

Gregor Engels, Regina Hebig,
Matthias Tichy (Hrsg.)

Software Engineering 2023

Fachtagung des GI-Fachbereichs Softwaretechnik

20.-24. Februar 2023
Paderborn

Gesellschaft für Informatik e.V. (GI)

Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-332

ISBN 978-3-88579-726-5
ISSN 1617-5468

Volume Editors
Prof. Dr. Gregor Engels
 Universität Paderborn
 Zukunftsmeile 2, 33102 Paderborn, Germany
 engels@upb.de

Dr. Regina Hebig
 Chalmers | University of Gothenburg
 Teknikgatan 7, 417 56 Göteborg, Sweden
 rhebig@acm.org

Prof. Dr. Matthias Tichy
 Universität Ulm
 Albert-Einstein-Allee 11, 89069 Ulm, Germany
 matthias.tichy@uni-ulm.de

Series Editorial Board
Andreas Oberweis, KIT Karlsruhe,
(Chairman, andreas.oberweis@kit.edu)
Torsten Brinda, Universität Duisburg-Essen, Germany
Dieter Fellner, Technische Universität Darmstadt, Germany
Ulrich Flegel, Infineon, Germany
Ulrich Frank, Universität Duisburg-Essen, Germany
Michael Goedicke, Universität Duisburg-Essen, Germany
Ralf Hofestädt, Universität Bielefeld, Germany
Wolfgang Karl, KIT Karlsruhe, Germany
Michael Koch, Universität der Bundeswehr München, Germany
Peter Sanders, Karlsruher Institut für Technologie (KIT), Germany
Andreas Thor, HFT Leipzig, Germany
Ingo Timm, Universität Trier, Germany
Karin Vosseberg, Hochschule Bremerhaven, Germany
Maria Wimmer, Universität Koblenz-Landau, Germany

Dissertations
Rüdiger Reischuk, Universität Lübeck, Germany
Thematics
Agnes Koschmider, Universität Kiel, Germany
Seminars
Judith Michael, RWTH Aachen, Germany

 Gesellschaft für Informatik, Bonn 2023
printed by Köllen Druck+Verlag GmbH, Bonn

This book is licensed under a Creative Commons BY-SA 4.0 licence.

https://creativecommons.org/licenses/by-sa/4.0/

Vorwort
Herzlich willkommen zur Fachtagung Software Engineering 2023 (SE23) des Fachbe-
reichs Softwaretechnik der Gesellschaft für Informatik (GI). Die jährliche Tagung des
Fachbereichs Softwaretechnik der GI hat sich als Plattform für den Austausch und die
Zusammenarbeit in allen Bereichen der Softwaretechnik im deutschsprachigen Raum
etabliert. Dabei spricht die Tagung sowohl Softwareentwickler*innen aus der Praxis als
auch Forscher*innen aus dem akademischen Umfeld an, um einen Austausch der neuesten
akademischen Erkenntnisse als auch aktueller industrieller Trends und Praktiken zu er-
möglichen.

Die SE23 präsentiert im wissenschaftlichen Hauptprogramm ein “Best-of” der internatio-
nal in Fachzeitschriften und Konferenzen veröffentlichten Arbeiten deutschsprachiger Au-
tor*innen. Die angenommenen wissenschaftlichen Beiträge decken dabei ein weites
Spektrum des Software Engineering ab, das sich in einem vielfältigen Programm wider-
spiegelt. Darüber hinaus sind alle Daten und Artefakte der Arbeiten öffentlich verfügbar.
Bei Fällen, in denen das nicht möglich ist, ist eine Begründung angegeben. Auf diese
Weise wird ein wichtiges Prinzip der transparenten Wissenschaft berücksichtigt. Dieses
Jahr gab es für das Hauptprogramm 65 Einreichungen, von denen 52 akzeptiert wurden.

Die SE23 bietet neben dem wissenschaftlichen Hauptprogramm auch noch die folgenden
Tracks:

● Student Research Competition
● Industrieprogramm
● Ernst Denert Software-Engineering-Preis

Schließlich wird die Tagung durch fünf im Rahmen der SE23 organisierte Events (drei
Workshops und zwei Konferenzen) ergänzt, in denen weitere Themen diskutiert werden:

● deRSE 23 – Conference for Research Software Engineering in Germany
● SEUH 2023 – Software Engineering im Unterricht der Hochschulen
● 5. Workshop für Avionics Systems- und Software-Engineering (AvioSE’23)
● 4. Workshop: Anforderungsmanagement in Enterprise Systems-Projekten

(AESP'23)
● 20. Workshop Automotive Software Engineering (ASE'23)

Wir danken allen, die zum Gelingen der Tagung beigetragen haben, insbesondere den Au-
tor*innen, den Gutachter*innen, den Keynote-Speakern, den Organisator*innen der
Workshops und Tracks, den Teilnehmer*innen, den Sponsoren, der Stadt Paderborn und
der GI e.V., Proceedings Chair Enes Yigitbas, Publicity Chair Kerstin Sellerberg und für
die lokale Organisationsunterstützung durch Gabriele Stall, dem SICP – Software Innova-
tion Campus Paderborn sowie allen Helfer*innen, die die Durchführung der Tagung er-
möglicht haben.

Paderborn, im Februar 2023

Gregor Engels, Regina Hebig und Matthias Tichy

Sponsoren

Wir danken den folgenden Unternehmen und Institutionen für die Unterstützung der Fach-
tagung Software Engineering 2023:

Platin-Sponsoren

 CQSE GmbH dSPACE GmbH
 Centa-Hafenbrädl-Straße 59 Rathenaustraße 26
 81249 München 33102 Paderborn
 Webseite: www.cqse.eu Webseite: www.dspace.com

 S&N Invent GmbH UNITY AG
 Klingenderstraße 5 Lindberghring 1
 33100 Paderborn 33142 Büren
 Webseite: www.sn-invent.de Webseite: www.unity.de

 Weidmüller GmbH & Co KG
 Klingenbergstraße 26
 32758 Detmold
 Webseite: www.weidmueller.de

Gold-Sponsoren

 adesso SE Connext Communication GmbH
 Adessoplatz 1 Balhorner Feld 11
 44269 Dortmund 33106 Paderborn
 Webseite: www.adesso.de Webseite: www.connext.de

 DATEV eG MaibornWolff GmbH
 Paumgartnerstraße 6-14 Theresienhöhe 13
 90429 Nürnberg 80339 München
 Webseite: www.datev.de Webseite: www.maibornwolff.de

 msg systems ag Porsche Digital GmbH
 Robert-Bürkle-Straße 1 Grönerstraße 11/1
 85737 Ismaning 71636 Ludwigsburg
 Webseite: www.msg.group Webseite: www.porsche.digital

 WPS – Workplace Solutions GmbH
 Hans-Henny-Jahnn-Weg 29
 22085 Hamburg
 Webseite: www.wps.de

Silber-Sponsoren

 Accso – Accelerated Solutions GmbH Finanz Informatik GmbH & Co. KG
 Hilpertstraße 12 Theodor-Heuss-Allee 90
 64295 Darmstadt 60486 Frankfurt a. M.
 Webseite: www.accso.de Webseite: www.f-i.de

 myconsult GmbH
 Geseker Str. 5
 33154 Salzkotten
 Webseite: www.myconsult.de

Supporter

 Universität Paderborn | SICP – Software Innovation Campus Paderborn
 Zukunftsmeile 2
 33102 Paderborn
 Webseiten: www.upb.de, www.sicp.de

 Stadt Paderborn
 Am Abdinghof 11
 33098 Paderborn
 Webseite: www.paderborn.de

Tagungsleitung

Gesamtleitung: Gregor Engels, Universität Paderborn

Leitung des Programmkomitees: Regina Hebig, Chalmers | University of Gothenburg
 Matthias Tichy, Universität Ulm

Industrie: Carola Lilienthal, WPS – Workplace Solutions GmbH
 Stefan Sauer, SICP | Universität Paderborn

Workshops: Iris Groher, Johannes Kepler Universität Linz
 Thomas Vogel, Humboldt-Universität zu Berlin

