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Abstract: Keystroke dynamics analysis has been applied successfully to password or
fixed short texts verification as a means to reduce their inherent security limitations,
because their length and the fact of being typed often makes their characteristic tim-
ings fairly stable. On the other hand, free text analysis has been neglected until recent
years due to the inherent difficulties of dealing with short term behavioral noise and
long term effects over the typing rhythm. In this paper we examine finite context
modeling of keystroke dynamics in free text and report promising results for user veri-
fication over an extensive data set collected from a real world environment outside the
laboratory setting that we make publicly available.

1 Introduction

Keystroke dynamics modeling has been applied to password verification as a means to

reduce their inherent security limitations. Though its classification performance might

not reach those of other biometric schemes making it unsuitable for international security

standards, some reported results are outstanding considering how noisy the source data

can be and how little extra effort is required for deployment.

Passwords and fixed short texts fit well the general framework of keystroke dynamics;

being short sequences typed in a row and repeated often, their characteristic timings tend

to be fairly stable in a broad sense. Free text does not enjoy the same privileges. Typing

errors, corrections, misspellings, interruptions, pauses to think and attention lapses which

are impossible to predict poison the source timing data. What is more, short term variations

due to daily tiredness, stress or emotional shifts and long term effects of health and typing

skills reeducation are strictly unavoidable. Due to the mentioned difficulties, the problem

of free text analysis of keystroke dynamics has only began to be attacked recently [GP05]

and in rather controlled conditions. In this paper1we examine finite context modeling of

keystroke dynamics in free text and report promising results. The general framework we

used admits many implementation parameters and selection strategies; their effects on

classification performance are studied.

1The full length version of this paper can be found at http://lsia.fi.uba.ar/papers/gonzalez15.pdf
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2 Theoretical considerations and common techniques

The most commonly used characteristic parameters are hold time -latency between key

press and release-, wait time -latency between key release and next key press- and flight

time -latency between successive key press events-; to a lesser extent, average typing speed

and probability of error or usage frequency of backspace and delete. Usually, timing be-

tween consecutive keys -called digraphs- are used but occasionally latencies of bigger

groups are chosen [BGP02].

Verification of static passwords, usually in the range of eight to twenty characters long,

starts by forming a characteristic vector containing the sequence of values for one or more

of the aforementioned parameters, measured during the password entry. The characteristic

vector is compared with a pattern vector which is the result of a training process where the

same password is entered multiple times. The pattern vector generally contains informa-

tion on the sample mean, variance and eventually the shape of the adjustment function for

all the parameters measured at each keystroke of the password.

Almost every technique for classification and machine learning has been tried for the anal-

ysis of keystroke dynamics, ranging from simple metric spaces and k-NN to state of the art

classifiers like SVM or random forests; artificial neural networks, fuzzy logic and genetic

algorithms have been tried too, with results not as promising. Killourhy and Maxion’s

review [KM09] has become a classic; an updated one can be found at [KAK11].

Two simple metrics are generally used to grade the quality of biometric systems, including

keystroke dynamics modeling: false acceptance rate and false rejection rate. When a sin-

gle metric is required for comparison, the equal error rate is preferred. Different reporting

methodologies in the literature have hindered the cross comparison of results, a problem

which is worsened by the diversity of acquisition protocols, data set size, depth or time

span, and implementation parameters like minimum required observations for training or

classifier threshold. See [GEAHR11] for a detailed review and methodological critique of

past studies. We emphasize the lack of public real world data for evaluation, as opposed to

that captured in a laboratory setting that artificially diminishes expected variations in the

typing rhythm.

Though some isolated attempts were made at tackling its problems, keystroke dynamics

analysis of free text has been elusive until recent years [MMCA11]. An original distance

metric [GP05] using the degree of disorder of a latencies vector for n-graphs has shown

promising classification performance and high tolerance to variations in typing rhythms.

