networks are effective for time series prediction.

Associative memory ANNSs can be used for processing of strongly distorted information.
The concept of sequential processing is most effectively implemented in the so-called
Brain-State-in-a-Box neural associative memory [ARS8S8].

The processing of large data arrays with ANNSs is complicated by the slow convergence
of the conventional learning algorithms. The authors [BCKOO02] have proposed improved
learning algorithms with high rate of convergence and filtering properties.

The quality of data processing can be further improved with non-conventional neural ar-
chitectures [BKKO02, BGKO03a], resource allocation [BGKO03b], non-standard activation
functions with tunable parameters [BCKOO02].
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3.2 Fuzzy Systems

Fuzzy systems are based on fuzzy set theory, proposed by L. Zadeh [Zad65]. In contrast
to the classical set theory, in fuzzy set theory an object may belong to several sets at the
same time with certain degrees of membership, expressed as real numbers in the interval
[0, 1]. Fuzzy sets provide means to model fuzzy values of linguistic terms, and construct
linguistic (fuzzy) rule bases.

A possible application of fuzzy systems in data analysis is the induction of fuzzy rules in
order to interpret underlying data linguistically [KNB99]. More specifically, fuzzy systems
can be used for classification and modeling of nonlinear dependencies, when the emphasis
is placed on interpretability rather than on precision.

Fuzzy rules can be determined via fuzzy clustering. In the conventional (crisp) approach
to clustering it is assumed that every observation belongs to only one class. The k-means
algorithm [Mac65] and the nearest-neighbor rule [Cov68] are examples of this approach.
It is much more natural to assume that every observation may belong to several clusters at
the same time with certain degrees of membership. This assumption is the basis of fuzzy
cluster analysis [Bez81, HKK96]. At present time many fuzzy clustering algorithms are
known, e.g. Bezdek’s fuzzy c-means [Bez81], the Gustafson-Kessel algorithm [GK79],
mountain clustering by Yager and Filev [YF94], etc.

The source information for all the mentioned algorithms is the data set of /N n-dimensional
feature vectors X = {z1,22,..., 2N}, ¢ € X,k =1,2,..., N. The output of the algo-
rithms is the separation of the source data into m clusters with some degree of membership
w1, of the k-th feature vector to the j-th cluster. Here w; ;, € [0, 1] is the degree of mem-
bership of the vector xj, to the j-th cluster. The result of the clustering is assumed to be a
N x mmatrix W = {wy,; } , referred to as fuzzy partition matrix.

When the elements of the matrix W can be regarded as the probabilities of the hypotheses
of data vectors membership to certain clusters, the clustering are referred to as the proba-
bilistic clustering algorithms [Bez81, GK79, GG89]. The most important disadvantage of
the probabilistic approach is that they demand that the sum of memberships for each data
vector be unity. To overcome this limitation, the so-called possibilistic methods of fuzzy
clustering were proposed [KK93b].

If the dataset that needs to be processed is very large, processing it in batch mode may
be very slow or impossible at all. The processing of large datasets can be accelerated by
applying recursive fuzzy clustering algorithms [BKS02, BGKKO02]. These algorithms are
characterized by low computational complexity and high rate of convergence.

The fuzzy rules, obtained via the fuzzy clustering process, can be further improved by the
application of the data-driven learning neuro-fuzzy techniques. The respective algorithms
will be considered below.

18



3.3 Hybrid Neuro-Fuzzy Approaches

The strengths and weaknesses of ANNs and fuzzy systems are complementary. ANNs
can learn complex mappings from presented input-output data. But since ANNs repre-
sent the ”black box” ideology in system modeling, the decision obtained using the ANNs
are difficult to interpret, and the incorporation of a priori information into a neural net
is also difficult. At the same time, fuzzy systems can implement complex input-output
mappings (in the form of rule bases) based on human experience and available a priori in-
formation. Because fuzzy systems operate on linguistic variables and rules, they are easily
interpretable. But fuzzy systems do not possess learning capabilities.

Neuro-fuzzy systems [JSM97, BKSO1, BGKO03b] have been an increasingly popular tech-
nique of soft computing during recent years. They are based on modified fuzzy inference
mechanisms, adapted for the use of learning procedures similar to those of ANNs. And
from fuzzy systems they inherit the linguistic interpretability and ease of incorporation of
a priori information.