Publicity: Kerstin Sellerberg, Universität Paderborn

Proceedings: Enes Yigitbas, Universität Paderborn

RSE Local Chair: Daniel Röwenstrunk, Universität Paderborn

PC Young Researchers: Rebekka Wohlrab, Chalmers | University of Gothen-

burg
 Robert Heinrich, Karlsruher Institut für Technologie

Programmkomitee

Sven Apel Universität des Saarlandes
Eric Bodden Universität Paderborn
Ruth Breu Universität Innsbruck
Michael Felderer Universität Innsbruck
Sabine Glesner Technische Universität Berlin
Lars Grunske Humboldt-Universität Berlin
Paula Herber Westfälische Wilhelms-Universität Münster
Marie-Christine Jakobs Technische Universität Darmstadt
Timo Kehrer Universität Bern
Jil Ann-Christin Klünder Leibniz Universität Hannover
Leen Lambers BTU Cottbus-Senftenberg
Grischa Liebel Reykjavik University
Michael Pradel Universität Stuttgart
Jan Oliver Ringert Bauhaus-Universität Weimar
Christoph Seidl IT University of Copenhagen
Gabriele Taentzer Philipps-Universität Marburg
Manuel Wimmer Johannes Kepler Universität Linz
Rebekka Wohlrab Chalmers | University of Gothenburg
Uwe Zdun Universität Wien

Inhaltsverzeichnis

Keynotes

Ina Schaefer
Quantum Software Engineering – Quo Vadis? ... 19

Alexander Serebrenik
Diversity and Inclusion in Software Engineering ... 21

Stefan Wagner
Software-Engineering-Fortbildung für Studierende und Industrie 23

Mahdi Manesh
Leadership for Software Engineers in Practice: An Industrial Experience Report 25

Wissenschaftliches Hauptprogramm

Julius Adelt, Timm Liebrenz, Paula Herber
Formal Verification of Intelligent Hybrid Systems that are modeled with Simulink and
the Reinforcement Learning Toolbox .. 29

Rand Alchokr, Jacob Krüger, Yusra Shakeel, Gunter Saake, Thomas Leich
Peer-Reviewing and Submission Dynamics Around Top Software-Engineering Venues:
A Juniors’ Perspective .. 31

Dorina Bano, Judith Michael, Bernhard Rumpe, Simon Varga, Mathias Weske
Synthesizing of Process-Aware Digital Twin Cockpits from Event Logs 33

Djonathan Barros, Sven Peldszus, Wesley K. G. Assunção, Thorsten Berger
Editing Support for Software Languages: Implementation Practices in Language
Server Protocols .. 35

Dirk Beyer, Jan Haltermann, Thomas Lemberger, Heike Wehrheim
Component-based CEGAR - Building Software Verifiers from Off-the-Shelf
Components ... 37

Paul Bittner, Christof Tinnes, Alexander Schultheiß, Sören Viegener, Timo
Kehrer, Thomas Thüm
Classifying Edits to Variability in Source Code - Summary ... 39

Leif Bonorden, Matthias Riebisch
API Deprecation: A Systematic Mapping Study .. 41

Thomas Buchmann, Matthias Bank, Bernhard Westfechtel
BXtendDSL: A layered framework for bidirectional model transformations combining
a declarative and an imperative language (Summary) ... 43

Marian Daun, Jennifer Brings, Lisa Krajinski, Viktoria Stenkova, Torsten
Bandyszak
iStar-Erweiterung für kollaborative cyber-physische Systeme...................................... 45

Marian Daun, Jennifer Brings, Marcel Goger, Walter Koch, Thorsten Weyer
Model-based Requirements Engineering in Industry: Experiences from Training and
Application .. 47

Marian Daun, Jennifer Brings, Patricia Aluko Obe, Viktoria Stenkova
Zuverlässigkeit studentischer Selbsteinschätzungen zur Vorhersage der Leistung im
Software Engineering .. 49

Kevin Feichtinger, Chico Sundermann, Thomas Thüm, Rick Rabiser
It’s Your Loss: Classifying Information Loss During Variability Model Roundtrip
Transformations .. 51

Felix Feit, Andreas Metzger, Klaus Pohl
Explainable Online Reinforcement Learning for Adaptive Systems 53

Hendrik Göttmann, Birte Caesar, Lasse Beers, Malte Lochau, Andy Schürr,
Alexander Fay
Precomputing Reconfiguration Strategies based on Stochastic Timed Game Automata
 .. 55

Katharina Großer, Volker Riediger, Jan Jürjens
Requirements document relations: A reuse perspective on traceability through
standards ... 57

Sören Henning, Wilhelm Hasselbring
Benchmarking Scalability of Cloud-Native Applications .. 59

Steffen Herbold, Tobias Haar
Smoke testing for machine learning: simple tests to discover severe bugs 61

Steffen Herbold, Alexander Trautsch, Fabian Trautsch, Benjamin Ledel
Problems with with SZZ and Features: An empirical assessment of the state of practice
of defect prediction data collection ... 63

Ben Hermann, Stefan Winter, Janet Siegmund
Community Expectations for Research Artifacts and Evaluation Processes 65

Marc Hermann, Martin Obaidi, Larissa Chazette, Jil Klünder
Summary about the Subjectivity of Emotions in Software Projects: How Reliable are
Pre-Labeled Data Sets for Sentiment Analysis? .. 67

Jörg Holtmann, Julien Deantoni, Markus Fockel
Early Timing Analysis based on Scenario Requirements and Platform Models
(Extended Abstract) ... 69

Arut Prakash Kaleeswaran, Arne Nordmann, Thomas Vogel, Lars Grunske
A systematic literature review on counterexample explanation -- Summary 71

Jil Klünder, Oliver Karras
Meetings and Mood -- Related or Not? Insights from Student Software Projects
(Summary) ... 73

Marco Konersmann, Angelika Kaplan, Thomas Kühn, Robert Heinrich, Anne
Koziolek, Ralf Reussner, Jan Jürjens, Mahmood Al-Doori, Nicolas Boltz, Marco
Ehl, Dominik Fuchß, Katharina Großer, Sebastian Hahner, Jan Keim, Matthias
Lohr, Timur Sağlam, Sophie Schulz, Jan-Philipp Töberg
Evaluation Methods and Replicability of Software Architecture Research Objects 75

Alexander Krause-Glau, Malte Hansen, Wilhelm Hasselbring
Collaborative Program Comprehension in Extended Reality 77

Christian Kröher, Moritz Flöter, Lea Gerling, Klaus Schmid
Incremental Software Product Line Verification - A Performance Analysis with Dead
Variable Code ... 79

Marco Kuhrmann, Juergen Muench, Jil Klünder
Hacking or Engineering? Towards an Extended Entrepreneurial Software Engineering
Model .. 81

Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thüm, Gunter
Saake
Tseitin or not Tseitin? The Impact of CNF Transformations on Feature-Model
Analyses .. 83

Elias Kuiter, Sebastian Krieter, Jacob Krüger, Gunter Saake, Thomas Leich
variED: An Editor for Collaborative, Real-Time Feature Modeling 85

Tobias Lorey, Paul Ralph, Michael Felderer
Social Science Theories in Software Engineering Research ... 87

Clara Marie Lüders, Abir Bouraffa, Tim Pietz, Walid Maalej
Understanding and Predicting Typed Links in Issue Tracking Systems 89

Lloyd Montgomery, Davide Fucci, Abir Bouraffa, Lisa Scholz, Walid Maalej
Empirical research on requirements quality: a systematic mapping study 91

Julian von der Mosel, Alexander Trautsch, Steffen Herbold
On the validity of pre-trained transformers for natural language processing in the
software engineering domain .. 93

Marcus Nachtigall, Michael Schlichtig, Eric Bodden
Evaluation of Usability Criteria Addressed by Static Analysis Tools on a Large Scale
 .. 95

Hoang Lam Nguyen, Lars Grunske
BeDivFuzz: Integrating Behavioral Diversity into Generator-based Fuzzing —
Summary ... 97

Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, Timo Kehrer
A Summary of ReVision: History-based Model Repair Recommendations 99

Felix Pauck, Heike Wehrheim
Jicer: Simplifying Cooperative Android App Analysis Tasks 101

Cedric Richter, Jan Haltermann, Marie-Christine Jakobs, Felix Pauck, Stefan
Schott, Heike Wehrheim
Variable Misuse Detection: Software Developers versus Neural Bug Detectors 103

Michael Schlichtig, Steffen Sassalla, Krishna Narasimhan, Eric Bodden
Introducing FUM - A Framework for API Usage Constraint and Misuse Classification
 .. 105

Stefan Schott, Felix Pauck
GenBenchDroid: Fuzzing Android Taint Analysis Benchmarks 107

Alexander Schultheiß, Paul Maximilian Bittner, Thomas Thüm, Timo Kehrer
Quantifying the Potential to Automate the Synchronization of Variants in Clone-and-
Own - Summary ... 109

Arnab Sharma, Vitalik Melnikov, Eyke Hüllermeier, Heike Wehrheim
Property-Driven Black-Box Testing of Numeric Functions .. 111

Dominic Steinhöfel, Andreas Zeller
Input Variants ... 113

Patrick Stöckle, Theresa Wasserer, Bernd Grobauer, Alexander Pretschner
Automatisierte Identifikation von sicherheitsrelevanten Konfigurationseinstellungen
mittels NLP .. 115