3 Finite context modeling

The motivation behind the usage of finite contexts for modeling keystroke dynamics is

based on the fact that prediction by partial matching [CW84] is one the best perform-

ing schemes -and asymptotically optimal- for natural language compression. Given that

continuous use of a terminal involves extended usage of natural or artificial languages,

a similar approach can be expected to be suitable to predict characteristic parameters of

keystroke dynamics.
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3.1 General modeling framework

A partition P is a sequence k0...km of key identifiers, codified in a hardware and software

independent way to avoid variations due to differences in regional configuration if the

sessions are captured in different terminals; a session or input text T is a sequence of

partitions and a training text is a sequence of sessions. The n-order finite context Cn
j of

the j-th key kj -called leading- in a partition P is the sequence kj−nkj−n+1...kj−2kj−1

of n preceding key identifiers. For each characteristic parameter p -hold time, wait time,

flight time, applied force or possibly others-, each context C that appears in the training set

of a user u and its leading key k, a keystroke model Mu(p, C, k) is created. The set U of

all models Mu is called the user model. The structure of specific keystroke models is open

and implementation dependent, being able to provide to the classifier meaningful statistical

information about the sampled distribution of timing data for the parameter, context and

key. Actually we used models that provided sampled mean and standard deviation, as well

as being able to detect outliers using tail probabilities without assuming an underlying

normal distribution. However, testing a different set of classifiers or refining techniques

might require additional capabilities from the models.

3.2 Partitioning and filtering

As the full session content is not generally typed continuously but includes arbitrary

pauses, it is split in partitions before being fed to the trainer or classifier with the purpose

of restarting the contexts to zero length. A combined strategy was used to partition the

text whenever the flight time exceeded a certain fixed threshold or three times the simple

moving average for the previous flight times in the partition. Manual inspection showed

the criteria matched partitions to humanly perceived pauses in typing; testing more com-

plex strategies did not improve classification metrics. It was found that considering timing

data of certain special keys -including modifiers (shift, ctrl, alt), navigation (arrows, page

up, page down) and correctors (backspace and delete)- worsened the classifier’s perfor-

mance even though their consideration in the contexts of the next keystrokes improved

it. Consequently, their timings but not the keystrokes themselves are removed from the

characteristic vector of the session being classified together with the digraph delays of the

next keystroke.

3.3 Pattern vector reconstruction and classification

It can be assumed in general that not enough repetitions of the input text -free and thus

unpredictable- will be found in the training set, if it can be found at all. Thus, to feed a

pattern vector to the classifier so it can be compared with the characteristic timing vector

of the input text, the former must be reconstructed from the keystroke models in U . For

every keystroke ki in the input text and every characteristic parameter p, one of the models
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Mu(p, C, kj) is chosen for C in C0
j to C

j
j . The best strategy is not necessarily the obvious

one of picking the longest available context; the order of the optimal predicting context

can vary dynamically and, surprisingly, can be much shorter than expected. Also, not all

the parameters p might be meaningful at all times and some can be excluded from the

recreated pattern vector (i.e. the first key in every partition can only have an empty context

and a single meaningful parameter, hold time). Using an expected vector pattern rebuilt

from fragments of training texts does not introduce explicit constraints to classifiers like

distance metrics and outlier counting. Unluckily, adapting state of the art classifiers like

random forests or SVM to the task does not seem trivial. For this experiment we tested

only the aforementioned; a clever scheme using the latter ones can probably improve over

our results.

3.4 Experimental setup

The data set for the evaluation of the proposed method contains 17158 sessions from 146

users spanning a five months period; the sessions contain up to 10013 keystrokes and an

average of 743 keystrokes. Intervals between typing sessions of a certain user can range

from hours to days. Sessions were not collected in a special purpose or laboratory setting

but were live recorded from daily work with written consent of those involved and their

employers; thus, noise factors affecting typing cadences such as interruptions, attention

lapses and short and long term emotional, mood or health variations of the individuals

are not excluded. Different keyboards with different regional configurations were used,

even by the same individuals. The collecting application whose original purpose was to

create written reports of professional activities was modified to record keystroke timing;

the content does not include personal data or activity trails of the participants. Users’

positions are not computer related except for the mentioned purpose of report writing and

their typing skills vary from mediocre to excellent, without single finger typists. For each

session the timing of key down and key up events were recorded with a precision of 1

millisecond and the presumed user identity, previously authenticated with a passphrase, is

included.