The most widely used method of learning in such systems is the error back-propagation
[RHWS86], based on the gradient descent. Along with its simplicity and satisfactory per-
formance in solving many problems, it has some essential drawbacks, such as slow con-
vergence, sensitivity to noise, and dependence of performance on the heuristically selected
learning rate.

We have proposed efficient learning algorithms with higher rate of convergence without
significant increase of computational load [BKSO01].

Hybrid neuro-fuzzy computing is not yet a finally well-formed approach, though it has
already proved to be effective in solving many problems, such as nonlinear time series
prediction and classification with strongly overlapping data clusters. A number of impor-
tant issues, such as the selection of appropriate architecture and membership functions,
improvement of the convergence rate of the known gradient-based learning algorithms, as
well as the acceleration of the processing of very large data sets, still have to be investi-
gated.

In our opinion, the most promising neuro-fuzzy approaches are those based on non-
conventional neurons (neo fuzzy architectures [BKKO3]), learning probabilistic neuro-
fuzzy networks [BGKO3b], fast learning algorithms [OBKO03], wavelet-neural architec-
tures [ICP03, ZB92, BV03a, BV03b].

In the works [BKOO4, BKO4a, BK04b] a neuro-fuzzy architecture based on the Kol-
mogorov’s superposition theorem was proposed. This architecture provides better qual-
ity of approximation than the conventional artificial neural networks and fuzzy inference
systems.
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3.4 Genetic Algorithms

GAs are a subclass of evolutionary algorithms - optimization methods, inspired by the
biological evolution. GAs were first proposed and analyzed by John Holland [Hol75].
There are three features which distinguish GAs, as first proposed by Holland, from other
evolutionary algorithms: the representation used - bitstrings; the method of selection -
proportional selection; and the primary method of producing variations - crossover. Of
these three features, however, it is the emphasis placed on crossover which makes GAs
distinctive [BFM97].

One of the most important advantages of GAs consists in the possibility of their applica-
tion to the training of neural networks with non-analytical criteria having multiple local
extrema. GAs are also effectively used for feature (input) selection, fuzzy rule base gener-
ation. In addition, the implementation of GAs is quite simple.

However, because of slow convergence of the classical GAs [Hol75], it is often advisable
to consider some alternative approaches, such as “bee family”, islands model”, and the
other based on the ideas of elite selection.

Other alternatives are the random search with learning, complex-method, derivative-free
multicriterion optimization [BRO4].

In our opinion, it is the ”"mathematization” of GAs that can give them a new impulse for
development.

4 Data Analysis with Adaptive Fuzzy Clustering Algorithms

Clustering and data classification are key problems of data analysis, and solving these
problems is important for effective knowledge accumulation on the basis of observational
analysis. In general, cluster analysis is the algorithmic basis of data classification by means
of separation of the available data into a number of classes (clusters). In the traditional
(crisp) approach it is assumed that every observation belongs to only one class.

It is much more natural to assume that every observation may belong to several clusters at
the same time with certain degrees of membership. This assumption is the basis of fuzzy
cluster analysis [Bez81, HKK96].

4.1 Batch Fuzzy Clustering Algorithms Based on Objective Function

The objective function based algorithms [Bez81] that have become widely used are de-
signed to solve the clustering problem via the optimization of a certain predetermined
clustering criterion, and are, in our opinion, the best-grounded from the mathematical
point of view.

For pre-standardized feature vectors (the standardization is performed component-wise so
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that all the feature vectors belong to the unit hypercube [0, 1]™), the objective function is

N m
E(wgj,c5) = Y > wy id*(zx, ¢;) (1)

k=1j=1

subject to constraints
Zwkdzl,k:l,...,N, )
j=1
0<> wiy <N, j=1,...,m, 3)
j=1

Here c; is the prototype (center) of the j-th cluster, 3 is a non-negative parameter, referred
to as “fuzzifier” (usually 3 = 2), d? (x,c;) is the distance between x, and ¢; in the
Euclidean metrics.

Note that since the elements of the fuzzy partition matrix W can be regarded as the prob-
abilities of the hypotheses of data vectors membership to certain clusters, the procedures
generated from (1) subject to constraints (2), (3) are referred to as the ”probabilistic clus-
tering algorithms”.