Bastian Tenbergen, Thorsten Weyer
Generating Review Models to Validate Safety-Critical Systems 117

Steffen Tunkel, Steffen Herbold
Exploring the relationship between performance metrics and cost saving potential of
defect prediction models ... 119

Thomas Vogel, Chinh Tran, Lars Grunske
A comprehensive empirical evaluation of generating test suites for mobile applications
with diversity -- Summary ... 121

Maximilian Walter, Robert Heinrich, Ralf Reussner
Identifizierung von Vertraulichkeitsproblemen mithilfe von Angriffsausbreitung auf
Architektur .. 123

Laura Wartschinski, Yannic Noller, Thomas Vogel, Timo Kehrer, Lars Grunske
VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase for
Python -- Summary .. 125

Marion Wiese, Paula Rachow, Matthias Riebisch, Julian Schwarze
Preventing technical debt with the TAP framework for Technical Debt Aware
Management .. 127

Jeffrey M. Young, Paul Maximilian Bittner, Eric Walkingshaw, Thomas Thüm
Variational Satisfiability Solving: Efficiently Solving Lots of Related SAT Problems -
Summary ... 129

Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella
DeepHyperion: Exploring the Feature Space of Deep Learning-Based Systems through
Illumination Search ... 131

Workshops

Christoph Weiss, Johannes Keckeis
Anforderungsmanagement in Enterprise Systems-Projekten (AESP’23) 135

Stefan Kugele, Lars Grunske
20th Workshop on Automotive Software Engineering (ASE’23) 137

Bjoern Annighoefer, Andreas Schweiger, Stéphane Poulaine
5th Workshop on Avionics Systems and Software Engineering (AvioSE’23) 139

Keynotes

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 19

Quantum Software Engineering – Quo Vadis?
Ina Schaefer1

Abstract: Quantentechnologien und insbesondere Quantencomputing versprechen die ef-
fiziente Lösung rechenintensiver Probleme, die auf klassischer Hardware nicht oder nicht
effizient gelöst werden können. Bisher liegt ein großer Fokus in der Forschung auf der
Entwicklung skalierbarer und fehlertoleranter Quantenhardware Während diese Hardware
jetzt zunehmend verfügbar wird, wird diese Hardware jedoch erst effizient nutzbar, wenn
auch in der Software gleichermaßen Fortschritte gemacht werden. So wie im klassischen
Computing die Wertschöpfung durch Software entsteht, wird auch im Quantencomputing
der wirkliche Nutzen erst durch entsprechende Software und Anwendungen entstehen. Es
gibt bereits eine Reihe von Assembler- und Gatter-orientierten Sprachen, sowie Simula-
toren, mit denen (einfache) Quantenalgorithmen entwickelt und erprobt werden können.
Jedoch fehlt es an höheren Programmiersprachen und -werkzeugen, zugehörigen Compi-
lern für komplexe (hybride) Quanten-Rechnerarchitekturen und Software-Entwicklungs-
methoden für den Entwurf von Quantenalgorithmen, sowie an Vorgehensweisen für die
Strukturierung oder die Qualitätssicherung der entwickelten Quantensoftware. In diesen
Vortrag zeige ich auf, wie durch das Software Engineering die notwendigen Beiträge ge-
leistet werden können, um die Weiterentwicklung des Quantencomputings in die breitere
Anwendung und die zukünftige Wertschöpfung der Quantentechnologie zu ermöglichen.

Keywords: Quantencomputing, Software Engineering, Quantentechnologie

1Karlsruher Institut für Technologie (KIT), Am Fasanengarten 5, 76131 Karlsruhe, ina.schaefer@kit.edu

20 Ina Schaefer

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 21

Diversity and Inclusion in Software Engineering
Alexander Serebrenik1

Abstract: Community smells are patterns indicating suboptimal organization and com-
munication of software development teams that have been shown to be related to subopti-
mal organisation of the source code. Given a long standing association of women and
communication mediation, we have conducted a series of studies relating gender diversity
to community smells, as well as comparing the results of the data analysis with developers'
perception. To get further insights in the relation between gender and community smells,
we replicate our study focusing on the Brazilian software teams; indeed, culture-specific
expectations on the behavior of people of different genders might have affected the per-
ception of the importance of gender diversity and refactoring strategies when mitigating
community smells. Finally, we extend the prediction model by including variables related
to national diversity and see how the interplay between national diversity and gender di-
versity influences presence of community smells.

This talk is based on a series of papers published in 2019-2022 and co-authored with
Gemma Catolino, Filomena Ferrucci, Stefano Lambiase, Tiago Massoni, Fabio Palomba,
Camila Sarmento, and Damian Andrew Tamburri.

Keywords: Diversity, Inclusion, Software Engineering

1Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, a.serebrenik@tue.nl

22 Alexander Serebrenik

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 23

Software-Engineering-Fortbildung für Studierende und In-
dustrie
Stefan Wagner1

Abstract: Die digitale Transformation aller Lebensbereiche und Industrien ist in vollem
Gange und benötigt viele Fachkräfte. Die aktuellen Hochschulabsolvent*innen decken
diesen Bedarf bei weitem nicht. Durch Umwälzungen in anderen Bereichen, wie beispiels-
weise der Elektrifizierung in der Mobilität, werden dagegen andere Kompetenzen nicht
mehr gebraucht. Stattdessen sind Kompetenzen in Software und Künstlicher Intelligenz
überall gefragt. Dafür werden maßgeschneiderte, flexible Programme zur Fortbildung im
Software Engineering benötigt. Diese Keynote berichtet von zwei Beispielen, wie dies
realisiert werden kann:
(1) Wir bieten eine modulare Grundausbildung Software Engineering für die Industrie an.
Hier werden Mitarbeiter*innen von Unternehmen mit existierender Hochschulbildung auf
den Einsatz in Softwareprojekten geschult. Dieses Programm umfasst Vorlesungen und
Übungen an ein bis zwei Tagen über ein ganzes Jahr, Abschlussklausuren und zwei Pro-
jektphasen. Hier haben bereits knapp 70 Teilnehmende aus der Industrie in vier Jahrgän-
gen das Programm durchlaufen.
(2) Studierende und Promovierende können Microdegrees an der Schnittstelle von Künst-
licher Intelligenz, Software Engineering und Anwendungen erwerben. Den Rahmen dazu
bietet die Artificial Intelligence Software Academy (AISA) gefördert durch das MWK
Baden-Württemberg, das Forschung und Lehre an dieser Schnittstelle verbindet. Es kön-
nen flexible Microdegrees erworben werden, die diese Kombination von Software Engi-
neering und Künstlicher Intelligenz enthalten und sich insbesondere auch an Nichtinfor-
matiker*innen richten. Damit werden diese Kompetenzen Basisfähigkeiten für alle Fach-
bereiche, erhöhen die Einsatzmöglichkeiten der Teilnehmenden der Fortbildung und re-
duzieren den Fachkräfte-Mangel. Dies unterstreicht die praktische Relevanz des Software
Engineerings in der Praxis und zeigt den wichtigen Beitrag, den Universitäten hier leisten
können.

Keywords: Software Engineering, Fortbildung, Industrie

1Universität Stuttgart, Universitätsstraße 38, 70569 Stuttgart, stefan.wagner@iste.uni-stuttgart.de

24 Stefan Wagner

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 25

Leadership for Software Engineers in Practice: An Indus-
trial Experience Report
Mahdi Manesh1

Abstract: As software plays an increasingly important role for many companies, the
requirements for senior software engineers go beyond developing products and services.
If they like it or not, they frequently find themselves becoming key players in organiza-
tional transformation processes. Sure enough, these playing fields can be vastly different
from what engineering training commonly prepares for. Better get ready!

In this presentation, the speaker shares his personal view on the subject of leadership in
software engineering projects, based on real-world experiences made in various industrial
settings and roles (i.e., founder, researcher, manager).

The main goal of this talk is to (re)initiate a fruitful discussion about skills and know-how
needed for succeeding in managerial roles in tech. Definitely, these positions are full of
opportunities and critical to the success of small and large organizations alike.