In order to encourage collaboration, independent verification of the presented results and

further research of keystroke dynamics in realistic scenarios, we make the data set publicly

available at the laboratory website and promise to update it as it grows. While most public

data sets focus on repetitions of similar strings by the same or different users, we are not

aware at the moment of writing this article of any other with this size consisting purely

of extended free text without repetitions, except [MMCA11] which is about one third the

size of ours but spans a longer period of twelve months.

4 Implementation and results

All users with at least 200 sessions were selected for evaluation while the rest were kept

only as impostors; 18 users had enough sessions to be evaluated. For every legitimate
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Figure 1: Detailed classifier performance. Left, left side of the ROC curve. Right, FAR and FRR
versus tolerance. Best, worst and average user results for the best strategies combination.

user under evaluation, their first 150 sessions were used as the initial training set to build

their keystroke dynamics profile; the remaining sessions where used as challenges, both

legitimate and fake, in the same chronological order in which they were captured. After

recording the classification result from a legitimate session, its content was used to update

the user model.

Due to computational power constraints, a maximum context order of 6 was used; in spite

of this limitation, the optimum classification performance seems to be reached around an

order of 4. Using less than 100 sessions for the initial training degrades the performance of

the method rather fast so a reasonable margin of 150 was chosen; identically, a minimum

of 50 legitimate evaluation sessions was used to avoid meaningless variations in the false

rejection rate if just a few were misclassified. The observed parameters were hold time,

wait time and flight time.

Following [Kil12] we do not consider a certain method to have an EER pointwise defined

but randomly distributed; thus, results are reported as average EER together with their

standard deviation, maximum and minimum values for the considered users. The best

results, with an average EER of 7.56% -minimum of 3.49%, maximum of 13.58%- and

a standard deviation of 3.58 were obtained with the combination of choosing the longest

available context as model selection strategy, updating models with an exponential moving

average, requiring only 10 observations before considering a model valid and estimating

the best classifier after 100 evaluation sessions. A detailed plot of FAR and FRR versus

tolerance (calculated as fraction of maximum allowed distance or outlier count percentage

threshold before rejection) and ROC curves for the best, worst and average user results

is shown in figure 1. The results for other combinations of strategies mentioned in this

section are shown in table 1.

Three averaging strategies were tested to assess the impact on classification metrics of

model updating in addition to a base case where models were not updated after initial

training: averaging over all past observations, simple (n = 50) and exponential (α = 0.98)

moving averages. EERs by maximum context order are shown in figure 2. As expected,

updating strategies beat the static base case and their performance improves with the im-

portance given to recent observations, making the exponential moving average the best.
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Figure 2: Comparison of model updating and
averaging strategies.
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Figure 3: Effect of minimum required model ob-
servations on EER for both update strategies.

The minimum required observations to consider a certain model valid is an implementation

parameter with influence over the classification performance not only due to the assumed

convergence speed of the models but also because of the early availability of higher order

models in the classification process, and their updating speed. It is generally claimed that

a minimum of 20 observations is required because of the normality assumptions of the un-

derlying variables; however, figure 3 shows that as little as 10 observations are enough to

reach optimum or almost optimum EER values with the context selection strategies evalu-

ated next and that increasing their minimum number is slightly but steadily harmful.

A comparison of two context selection strategies shows that the simplest one, selecting

for every key kj the longest available context, outperforms for every order the strategy of

choosing from C0
j to CMAX

j the one that gives the model with the smallest variance.