Introducing a Lagrange function

N m N m
L(’wk’ijj, )\k) = Z wa’de(xk, Cj) + Z )\k<2wk,j — 1) =
k=1j=1 k=1 J=1
N m m
=3 (@) + 2 (P wes — 1)) 4)
k=1 j=1 j=1

(here Ay is an undetermined Lagrange multiplier) and solving the following system of
Kuhn-Tucker equations

8L(wk7j, Cj, )\k)

=0,
8wk,j
VL(wk,j, Cj, )\k) = 0, (5)
OL(wkj,¢5,A6) _
O 7

the desired solution can be readily obtained as

_ (@)
S (2 () TP
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Cj = N 8 ) (7)
> k=1 Wi
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The equations (6)-(8) generate a wide range of clustering procedures. Choosing 3 = 2
and adopting the Euclidean distance d?(z, ;) = ||z — ¢;]|?, we obtain the simple and
efficient Bezdek’s fuzzy c-means algorithm [Bez81]:

ox — ¢l 2
Wi = —m —, 9
Tl ek = ]2
N
J— Zk:l wi’jxk 10
G=TAN 5 (10)
D k=1 Wi
m . 2.1
—— (7‘“”’“ ;l” ) . (11)
=1

The Gustafson-Kessel [GK79], Gath-Geva [GG89], and a number of other procedures
also belong to the probabilistic clustering methods. The most important disadvantage of
the probabilistic approach is the constraints (2) [KKT97]. In the simplest case of two
clusters (m = 2), it can be readily seen that an observation x, equally belonging to both
clusters, and an observation z,,, not belonging to either, have equal degrees of membership
W1 = W2 = Wp1 = Wp2 = 0.5. Naturally, this circumstance, significantly reducing
the classification accuracy, led to the development of the possibilistic approaches to fuzzy
clustering [KK93b, KK93a].

In the possibilistic algorithms, the criterion is

j=1 k=1

N m m N
E(wy,j, cj) kzz f d*(z,c +Zu Z(l—wk NP, (12)
—1j=1 3=

where the scalar parameter 1; > 0 determines the distance at which the degree of mem-
bership equals 0.5, i.e. if d*(zy, ¢;) = p;, then wy, ; = 0.5.

Minimization of (12) with respect to wy, ;, ¢;, and pi; gives an obvious solution

& (25, ;)\ 7 1
wk,j — (1 + ( (‘i[/k})cj))ﬁ ) ’ (13)
J
N B
- D k=1 Wk Tk 14
G ="=SN 85 (14)
> k=1 Wi
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It can be readily seen that the possibilistic and probabilistic algorithms are very much
alike, and transform into one another with the substitution of the equation (13) for the
equation (6), and vice versa. The common drawback of the algorithm considered is their
computational complexity, and the unsuitability for the online (real-time) operation.

1y (15)

The operation of the algorithm (6)-(8) begins with the setting of initial (usually ran-
dom) partition matrix W°. On the basis of its values, the initial set of prototypes c?
is computed, which is then used to compute a new matrix W;. Then in batch mode
cj, W2, W, ¢k, W, etc are computed until the difference ||[W**+! — W*|| becomes
less than some pre-specified threshold €. In that way all the available data set is processed
repeatedly.

The solution obtained with the help of the probabilistic algorithm is recommended as
the starting point for the possibilistic procedure (13)-(15) [KK93a, KK97]. The distance
parameters ji; are initialized according to (15) from the results of a probabilistic algorithm,
and then remain fixed [KKT97, KK97] during the clustering using the equations (13), (14).

4.2 Recursive Fuzzy Clustering Algorithms

In some practical problems, such as [XWIO5] speech processing, text and web mining,
medical and technical diagnosis, stock market forecasting, robot sensor analysis, etc. the
data are coming sequentially, often in real time, that is why the application of recursive
clustering procedures is advisable.

Analyzing the equation (6), it can be noticed that the following local modification of the
Lagrange function (4) can be used for the re-computing of the degrees of membership
’UJkJ'Z

Li(wn e ) = 30w sl e ) + M (Y wny = 1)), (16)
Jj=1 j=1

Optimization of (16) using the Arrow-Hurwitz-Uzawa procedure gives the following al-
gorithm:

(d (2, c;) 7

Wk,j = SN )
Doty A (wk, crg) P
Cht1j = Chyj — Mk Ve, L (Whj, Crjy M) =
= cry — My A(Trs1, ) Ve, d(Thit, ik g), (18)
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where 7, is the learning rate parameter, cy, ; is the prototype of the j-th cluster computed
on the data set of k observations.