Keywords: Leadership, Software Engineering

1Porsche Digital GmbH, Stralauer Allee 12, 10245 Berlin, mahdi.manesh@porsche.digital

26 Mahdi Manesh

Wissenschaftliches Hauptprogramm

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 29

Formal Verification of Intelligent Hybrid Systems
that are modeled with Simulink and
the Reinforcement Learning Toolbox

Julius Adelt1, Timm Liebrenz1, Paula Herber1

Abstract: Reinforcement Learning (RL) is a powerful technique to control intelligent hybrid systems
(HS) in dynamic and uncertain environments. However, formally guaranteeing safe behavior of
intelligent HS is hard because formal descriptions are often not available in industrial design processes
and hard to obtain for RL. Furthermore, the intertwined discrete and continuous behavior of hybrid
systems results in limited scalability of automatic verification methods, such as model checking.
This makes deductive verification desirable. In this paper, we summarize our approach for deductive
verification of intelligent HS with embedded RL components that are modeled with Simulink and the
RL Toolbox. This paper was originally published at the Formal Methods conference 2021 (FM21)
[ALH21].

Keywords: Formal Verification; Theorem Proving; Hybrid Systems; Safe Reinforcement Learning

Summary of Our Approach

Our approach for deductive verification of intelligent HS is depicted in Fig. 1 [ALH21]. We
assume that a given intelligent HS is modeled in Simulink together with the RL Toolbox
[Si22], that is, it contains an RL agent block. The key idea of our approach is threefold: 1
We solve the problem of formally describing RL agents by capturing their safe behavior in a
hybrid contract (HC), which defines safe actions under given observations. This provides a
formally well-defined basis for an RL agent’s behavior in an HS. 2 To overcome the problem
that formal descriptions of intelligent hybrid systems are often not available, we capture
the semantics of intelligent Simulink models in differential dynamic logic (dL) [Pl08].
To achieve this, we extend our Simulink2dL transformation [LHG21] to reinforcement
learning. During transformation, the RL agent is replaced by its HC. This enables the
transformation of Simulink models with embedded RL components into a formal dL
representation. For this dL representation, safety properties can be verified deductively
with the interactive theorem prover KeYmaera X [Fu15]. Our transformation also enables
compositional verification by verifying hybrid contracts for groups of Simulink blocks
(services) individually. If the verification fails, a counter-example can often be obtained,
which may be used for debugging. 3 We ensure that the RL agent complies with its HC at
simulation time with automatically generated runtime monitors based on [FP18].
1 University of Münster, Einsteinstraße 62, 48149 Münster, Germany, firstname.lastname@uni-muenster.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:firstname.lastname@uni-muenster.de

30 Julius Adelt, Timm Liebrenz, Paula Herber

. . .

. . .

1

3

2

Fig. 1: Deductive Verification of Intelligent Hybrid Systems [ALH21]

To demonstrate the applicability of our approach, we use a case study of a learning-enabled
autonomous robot in a factory setting. We verify collision freedom with two and with six
other robots and also for a scenario with disturbed sensor data.

Data Availability

Our transformation is available on Github: https://github.com/EmbSys-WWU/Simulink2dL.
All our proof results and Simulink models are available on our website: https://www.uni-
muenster.de/EmbSys/research/Simulink2dL.html. The Matlab code of the monitored RL
agent and the simulation experiments are not publicly available for licensing reasons.

References

[ALH21] Adelt, J.; Liebrenz, T.; Herber, P.: Formal Verification of Intelligent Hybrid
Systems that are modeled with Simulink and the Reinforcement Learning
Toolbox. In: Formal Methods (FM). Vol. 13047. LNCS, Springer, 2021.

[FP18] Fulton, N.; Platzer, A.: Safe Reinforcement Learning via Formal Methods:
Toward Safe Control Through Proof and Learning. AAAI Conf. on Artif.
Intellig. 32/, 2018.

[Fu15] Fulton, N.; Mitsch, S.; Quesel, J.-D.; Völp, M.; Platzer, A.: KeYmaera X:
An Axiomatic Tactical Theorem Prover for Hybrid Systems. In: International
Conference on Automated Deduction. Vol. 9195. LNCS, Springer, pp. 527–538,
2015.

[LHG21] Liebrenz, T.; Herber, P.; Glesner, S.: Service-oriented decomposition and
verification of hybrid system models using feature models and contracts. Science
of Computer Programming 211/, p. 102694, 2021.

[Pl08] Platzer, A.: Differential Dynamic Logic for Hybrid Systems. Journal of Auto-
mated Reasoning 41/2, pp. 143–189, 2008.

[Si22] Simulink Documentation: Simulation and Model-Based Design, 2022, url:
https://www.mathworks.com/products/simulink.html.

https://github.com/EmbSys-WWU/Simulink2dL
https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html
https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html
https://www.mathworks.com/products/simulink.html

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 31

Peer-Reviewing and Submission Dynamics Around Top
Software-Engineering Venues: A Juniors’ Perspective

Rand Alchokr1, Jacob Krüger2, Yusra Shakeel3, Gunter Saake 4, Thomas Leich 5

Abstract: In this extended abstract, we summarize our paper with the homonymous title published
at the International Conference on Evaluation and Assessment in Software Engineering (EASE)
2022 [Al22].

Keywords: juniors; peer review; bias; challenges; collaboration

Background: Research is an intrinsically challenging process full of obstacles. However,
these obstacles may be more dominant for a specific group of researchers (such as junior
researchers) compared to others. It is the responsibility of the community to pay close
attention to those groups that may be struggling for unfair reasons and provide necessary
support. Junior researchers are of high importance to the scientific community, and are
defined as young researchers who have recently started their research career [Li19]. Despite
their importance, juniors may face impediments when starting their career that hinder their
activities and motivation. For instance, collaboration aspects and peer-reviewing models
can play a role. Junior researchers without a high reputation (e.g., via their co-authors) may
be negatively impacted by reputation biases, and thus could have even more problems with
publishing and building their reputation independently. In our study, we investigate what
challenges junior researchers perceive when submitting their work to software-engineering
venues with a high reputation.

Objective: Only few studies have analyzed the contributions of juniors in the software-
engineering community [Al21] and the challenges they face. We aimed to identify and
understand what kinds of challenges junior researchers experience when aiming to publish
their research and getting involved into the community. For this purpose, we conducted an
online survey with a focus on two common types of challenges: peer-reviewing models
(double-blind and single-blind) and collaboration.

Method: We designed and conducted an exploratory web-based survey with which we
targeted active software-engineering researchers, aiming to identify the community’s
awareness of juniors’ challenges. In general, we structured our survey around four research
1 Otto-von-Guericke-University Magdeburg, rand.alchokr@ovgu.de
2 Eindhoven University of Technology, The Netherlands, j.kruger@tue.nl
3 Karlsruhe Institute of Technology, yusra.shakeel@kit.edu
4 Otto-von-Guericke-University Magdeburg, saake@ovgu.de
5 Harz University of Applied Sciences, tleich@hs-harz.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:rand.alchokr@ovgu.de
mailto:j.kruger@tue.nl
mailto:yusra.shakeel@kit.edu
mailto:saake@ovgu.de
mailto:tleich@hs-harz.de

32 Rand Alchokr, Jacob Krüger, Yusra Shakeel, Gunter Saake, Thomas Leich

questions concerning the community’s opinion on the fairness of reviewing models (double-
blind versus single-blind) and the importance of collaborations. We translated each of
our research questions into several survey questions, which we arranged according to the
survey’s homogeneous flow. Mostly, we relied on close-ended questions, sometimes followed
by open-ended ones. We used mailing lists for software-engineering researchers and Twitter
as channels to distribute the survey. To empirically evaluate our results and answer our
research questions, we used descriptive statistics and visualizations to analyze the responses.

Results: A total of 52 respondents completed our survey, with the majority having publishing
experience reflected by the number of papers they have published. Regarding the academic
position or role, 34 responses out of 52 stemmed from PhD students. The results indicate
that the majority of our participants favors double-blind reviewing with more than half of
them (67.2 %) voting in favor of it, believing that single-blind reviewing favors seniors
and negatively impacts juniors. However, our participants indicate that reviewing models
do not affect their submission decisions. When looking at juniors, they seem to hesitate
to submit to highly prestigious venues and believe that collaborations with seniors raises
their papers’ chances of getting accepted. Finally, our participants agree that the chances
of getting papers accepted are not equal for juniors and seniors, with a lack of experience
and academic writing skills posing the strongest barriers for junior researchers. Also, our
participants agree that supervision and work-group problems pose strong barriers.

Conclusion: Our findings indicate a high level of awareness inside the software-engineering
community regarding the challenges junior researchers face. Our study is only a first step
in accomplishing a comprehensive analysis of our community and the challenges certain
groups of researchers face. Our findings can be used to define these challenges and start
contributing to their solutions. Moreover, we provide insights into diversity and inclusion
aspects inside the software-engineering research community.

Data Availability:We share our questionnaire and anonymized raw data in a publicly
available repository.6

Bibliography
[Al21] Alchokr, Rand; Krüger, Jacob; Shakeel, Yusra; Saake, Gunter; Leich, Thomas: Understanding

the Contributions of Junior Researchers at Software-Engineering Conferences. In: Joint
Conference on Digital Libraries (JCDL). IEEE, 2021.