As expected, the choice of classifier has a noticeable effect on performance. The aver-

age results by maximum context order are shown in figure 4 for euclidean distance, out-

lier count and Manhattan distance, which are named in ascending order of achievement;

longest available context and 10 minimum required observations per model were used. It

has been shown [Kil12] that the classifier which consistently gives best results is user de-

pendent and not necessarily the one with the best average. Surprisingly, this phenomenon

can be exploited with ease to improve classification metrics by splitting the evaluation set

and using some sessions -ignoring their results not to bias the reports- for a second training

phase that estimates which classifier will outperform the others for that user. We used 50

legitimate sessions and 50 impostor ones for that purpose; even though the best classifier

for a certain user was not always chosen, selecting the classifier on a per user basis outper-

formed every single one on average.

Looking for predictors of classifier performance, it was found that the average of the sam-

ple standard deviation for all models is highly correlated to the first. In figure 5 the EER

of each user for the best performing scheme is plotted against the predictor, together with

a simple regression line. Different approaches like averaging only over the standard de-

viation of zero order models and over the mean hold time, flight time or both, also show

some correlation but not as clearly meaningful as the initial approach.
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Figure 4: Comparison of basic classifiers and
estimated best on a per user basis.
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Figure 5: Regression of flight time standard devi-
ation as a predictor of classification performance.

Observations Order Context Classifier Average EER St. Dev. Min Max

≥ 10 ≤ 4 Longest Estimated best 7.56% 3.58 3.49% 13.58%

≥ 10 ≤ 6 Longest Estimated best 7.73% 3.89 3.26% 14.11%

≥ 10 ≤ 6 Longest Manhattan 8.63% 3.65 3.58% 14.29%

≥ 50 ≤ 6 Longest Estimated best 8.66% 4.79 2.93% 16.17%

≥ 10 ≤ 6 Longest Outlier count 9.99% 6.25 3.26% 23.76%

≥ 10 ≤ 6 Min. var. Estimated best 10.64% 5.7 3.36% 20.40%

≥ 10 ≤ 6 Longest Euclidean 15.31% 6.47 7.05% 26.14%

Table 1: Ranking of results

The general framework presented in this article admits extensions that were not evalu-

ated and some questions remain unanswered. Can a smarter parameter weighting scheme

improve classification performance? Are there better context selection or weighting strate-

gies than those tested? Obviously, state of the art classifiers can beat distance metrics, but

how to adapt them to the current scheme is not evident. Particularly, the unexpected re-

sults of outlier counts, which surpass euclidean distance -an excellent ranker for static

passwords-, points to the fact that specific features of a reduced set of keystrokes might

be more important than average deviation from a trained pattern vector. Feature extraction

has already proved useful for static passwords before [YC03] and could scale well for free

text. Consideration of additional biometrics characteristics which can be successfully ex-

tracted from the data with more confidence than identity (i.e. handedness or special key

usage patterns) could boost performance of classifiers like random forests.

Finally, as the average of the sample standard deviation for all models is highly correlated

with performance, we think the main path to improve the latter is identifying the sources

of noise and removing their correlation from the main data. Stress levels, at least, seem

to drift key latencies predictably [VZS09]; decorrelating the short term variation might

reduce classification errors.
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5 Conclusion

In this study we have shown the feasibility of user identity verification through keystroke

dynamics analysis of free texts captured in a noisy real world environment; the data set

was made public to encourage further research in the topic. The performance cannot com-

pete with other biometric systems but has the advantage of being completely transparent

and not requiring additional hardware or user actions; however, considering the additional

difficulties in comparison with static password verification, our method seems promising

and still has room for further improvements. Adapting models to short and long term

variations in typing rhythms has proven critical to improve performance, as much as con-

sidering individual users as particular sources the classifiers need to adapt to. On the other

hand, uncertainties in individual typing rhythms have been shown to be excellent predic-

tors of performance and, as such, the ultimate limit to improvements. We consider this fact

proves that keystroke dynamics, not only in fixed short texts but also during unconstrained

typing, are rather unique for each user and that finite context modeling captures its essen-

tial features. Thus, our future research lines will focus on identifying noise sources of the

timing characteristics to mitigate their negative effects on classification.
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