The procedure (17), (18) is quite close in structure to the fuzzy competitive learning al-
gorithm of Chung-Lee [CL94], and when § = 2 the procedure coincides with the Park-
Dagher gradient based fuzzy c-means clustering algorithm [PD84]:

2k — o]~

W,j = ; 19)
T ek — e
Ch1,j = Ck,j — nkwi,j(xk_‘_l —Clj)- (20)
Within the possibilistic approach, it is possible to introduce a local criterion
m m
B(wyj,c;) = > whd®(wr, ;) + Y (1= wg3)?, 2y
j=1 j=1
and to optimize it using the equations
d? AN Ty L
Wiy = (1+( (umm))a 1) 7 22)
K
= cpj — mpw) d Ve d ; 23
Cht1, = Chyj — MW A(Tht1, k) Ve, d(Tht, Ck ), (23)

where the distance parameters f; can be initialized according to (15). In this case, N in
the equation (15) will be the length of the available data set, used for the initialization. In
the quadratic case, the algorithm (22), (23) transforms into a quite simple procedure

14
wg; = , (24)
T+ e — eyll?

2
Ck41,j = Ckj — MW ; (Tht1 — Crj), (25)

where the distance parameters 1i; can be initialized from the results of probabilistic clus-
tering (e.g. through the fuzzy c-means algorithm (9), (10)) according to the following
equation:

N

o D k=1 wl%g”xk — ¢l

j= N :
D k=1 wl%,j

The considered recursive algorithms can be used in both the batch mode for the repeated
processing of the same data set, and in the online mode with the number of observation
k being the current discrete time k = 1,2,..., N, N 4+ 1,.... In this case, the algorithm
sequentially processes the incoming observations, adapting the degrees of membership
and cluster prototypes to the newer data.

(26)
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We have tested the performance of proposed algorithm (24), (25) in the problems of data
classification, and compared the results with those obtained using the fuzzy c-means al-
gorithm (9), (10), batch possibilistic clustering algorithm (13)-(15), and the Park-Dagher
recursive clustering algorithm (19), (20). For testing purposes, three well-known data sets
were used: the Wine data, the Iris data, and the Thyroid data from the UCI repository
[UCI]. The Iris data set contains the descriptions of 150 instances of iris flowers, dis-
tributed equally into 3 species (setosa, versicolour, virginica). The flowers are described
by 4 attributes (sepal length, sepal width, petal length, petal width). The Wine data set
contains 178 results of a chemical analysis of wines grown in the same region in Italy but
derived from three different cultivars. The analysis determined the quantities of 13 con-
stituents found in each of the 3 types of wines (there are 59 instances of the first type, 71
of the second type, and 48 of the third type). So the first data set has 4 features, and 3
classes, and the second data set has 13 features, and 3 classes as well. The Thyroid data
set contains 215 results of medical tests with five parameters, divided into 3 classes. The
problem of classification is to relate each presented combination of features to a certain
class. For the sake of simplicity, we assume here that the number of clusters is equal to the
number of classes.

To build a classifier, we apply the above described clustering algorithms. In the data
set X, which is the input to the clustering algorithms, each instance x;, € X, k =
1,2,..., N consists of its feature vector (4-dimensional or 13-dimensional respectively),
and one of the following adjoined 3 dimensional class target vectors (0,0,1)7, (0,1,0)7,
or (1,0,0)T. Thus, the clustering is performed in the input-output space [Abe96]. This
is done to improve the classification accuracy. The centers of the resulting clusters in the
input space represent the prototypes in the feature space, and the adjoined class target
coordinates in the output space represent the corresponding class labels.

The membership of an object to a certain cluster during the process of classification is
calculated according to equations (9) or (25), depending on the type of the clustering algo-
rithm that was used. In the classification, the vectors xj, correspond to the feature vectors,
and the adjoined class target coordinates in the prototype vectors c; are discarded. The
cluster to which the given object belongs with maximum degree of membership deter-
mines the class of that object.

We carried out two experiments. In the first experiment, we compared the performance of
the clustering algorithms in the problem of classification when instances of all the available
classes were present in the data set used for clustering, i.e. the number of classes was
known a priori and equal to 3. The data sets were divided into the training and testing sets
with 70% and 30% of data respectively. For better performance of the recursive clustering
algorithms, the data sets were randomly shuffled.