[Al22] Alchokr, Rand; Krüger, Jacob; Shakeel, Yusra; Saake, Gunter; Leich, Thomas: Peer-Reviewing
and Submission Dynamics Around Top Software-Engineering Venues: A Juniors’ Perspective.
In: International Conference on Evaluation and Assessment in Software Engineering (EASE).
IEEE, 2022.

[Li19] Li, Weihua; Aste, Tomaso; Caccioli, Fabio; Livan, Giacomo: Early Coauthorship with Top
Scientists Predicts Success in Academic Careers. Nature Communications, 10, 2019.

6https://doi.org/10.5281/zenodo.6463764

https://doi.org/10.5281/zenodo.6463764

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 33

Synthesizing of Process-Aware Digital Twin Cockpits from
Event Logs

Dorina Bano1, Judith Michael2, Bernhard Rumpe2, Simon Varga2, Mathias Weske1

Abstract: In this work, we summarize our article “Process-Aware Digital Twin Cockpit Synthesis
from Event Logs” published in the Journal of Computer Languages (COLA). The engineering of
digital twins and their user interfaces with explicated processes, namely process-aware digital twin
cockpits (PADTCs), is challenging due to the complexity of the systems and the need for information
from different disciplines within the engineering process. Therefore, we have investigated how to
facilitate their engineering by using already existing data, namely event logs. We present a low-code
development approach that reduces the amount of hand-written code needed to derive PADTCs
using process mining techniques. We describe what models could be derived from event log data,
which generative steps are needed for the engineering of PADTCs, and how process mining could be
incorporated into the resulting application. A PADTC prototype is created based on the MIMIC III
dataset, which simulates an automated hospital transportation system. Initially, our approach requires
no hand-written code and empowers the domain expert to iteratively create PADTC prototypes.

Keywords: Process-Aware Digital Twin Cockpit; Low-Code Development Approaches; Sensor Data;
Event Log; Process Mining; Process-Awareness

1 Summary

Improving the engineering process of digital twins (DTs) with a higher degree of automation
enables domain experts to take an active role in this process and allows for an iterative
evolvement of the DT. A DT of an actual object can include process-aware DT cockpits
(PADTCs) which allow for user interaction and provide means to handle processes of the
actual object and its context. Full automation of the DT engineering process and its services
might be a big vision. However, the automated engineering of PADTCs is the first reachable
goal. Within [Ba22], we have suggested a low-code development approach for generating
PADTCs from event logs. Our approach includes four phases.

In the preparation phase, we analyze the real world and extract models from data about the
actual object. We extract an event log from the sensor data of an actual object. Using this
event log, we perform data-to-model transformations and discover domain information in a
class diagram, process models in BPMN, and roles in a tagging model.

In the generation phase, we apply model-to-model and model-to-code transformations
to generate a PADTC. We are using the models from the preparation phases as input for
1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany {dorina.bano,mathias.weske}@hpi.de
2 Software Engineering, RWTH Aachen University, Aachen, Germany {michael,rumpe,varga}@se-rwth.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{dorina.bano,mathias.weske}@hpi.de
mailto:{michael, rumpe, varga}@se-rwth.de

34 Dorina Bano et al.

model-to-model transformations and generate data models (as views) and GUI models.
These generated models and the domain model are the generator input to synthesize the
PADTC source code.

In the adaption phase, we can extend the generated parts by handwritten additions on
models and code levels. We can add handwritten models which are used as additional
input to synthesize the code of the PADTC with a code generator. Additionally, we can add
handwritten code in addition to the generated code.

For runtime of the PADTC, we connected the PADTC to DT services to get a fully functional
digital twin. For a process-aware digital twin, especially the connection to services for
process discovery, process conformance checking and process prediction services are
relevant. Additionally, the PADTC visualizes live data from the actual object or third-party
applications and enables domain users to interact with the DT. The DT can influence
the actual object via user commands from the PADTC or automatic commands from
self-adaptive services.

Using this low-code development approach, we have created a PADTC prototype that
simulates a hospital transportation system. For its creation, we have used event logs
extracted from the MIMIC III dataset [Jo16], a dataset with health-related data of patients
who stayed in critical care units. However, our approach is not limited to this domain and
could be applied to engineer PADTCs for areas where process data is available, e.g., tools
and machines in production, products, experiments, software systems, or organizations.

The application has shown, that we can achieve a high degree of automation in the PADTC
engineering process and reduce the amount of hand-written code needed: Developers need
no hand-written code in the first place to get a deployable prototype. This can be extended
by hand-written models and code to create a digital twin.

Data Availability. The original publication is accessible under http://doi.org/10.1016/
j.cola.2022.101121, a preprint is available at https://www.se-rwth.de/publications.
Unfortunately, we could not provide more detailed artifacts for reasons of confidentiality.

Acknowledgments. This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2023
Internet of Production - 390621612. Website: https://www.iop.rwth-aachen.de

Bibliography
[Ba22] Bano, Dorina; Michael, Judith; Rumpe, Bernhard; Varga, Simon; Weske, Matthias: Process-

Aware Digital Twin Cockpit Synthesis from Event Logs. Journal of Computer Languages
(COLA), 70, June 2022.

[Jo16] Johnson, Alistair EW; Pollard, Tom J; Shen, Lu; Lehman, Li-wei H; Feng, Mengling;
Ghassemi, Mohammad; Moody, Benjamin; Szolovits, Peter; Celi, Leo Anthony; Mark,
Roger G: MIMIC-III, a freely accessible critical care database. Scientific data, 3, 2016.

http://doi.org/10.1016/j.cola.2022.101121
http://doi.org/10.1016/j.cola.2022.101121
https://www.se-rwth.de/publications

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 35

Editing Support for Software Languages: Implementation
Practices in Language Server Protocols (Summary)

Djonathan Barros1, Sven Peldszus2, Wesley K. G. Assunção1,3, Thorsten Berger2,4

Abstract: We present our paper published at the 25th International Conference on Model Driven
Engineering Languages and Systems (MODELS) [Ba22a]. Effectively using software languages
requires effective editing support. Modern IDEs, modeling tools, and code editors typically provide
sophisticated support to create, comprehend, or modify instancesof particular languages. Unfortunately,
building such editing support is challenging. While the engineering of languages is well understood
and supported by modern model-driven techniques, there is a lack of engineering principles and best
practices for realizing their editing support. We study practices for implementing editing support in
so-called language servers—implementations of the language server protocol (LSP). LSP is a recent de
facto standard to realize editing support for languages, separated from the editing tools, enhancing the
reusability and quality of the editing support. Witnessing the LSP’s popularity, we take this opportunity
to analyze the implementations of 30 language servers. We identify concerns that developers need to
take into account when developing editing support, and we synthesize implementation practices to
address them, based on a systematic analysis of the servers’ source code. We hope that our results shed
light on an important technology for software language engineering, that facilitates language-oriented
programming and systems development, including model-driven engineering.

Keywords: Language engineering; code assistance; source code editor; implementation practices

1 Summary

Software languages are paramount—not only to software engineering, but also to many
other engineering disciplines that need to create models and automate tasks. Effectively
using software languages requires effective editing support. Modern IDEs and modeling
tools often come with sophisticated editing support to create, comprehend, and modify
programs or models expressed in a certain language. Typical editing support features are code
completion, syntax highlighting, error marking, formatting, and refactoring, among others.

Unfortunately, creating proper editing support for languages is difficult. While for mainstream
software languages, the vendors of software engineering or modeling tools typically invest
the necessary resources to realize editing support, domain-specific languages (DSLs) are
often created by smaller organizations or individual developers. Sometimes, their use is
limited to specific purposes or only a few projects. As such, DSLs would especially benefit
from better support to realize editing support—allowing their users focus on solving real
problems, instead of wasting time with learning the exact use of individual DSLs.
1 PPGComp, Western Paraná State University, Brazil
2 Ruhr University Bochum, Germany

3 Johannes Kepler University, Austria
4 Chalmers | University of Gothenburg, Sweden

https://creativecommons.org/licenses/by-sa/4.0/

36 Djonathan Barros, Sven Peldszus, Wesley K. G. Assunção, Thorsten Berger

The language server protocol (LSP) [Mi] is a recent initiative from 2016 to modularize
editing support into the so-called language servers. The LSP addresses the problem that
language-specific editing support is currently deeply integrated into single IDEs or editors,
preventing its reuse or extension for different tools. The LSP aims at enabling language
engineers to make their languages, be it programming languages or DSLs, available to a
wide range of editing tools while requiring minimal effort for adoption and reuse. The LSP
describes a common API that can be implemented and reused by different clients [Mi].

We took this opportunity and investigated the design and realization of real language servers.
Our goal was to identify implementation concerns related to the realization of language
editing support. Our working hypothesis was that engineering principles can be identified
within existing language servers, paving the way to our long-term goal of establishing
patterns and pattern catalogs for realizing editing support. We followed a thematic synthesis
method by coding, analyzing, grouping, and reporting how editing features are implemented.

We present the first set of engineering practices, systematically identified—quantitatively and
qualitatively— from a sample of 30 LSP servers. We synthesized seven core concerns and
present practices for realizing language editing support. We found that a variety of features
are required to provide editing support, and the concrete aspects of languages play a rather
minor role in the basic editing support. Still, for advanced editing support, characteristics of
the target language become more important. We hope to provide researchers with concerns
related to the realization of editing support and insights on implementation practices for
addressing them, to spark a discussion on best practices and eventually developing a theory
and novel techniques on realizing effective editing support for languages. We hope that
practitioners can use our concerns and discussed solutions as guidelines when implementing
new servers or extending existing ones. For designing LSP servers, we identified design and
implementation practices that we hope to extend to a reference architecture in later works.

2 Data Availability

The summarized work is available open access in the conference proceedings [Ba22a] and
we provide all raw and processed data in our replication package at Zenodo [Ba22b].

Bibliography
[Ba22a] Barros, D.; Peldszus, S.; Assunção, W. K. G.; Berger, T.: Editing Support for Software

Languages: Implementation Practices in Language Server Protocols. In: International
Conference on Model Driven Engineering Languages and Systems (MODELS). 2022.
https://doi.org/10.1145/3550355.3552452.

[Ba22b] Supplementary Material – Editing Support for Software Languages: Implementation Prac-
tices in Language Server Protocols 59, https://doi.org/10.5281/zenodo.6974153.

[Mi] Microsoft: Language Server Protocol. https://microsoft.github.io/language-server-protocol/.

https://doi.org/10.1145/3550355.3552452
https://doi.org/10.5281/zenodo.6974153
https://microsoft.github.io/language-server-protocol/

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 37

Component-based CEGAR - Building Software Verifiers
from Off-the-Shelf Components

Dirk Beyer1, Jan Haltermann2, Thomas Lemberger3, Heike Wehrheim4

Abstract: Software verification tools typically consist of tighly coupled components, thereby preclud-
ing the easy integration of off-the-shelf components. We propose to decompose software verification
into independent subtasks, each task being implemented by an own component communicating with
other components via clearly defined interfaces. We apply this idea of decomposition to one of
the most frequently used techniques in software verification: CEGAR. Our decomposition, called
component-based CEGAR (C-CEGAR), comprises three components: An abstract model explorer, a
feasibility checker and a precision refiner. It allows employing conceptually different components for
each task within one instance. Our evaluation shows that C-CEGAR has, compared to a monolithic
CEGAR-implementation, a similar efficiency and that the precision in solving verification tasks even
increases.

Keywords: Software engineering, Software verification, Abstraction refinement, CEGAR, Decompo-
sition, Cooperative verification

Component-based CEGAR

Violation
Witness

Path
Witness

Invariant
Witness

Abstract Model
Explorer

Feasibility
Checker

Precision
Refiner

𝑃, 𝜑

Task

program
correct

program
incorrect

Fig. 1: Workflow of component-based CEGAR

The past years have seen enormous
progress in software verification.
Although there is an interest in stan-
dardizing verification artifacts (e.g.,
using witnesses), the verification
task itself – though consisting of
several subtasks – is predominantly
realized using strongly cohesive soft-
ware units with stateful components.
This makes reusing components com-
plicated, impacts scalability (e.g.,
parallelization) and hampers exchange
and integration of new (off-the-shelf)
components.

1 LMU Munich, Munich, Germany, dirk.beyer@sosy-lab.org
2 University of Oldenburg, Oldenburg, Germany, jan.haltermann@uol.de
3 LMU Munich, Munich, Germany, thomas.lemberger@sosy.ifi.lmu.de
4 University of Oldenburg, Oldenburg, Germany, heike.wehrheim@uol.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:dirk.beyer@sosy-lab.org
mailto:jan.haltermann@uol.de
mailto:thomas.lemberger@sosy.ifi.lmu.de
mailto:heike.wehrheim@uol.de

38 Dirk Beyer, Jan Haltermann, Thomas Lemberger, Heike Wehrheim

We propose to decompose the construction of verifiers into independent components and
employ cooperative verification to have the components solve verification tasks together. We
demonstrate the feasibility of this idea by applying the decomposition to the counterexample-
guided abstraction refinement (CEGAR) scheme. CEGAR’smain concept during verification
is to iteratively refine an abstract model of the system using infeasible counterexamples.

The result of the decomposition, called C-CEGAR, is depicted in Fig. 1. It comprises
three components: Abstract model explorer, feasibility checker and precision refiner. The
interfaces for the communication between them – violation, path and invariant witnesses –
are defined using the existing and standardized witness format. The abstract model explorer
builds an abstract model of the program and therein searches for property violations,
given the task (program 𝑃 and property 𝜑) and an invariant witness (encoding the so-far
discovered abstraction predicates). If no violation is found, the program is proven correct;
otherwise, it constructs an error path leading to the violation, encoded as violation witness.
The feasibility checker checks the counter-example encoded in the violation witness for
feasibility. If it is feasible, the program violates the property. Otherwise, a path witness
encoding the infeasible path is built and given to the precision refiner which computes
additional abstraction predicates. These ensure that the infeasible counter-example is
not rediscovered. To be able to employ off-the-shelf tools within C-CEGAR, we provide
constructions for using a verifier as abstract model explorer or feasibility checker and an
invariant generator as precision refiner [Be22].

We realized C-CEGAR with CoVeriTeam. First, we decomposed CPAchecker’s CEGAR-based
predicate abstraction and than employed it with FShell-witness2test and Ultimate Automizer
as additional standalone-components within C-CEGAR. The evaluation on 8 347 verification
tasks has shown that (1) the decomposition of an existing CEGAR implementation has
(almost) no negative effects on the effectiveness, on the contrary increasing the precision
through the use of more sophisticated components, and that the efficiency only decreases
by a constant factor; (2) the cost of in addition using standardized formats for exchanging
information leads to a reduction of the effectiveness by around 20% and (3) using different
components within one C-CEGAR instance is simple and pays off.
In short: Building software verifiers from off-the-shelf components is doable and worth it.

Data Availability
Our implementation of C-CEGAR is open source and available online as part of CoVeriTeam;
Our artifact (evaluated as available and reusable) containing the implementation and all
experimental data is archived at Zenodo (https://doi.org/10.5281/zenodo.5301636).

Bibliography
[Be22] Beyer, D.; Haltermann, J.; Lemberger, T.; Wehrheim, H.: Decomposing Software Verification

into Off-the-Shelf Components: An Application to CEGAR. In: Proc. ICSE. ACM, pp.
536–548, 2022.

https://doi.org/10.5281/zenodo.5301636

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 39

Classifying Edits to Variability in Source Code – Summary

Paul Maximilian Bittner1, Christof Tinnes2, Alexander Schultheiß3, Sören Viegener4, Timo
Kehrer5, Thomas Thüm6

Abstract: We report about recent research on edit classification in configurable software, originally
published at the 30th Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) 2022 [Bi22]. For highly configurable software
systems, such as the Linux kernel, maintaining and evolving variability information along changes to
source code poses a major challenge. While source code itself may be edited, also feature-to-code
mappings may be introduced, removed, or changed. In practice, such edits are often conducted ad-hoc
and without proper documentation. To support the maintenance and evolution of variability, it is
desirable to understand the impact of each edit on the variability. We propose the first complete and
unambiguous classification of edits to variability in source code by means of a catalog of edit classes.
This catalog is based on a scheme that can be used to build classifications that are complete and
unambiguous by construction. To this end, we introduce a complete and sound model for edits to
variability. In about 21.5ms per commit, we validate the correctness, relevance, and suitability of our
classification by classifying each edit in 1.7 million commits in the change histories of 44 open-source
software systems automatically.

Keywords: software evolution, software variability, feature traceability, software product lines,
mining version histories

Summary

In configurable software systems, such as the Linux kernel, certain code should only
be present in certain variants of the software. For instance, parts of the code base may
be platform dependent or a feature should only be available to a subset of customers.
Maintaining and evolving variability information along changes to source code poses a
major challenge for developers. One aspect thereof is keeping track of changes to variable
parts of the code base that implement different features or feature interactions of the
configurable software. While source code itself may be edited, feature-to-code mappings
may also be introduced, removed, or changed.