The training sets were used for the initialization of the classifier through fuzzy cluster-
ing, and the testing sets were used for the comparison of the classification accuracy. We
used the learning rates 7 = 0.01 in the recursive procedures (19), (20) and (24), (25),
and the “fuzzifier” parameter 5 = 2 in the batch possibilistic clustering procedure (13)-
(15). Both possibilstic procedures (batch and recursive) were initialized from the results
of probabilistic clustering through the fuzzy c-means algorithm.
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We performed 10 iterations for the batch clustering procedures, and 10 runs over the train-
ing data for the recursive clustering procedures. The experiment was repeated 50 times,
and then average results were calculated. The results are given in Table 1. They represent
the percentage of the incorrectly classified objects from the testing data set.

Table 1: Classification with known number of classes (error rate on the testing data)

Data Fuzzy Batc'h o e Park-Dagher Rectfr§1.ve‘
c-means possibilistic possibilistic

Iris 7.4 % 7.6 % 6.9 % 7.8 %

Wine 3.8 % 4.4 % 3.9 % 4.3 %

The results of the first experiment in Table 2 are quite close for all the clustering algorithms
that were tested. The recursive possibilistic clustering algorithm (24), (25) showed results
similar to those of the batch possibilistic clustering algorithm (13)-(15). In the second
experiment, we included only the instances of 2 out of 3 available classes into the training
sets. Thus, the number of classes in the training sets was less than that in the testing sets.
The clustering procedures were used to create 2 clusters, corresponding to the classes of
the objects in the training sets. The objects of the third unknown class were introduced in
the testing sets. The results of the second experiment are shown in Table 2.

Table 2: Classification with one unknown class (error rate on the testing data)

Data, unknown | Fuzzy Batc.h o Park-Dagher Rec1}r§i.ve.
class c-means | possibilistic possibilistic
Iris, class 3 333 % 14.0 % 333 % 153 %

Iris, class 1 38.0 % 6.0 % 38.0 % 6.7 %
Wine, class 3 29.0 % 19.6 % 29.0 % 19.6 %
Wine, class 1 359 % 23.6 % 35.9 % 23.4 %
Thyroid, class 2 18.1 % 20.9 % 18.6 % 11.6 %
Thyroid, class 3 15.4 % 17.2 % 15.4 % 5.6 %

As an indication of the unknown class, we used the threshold of 0.2 for the sum of degrees
of membership. Naturally, the classifiers based on probabilistic clustering were practi-
cally unable to distinguish the objects of the unknown class from the objects of other two
classes, because the probabilistic clustering procedures rely on the unity sum of degrees
of membership. This is not the case with the possibilistic clustering procedures, which
showed considerably better performance in the second experiment.
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S Robust Adaptive Fuzzy Clustering Algorithms

The approaches mentioned in the preceding section are capable of efficient data cluster-
ing when the clusters are overlapping, but only with the assumption that the clusters are
compact, i.e. they do not have abrupt (anomalous) outliers. Whereas real datasets usually
contain up to 20% of outliers [BL78, Rey78, Hub81], the assumption of cluster compact-
ness may sometimes become inadequate.

Thus, the problem of cluster analysis of data with heavy-tailed distributions has received
more and more attention in recent years. Various modifications of clustering methods
mentioned above are proposed in the papers [Lo099, Loo01, TSMI97, HK00, GK04] and
designed to process data containing outliers.

5.1 Robust probabilistic fuzzy clustering algorithm

As it was noted above, probabilistic fuzzy-clustering approach belongs to a class of the ob-
jective function based algorithms [Bez81] that are designed to solve the clustering problem
via the optimization of a certain predetermined clustering criterion, and are, in our opinion,
the best-grounded from the mathematical point of view.

For pre-standardized feature vectors, the objective function is

N m
Ef(wy j, ¢;) ZZ D(xx, ¢;) (27)
k=1j=1

subject to constraints

Zwk7j=1,k=1,...,N, (28)
N

0<> wiy <N, j=1,....,m. (29)
k=1

Here D(zy, ¢;) is the distance between z, and ¢; in the adopted arbitrary metrics.

The distance function D(zy,c;) is usually assumed to be the Minkowski LP metrics
[Pau81]

m

xkacj (Z“r’t _C]Z|p)pap2 1 (30)

where x}, ;, ¢;j; are i-th components of (n x 1)-vectors xy, ¢; respectively.
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The estimates connected with the quadratic objective functions, considered in the preced-
ing section, are optimal when the processed data belong to the class of distributions with
bounded variance. The most important representative of this class is the Gaussian distri-
bution. Varying the parameter p, we can improve the robustness property of the clustering
procedures. However, the estimation quality is determined by the distribution of data. In-
deed, the estimates corresponding to p = 1 are optimal for the Laplacian distribution, but
obtaining them requires a lot of computations.

The approximate normal distributions are a reasonable compromise [Tsy84]. They are
a mixture of a Gaussian density and a distribution of an arbitrary density, contaminating
the Gaussian distribution with outliers. The optimal objective function in this case is the
quadratic-linear, the linear part appearing as the distance from the minimum increases.

One of the most important approximate normal distribution density is the function [Tsy84]

1 oXi — C;
i,¢i) = Se(ci, si) = 5— sech” ——, 31
p(zi, ¢;) e(cq, 8;) 55, sec " (31)
where c; and s; are the parameters that define the center and width of the distribution
respectively. This function resembles the Gaussian in the vicinity of the center, but differs
with its heavy tails. The distribution (31) is connected with the objective function [HW77,
Wel77]

fi (J’Ji, Ci) = ﬂl In cosh xlﬁ_ G s (32)

4

where the parameter [3; determines the steepness of this function, which is close to the
quadratic one in the vicinity of the minimum, and tends to the linear one as the distance
from the minimum increases.

It is interesting to note that the derivative of this function is
/ T
fi(z;) = o(x;) = tanh —, (33)
Bi
which is, in fact, a standard activation function of an artificial neuron [CU93].

Using the following construct as the metrics

Ry, cj) Zfz zi(k) — cji) Zﬁl In cosh 2% lﬂ_ gi (34)

=1

we can introduce an objective function for robust clustering

N m N m n
ER( (Wk.j,¢5) Z ZwﬁjDR(xk, ¢j) = Z Zw k.j Z Biln cosh ki — i ﬁ , (35)

k=1j=1 k=1j=1
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and a corresponding Lagrange function

n

N m N m
L(wg,j,¢j, \i) = Z wad Zﬁi lncoshw + Z )\k(zwk,j - 1), (36)
k=1j=1 ¢ k=1 j=1

i=1
where )\ is an undetermined Lagrange multiplier that guarantees the fulfillment of the
constraints (28), (29). The saddle point of the Lagrange function (36) could be found

solving the following system of Kuhn-Tucker equations

8L(wk7j, Cj, )\k)

= O’
Qwr, j
aL(’wa‘, Cj, )\k) -0 (37)
O ’

chL(wk’j, Cj, )\k) =0.

Solving the first and the second equation of the system (37) leads to the well-known result

(DR (ax,¢;)) ™7

(DR (2, c0) 7 (38)
m 1 \1-8
A = —( T D aap )

Wk, 5 =

but the third one

N
Ve, L(wg,j,¢j, M) = Zw?VCjDR(xk, ¢j)=0 (39)
k=1

obviously has no analytical solution. The solution of (39) could be computed with use
of a local modification of the Lagrange function [Lo099] and the recursive fuzzy cluster-
ing algorithms [BKSO02]. Furthermore, searching the saddle point of the local Lagrange
function

Li(wgj,¢j,A\,) = waijR(xhcj) + )\k(Zwa — 1) (40)
j=1

j=1

using the Arrow-Hurwitz-Uzawa procedure gives the following algorithm:

(DB(xy, ;) =7

W, j

= 1
Z;ll(DR(wlﬁLcl()) =7 ) (41)
k(Wk,55Cjy Ak Lkyi — Ck.ji
Cht1,ji = Ch,ji — T ———g " = Cp ji + T/k)ng tanh —=——=2,
dcji ’ Gi
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where cy, j; is the i-th component of the j-th prototype vector calculated at the k-th step.

In spite of the low computational complexity of (41), it has a drawback due to the con-
straint (28) which is common to all the probabilistic fuzzy clustering algorithms.

5.2 Robust possibilistic fuzzy clustering algorithm

In the possibilistic clustering algorithms, the criterion is

m N

N m
Ef(wy g i) =YY wpl D(we,c;) =Y iy (1 —wi)? (42)

k=1j=1 j=1 k=1

Minimization of (42) with respect to wy, ;, ¢j, and p; leads to the following system of
equations

aER(wk,jv C]mu])

= 07
R 8wk’j
oF (w;w», Cj, Mj) —0 (43)
Ok ’

ijER(wk,jycjmuj) =0.