Awareness of edits to variability is crucial in the development of configurable software. For
instance, edits to software product lines might introduce type errors in certain variants or alter
1 University of Ulm, Germany, paul.bittner@uni-ulm.de
2 Siemens AG, München, Germany, christof.tinnes@siemens.com
3 Humboldt-University of Berlin, Germany, alexander.schultheiss@informatik.hu-berlin.de
4 University of Ulm, Germany, soeren.viegener@uni-ulm.de
5 University of Bern, Switzerland, timo.kehrer@unibe.ch
6 University of Ulm, Germany, thomas.thuem@uni-ulm.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:paul.bittner@uni-ulm.de
mailto:christof.tinnes@siemens.com
mailto:alexander.schultheiss@informatik.hu-berlin.de
mailto:soeren.viegener@uni-ulm.de
mailto:timo.kehrer@unibe.ch
mailto:thomas.thuem@uni-ulm.de

40 Bittner, Tinnes, Schultheiß, Viegener, Kehrer, Thüm

the set of available variants in an unintendedway. In clone-and-own development, where each
variant of a software is developed as a separate copy of the software (e. g., using branching
or forking), changes to variants have to be tracked to update other variants accordingly.
Variation control systems and managed clone-and-own methods inspect edits paired with
information on edited features to recover knowledge about variability incrementally or to
reintegrate edits to a hidden unified code base. In practice, however, the variability of the
code base is often edited ad-hoc and without proper documentation.

To this end, we present a complete, unambiguous, and automatic classification of edits to
variability in source code. We first introduce variation trees as a formalization for variability
in source code. We then introduce variation diffs as a formalization for edits to variation
trees, thus describing edits to variability in source code. We prove that variation diffs are
complete and sound regarding variation trees, meaning that any possible edit to a variation
tree is described by a variation diff and that every variation diff represents an actual edit to
variation trees. By classifying all structures within variation diffs, we are able to classify all
edits to variability in source code. We present a set of edit classes which we prove to be
complete and unambiguous on variation diffs.

To validate the suitability and potential for automation of our concepts and classification,
we classified about 45 million edits to source code fully automatically. In effectively 70min,
we processed about 1.7 million commits from the histories of 44 open-source software
systems. 99.89% of the considered commits were processed in less than a second, making
our method feasible in practical scenarios, such as continuous integration. We found that
0.2% of the patches submitted by developers contain syntactically incorrect preprocessor
annotations. All other edits were classified and each of our edit classes occurs in practice.

Data Availability

The original publication is publicly accessible with the DOI 10.1145/3540250.3549108. A
preprint is also available online at https://github.com/SoftVarE-Group/Papers/
raw/main/2022/2022-ESECFSE-Bittner.pdf. Our artifact is available on Github
(https://github.com/VariantSync/DiffDetective/tree/esecfse22) and Zenodo
(DOI: 10.5281/zenodo.7110095).

Bibliography
[Bi22] Bittner, Paul Maximilian; Tinnes, Christof; Schultheiß, Alexander; Viegener, Sören; Kehrer,

Timo; Thüm, Thomas: Classifying Edits to Variability in Source Code. In: Proc. Europ.
Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM, New
York, NY, USA, pp. 196–208, November 2022.

https://doi.org/10.1145/3540250.3549108
https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-ESECFSE-Bittner.pdf
https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-ESECFSE-Bittner.pdf
https://github.com/VariantSync/DiffDetective/tree/esecfse22
https://doi.org/10.5281/zenodo.7110095

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 41

API Deprecation: A Systematic Mapping Study

Leif Bonorden1, Matthias Riebisch2

Abstract: This extended abstract is based on a study published at the 48th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA 2022). [BR22a]

We conducted a systematic mapping study on API deprecation including 36 primary studies. Our
analysis highlights five major gaps in research: studying remote APIs, investigating a broader range of
static APIs, joining views of suppliers and clients, including humans in studies, and designing with
deprecation in mind.

1 Introduction

Application Programming Interfaces (APIs) are the prevalent interaction method for software
modules, components, and systems. As systems and APIs evolve, an API element may be
marked as deprecated, indicating that its use is disapproved or that the feature will be removed
in an upcoming version. Consequently, deprecation is a means of communication between
developers and, ideally, complemented by further documentation, including suggestions for
the developers of the API’s clients.

Recent reports by practitioners claimed that research on APIs does not reflect the diversity
of APIs in practice. In particular, research on remote APIs is demanded. [Ra21] In contrast
to static APIs (statically linked, e.g., libraries), such remote APIs (e.g., REST services) are
accessed via means of network communication at runtime.

2 Method

We conducted a systematic mapping study on API deprecation to classify the state of the art
and identify gaps in the research field.

An initial search for api AND deprecat* in academic databases yielded a set of 103
unique results. Application of selection criteria and subsequent snowballing led to a final
set of 36 primary studies. We evaluated these studies regarding general criteria for software
engineering research (beneficiaries, type of contribution, research strategies) [St20] as well
as criteria specific to API deprecation (type of API, aspect of deprecation).
1 Universität Hamburg, Germany, leif.bonorden@uni-hamburg.de
2 Universität Hamburg, Germany, matthias.riebisch@uni-hamburg.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:leif.bonorden@uni-hamburg.de
mailto:matthias.riebisch@uni-hamburg.de

42 Leif Bonorden, Matthias Riebisch

3 Results

We located five major gaps in previous research on API deprecation as opportunities for
future studies:

1. Uncharted Territory: Deprecation of remote APIs has barely been considered.

2. Out of Focus: Research on the deprecation of static APIs has strongly focused on the
Java programming language and the Android ecosystem.

3. Unbridged Gap: Suppliers and clients of an API have rarely been considered jointly.

4. Human-out-of-the-loop: Research strategies have been focused on data and did not
include human perspectives.

5. Prevention Better Than Cure: Investigations have not included causes or prevention
of deprecation.

Data Availability

The complete data set has been made available as open data via Zenodo [BR22b]. The files
include all search results:

• Included studies with their complete classification.

• Excluded studies with the decisive exclusion criteria.

• A list of studies identified through snowballing.

References

[BR22a] Bonorden, L.; Riebisch, M.: API Deprecation: A Systematic Mapping Study. In:
48th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2022). IEEE, Maspalomas, Spain, pp. 451–458, 2022.

[BR22b] Bonorden, L.; Riebisch, M.: API Deprecation: A Systematic Mapping Study
[Data set], Zenodo, 2022, url: https://www.doi.org/10.5281/zenodo.
5650121.

[Ra21] Raatikainen, M.; Kettunen, E.; Salonen, A.; Komssi, M.; Mikkonen, T.; Lehto-
nen, T.: State of the Practice in Application Programming Interfaces (APIs): A
Case Study. In: 15th European Conference on Software Architecture (ECSA
2021). Springer, Växjö, Sweden, pp. 191–206, 2021.

[St20] Storey, M.-A.; Ernst, N. A.; Williams, C.; Kalliamvakou, E.: The Who, What,
How of Software Engineering Research: A Socio-Technical Framework. Empiri-
cal Software Engineering 25/5, pp. 4097–4129, 2020.

https://www.doi.org/10.5281/zenodo.5650121
https://www.doi.org/10.5281/zenodo.5650121

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 43

BXtendDSL: A layered framework for bidirectional model
transformations combining a declarative and an imperative
language (Summary)

Thomas Buchmann1, Matthias Bank2, Bernhard Westfechtel3

Abstract: This summary is based on an article which appeared in 2022 in The Journal of Systems &
Software [BBW22].
Bidirectional transformations have been studied in a wide range of application domains. In model-
driven software engineering, they are required for roundtrip engineering processes. We present a
pragmatic approach to engineering bidirectional model transformations that assists transformation
developers by domain-specific languages, frameworks, and code generators. A thorough evaluation
demonstrates conciseness, expressiveness, and scalability of our approach.

Keywords: model-driven software engineering; round-trip engineering; bidirectional transformation

1 Summary

Bidirectional transformations (bx) occur in different application domains, including e.g.
databases, programming languages, and software engineering [Cz09]. Programming bidi-
rectional transformations in a conventional programming language is both laborious and
error-prone: Both transformation directions have to be programmed separately, and consis-
tency of forward and backward transformations has to be checked by testing.

In response to these problems, a wide variety of bx approaches (functional, relational, or
grammar-based) have been developed in research [Hi16]. A recurring theme driving bx
research are roundtrip properties, also referred to as bx laws. Roundtrip properties are
constraints on the interplay of forward and backward transformations. The goal of many bx
approaches consists in the construction of bidirectional transformations that are provably
correct with respect to roundtrip properties.