While the solution of the first two equations of the system (43) leads to the well-known
result

= (1 (5 T

Hj
N 44
o T 0, D @) @
J N Jél ?
D k=1 Wy 4
the third one
N
Ve, ER(wy j, ¢, 1j) = waVCjDR(xk, ¢j) =0 (45)
k=1

completely coincides with (39) with all the negative consequences when the metrics (34)
is used.

Introducing a local modification of (42)
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wy ;DM ag,cp) + Y (1 —w ) =
j=1

i  Incosh et — Gt Z i (1 —wy;)? (46)

Aqu

El?(wk,jycﬁﬂj)

<
Il
-

I
Pﬂs‘

<.
Il

and optimizing it using the Arrow-Hurwitz-Uzawa procedure, we obtain:

DR T, Cj ﬁi -1
Wg,j = (1 + (%) 1) )
]
aEk(U}k '76'7.“') Tk,i — Ck,ji
Ch1,gi = Chji = M= = O i + npwy, ; tanh = — =0
i 4

(47)

where the distance parameters p,, ; could be considered with respect to the second equation
of the system (44), where only & observations should used instead of the data set of size
N.

Note that the last equations of systems (41) and (47) are completely identical and are
determined only by the adopted metrics. This circumstance allows us to use any distance
metrics suitable for each particular case that will define only the tuning procedures for the
prototypes, whereas the equation for the calculation of weight remains the same.

Considered robust recursive methods could be used in the multi-pass batch mode as well
as in the on-line mode. In the latter case, the observation number £ will be the discrete
time index.

We used the proposed algorithms in the problem of data classification on a specially gener-
ated artiﬁcial data set containing three two-dimensional data clusters with samples labeled

as ’, and ’+’ (see Fig. 1). Each cluster of the dataset is distributed according to the
heavy—tailed Laplacian density

p(zi) = o(1+ (z; —c)*) 7", 48)

where o and c are the width and expectation respectively.

The data set contains 9000 samples (3000 for each cluster), divided into the training (7200
samples) and checking (1800 samples) sets.

For each of the compared algorithms, the procedure was as follows. First, the training set
was clustered using the respective algorithm and the prototypes of the clusters were found.
Then, the training and checking sets were classified according to the results of cluster-
ing. The membership of a sample to a certain cluster during the process of classification
was calculated according to the equations (9), (41), or (47) depending on the type of the
clustering algorithm that was used. The cluster to which the given sample belongs with
maximum degree of membership determines the class of that sample.
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Figure 1: Fragment of the data set: (a)Complete data set with outliers; (b)Central part of the data set

Classification and training were performed in on-line mode assuming 8 = 2, #; = 3 =
B3 = 1, nr, = 0.01. The results are shown in Table3.

Table 3: Classification results

Classification error rate

Algorithm . . :
Training Checking

Bezdek’s fuzzy c-means 17.1 % (1229 samples) | 16.6 % (299 samples)
Probabilistic robust clustering (41) | 15.6 % (1127 samples) | 15.6 % (281 samples)
Possibilistic robust clustering (47) | 15.2 % (1099 samples) | 14.6 % (263 samples)

The drawback of fuzzy clustering methods based on the quadratic objective function could
be visually shown by plotting the obtained prototypes over the data set. From Fig. 2 it
could be easily seen that the cluster centers (prototypes) obtained using Bezdek’s fuzzy c-
means algorithm are displaced from the visual cluster centers due to the heavy-tailed distri-
bution density of observations, in contrast to the robust objective function-based methods
(41) and (47) which found the cluster prototypes more accurately. This is confirmed by
lower classification error rates as shown in Table 3.

6 Conclusion

Computational Inteligence is a powerful methodology for a wide range of data analysis
problems. The constantly growing number of successful applications of these techniques
in the field of data analysis confirms the versatility of this approach. Examples are finan-
cial forecasting [TT], pattern identification in gene expression data [WWO00, BPDBO1],
industrial applications [Dat], etc.
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Figure 2: Cluster prototypes layout obtained by different learning algorithms

At the same time, the problems that arise in information processing, complicate the use of
the existing algorithms, and demand the development of new tools.
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