However, empirical evaluations [An20] demonstrate limitations of bx approaches with
respect to expressiveness, i.e., the capability to solve a given bx problem. These limitations
follow from the conditions that transformations have to satisfy in order to guarantee roundtrip
1 Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf,

Germany thomas.buchmann@th-deg.de
2 Chair of Applied Computer Science I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

matthias.bank@uni-bayreuth.de
3 Chair of Applied Computer Science I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

bernhard.westfechtel@uni-bayreuth.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:thomas.buchmann@th-deg.de
mailto:matthias.bank@uni-bayreuth.de
mailto:bernhard.westfechtel@uni-bayreuth.de

44 Thomas Buchmann, Matthias Bank, Bernhard Westfechtel

properties. Additional shortcomings were observed with respect to conciseness — the ability
to provide for short solutions with respect to size metrics — and scalability — the ability to
perform transformations efficiently on large data sets.

These observations motivated the development of BXtendDSL [BBW22], a framework for
engineering bidirectional model transformations. BXtendDSL combines domain-specific
languages (DSL) for bidirectional model transformations that are located at different levels of
abstractions. A declarative language serves to specify a bidirectional transformation concisely.
Round-trip properties are guaranteed as long as the transformation specification conforms
to well-behavedness conditions. Intentionally, the declarative language is computationally
incomplete, i.e., it is usually not possible to completely specify a bidirectional transformation
at the declarative level. Therefore, the declarative language provides extension points for
adding imperative code, which is written in an internal DSL.

We evaluated BXtendDSL with respect to expressiveness, conciseness, and scalabality
and compared it against competing bx approaches with a number of benchmarks, using
the Benchmarx framework [An20]. Our evaluations demonstrate expressiveness (all test
cases were passed), conciseness (short solutions were provided), and scalability (the
implementation is scalable to large model sizes).

Data Availability

The software and the benchmarks are publicly available; see the instructions given at the
end of the journal paper [BBW22].

Bibliography
[An20] Anjorin, Anthony; Buchmann, Thomas; Westfechtel, Bernhard; Diskin, Zinovy; Ko,

Hsiang-Shang; Eramo, Romina; Hinkel, Georg; Samimi-Dehkordi, Leila; Zündorf, Albert:
Benchmarking bidirectional transformations: theory, implementation, application, and
assessment. Software and Systems Modeling, 19(3):647–691, 2020.

[BBW22] Buchmann, Thomas; Bank, Matthias; Westfechtel, Bernhard: BXtendDSL: A layered frame-
work for bidirectional model transformations combining a declarative and an imperative
language. J. Syst. Softw., 189:111288, 2022.

[Cz09] Czarnecki, Krzysztof; Foster, J. Nathan; Hu, Zhenjiang; Lämmel, Ralf; Schürr, Andy;
Terwilliger, James F.: Bidirectional Transformations: A Cross-Discipline Perspective. In
(Paige, Richard F., ed.): Proceedings of the Second International Conference on Theory
and Practice of Model Transformations (ICMT 2009). volume 5563 of Lecture Notes in
Computer Science, Springer-Verlag, Zurich, Switzerland, pp. 260–283, June 2009.

[Hi16] Hidaka, Soichoro; Tisi, Massimo; Cabot, Jordi; Hu, Zhenjiang: Feature-Based Classification
of Bidirectional Transformation Approaches. Software and Systems Modeling, 15(3):907–
928, July 2016.

cbe

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 45

iStar-Erweiterung für kollaborative cyber-physische Systeme

Marian Daun1, Jennifer Brings2, Lisa Krajinski2, Viktoria Stenkova2, Torsten Bandyszak2

Abstract: Dieser Vortrag berichtet von dem Beitrag A GRL-compliant iStar extension for collaborative
cyber-physical systems [Da21], der im Februar 2021 in der Fachzeitschrift Requirements Engineering
erschienen ist.

Keywords: Requirements Engineering; Collaborative Cyber-physical Systems; Goal Modeling; iStar;
GRL

1 Einleitung

Kollaborative cyber-physische Systeme sind in der Lage, sich zu Systemverbünden zu-
sammenzuschließen, in denen sie ihr Verhalten so koordinieren, dass sie Ziele erfüllen,
die die einzelnen Systeme nicht erreichen können [Br20]. Die explizite Modellierung von
Systemverbundzielen erlaubt unter anderem die Relationierung zu Systemkonfigurationen
und bietet damit einen Mehrwert für die Entwicklung dynamischer kollaborativer Systeme,
die ihr Verhalten abhängig von den mit ihnen kollaborierenden Systemen adaptieren [Br19].
Die komplexen Abhängigkeiten kollaborativer cyber-physischer Systeme sind jedoch mit
existierenden Zielmodellierungsansätzen schwer zu erfassen [Da19].

2 GRL-konforme iStar-Erweiterung

Hierzu stellt der Beitrag eine Erweiterung der weit verbreiteten Zielmodellierungsspra-
che iStar vor, die die Besonderheiten kollaborativer cyber-physischer Systeme und die
Bedürfnisse ihrer Entwickler berücksichtigt. Die Erweiterung ist so konzipiert, dass sie
konform zu der von der ITU (International Telecommunication Union) standardisierten
Goal-oriented Requirement Language (GRL, [IT18]) ist. Neben der erhöhten industriellen
Akzeptanz durch Standardisierung geht hiermit auch eine Vereinfachung der Sprache einher,
da sich die GRL auf die Kernkonstrukte von iStar beschränkt. Dies führt zu einer leichteren
Anwendbarkeit in der industriellen Praxis.
1 Technische Hochschule Würzburg-Schweinfurt, Center Robotics, Schweinfurt, marian.daun@thws.de
2 Universität Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, Essen, {jennifer.brings,

lisa.krajinski, viktoria.stenkova, torsten.bandyszak}@uni-due.de

https://creativecommons.org/licenses/by-nc/3.0/
marian.daun@thws.de

46 Marian Daun, Jennifer Brings, Lisa Krajinski, Viktoria Stenkova, Torsten Bandyszak

Insbesondere bietet die Erweiterung Unterstützung durch die explizite Unterscheidung
zwischen den Zielen der einzelnen kollaborativen cyber-physischen Systeme und des
Verbunds. Dies erlaubt es, Abhängigkeiten zwischen den einzelnen kollaborativen cyber-
physischen Systemen und zwischen den einzelnen Systemen und dem Verbund darzustellen
und zu untersuchen. Unter anderem können wechselseitige Abhängigkeiten zwischen den
Zielen der Einzelsysteme und den Verbundzielen bestehen.

Die Vorteile der Erweiterung für die Zielmodellierung von kollaborativen cyber-physischen
Systemen wurden an zwei Fallstudien aus verschiedenen Industriedomänen illustriert. Ein
wesentlicher Vorteil ist die Reduzierung der Modellkomplexität durch die in der Erweiterung
eingeführten Modellelemente.

3 Data Availability

Zur werkzeugtechnischen Unterstützung der entwickelten Erweiterung wurden Stencils
für Microsoft Visio erstellt. Diese Stencils sind frei über die folgende Webseite verfügbar:
https://doi.org/10.6084/m9.figshare.13313093.

Literaturverzeichnis
[Br19] Brings, Jennifer; Daun, Marian; Bandyszak, Torsten; Stricker, Vanessa; Weyer, Thorsten;

Mirzaei, Elham; Neumann, Martin; Zernickel, Jan Stefan: Model-based documentation of
dynamicity constraints for collaborative cyber-physical system architectures: Findings from
an industrial case study. J. Syst. Archit., 97:153–167, 2019.

[Br20] Brings, Jennifer; Daun, Marian; Weyer, Thorsten; Pohl, Klaus: Goal-based configuration
analysis for networks of collaborative cyber-physical systems. In (Hung, Chih-Cheng;
Cerný, Tomás; Shin, Dongwan; Bechini, Alessio, Hrsg.): SAC ’20: The 35th ACM/SIGAPP
Symposium on Applied Computing, online event, [Brno, Czech Republic], March 30 - April
3, 2020. ACM, S. 1387–1396, 2020.

[Da19] Daun, Marian; Stenkova, Viktoria; Krajinski, Lisa; Brings, Jennifer; Bandyszak, Torsten;
Weyer, Thorsten: Goal modeling for collaborative groups of cyber-physical systems with GRL:
reflections on applicability and limitations based on two studies conducted in industry. In
(Hung, Chih-Cheng; Papadopoulos, George A., Hrsg.): Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019. ACM,
S. 1600–1609, 2019.

[Da21] Daun, Marian; Brings, Jennifer; Krajinski, Lisa; Stenkova, Viktoria; Bandyszak, Torsten:
A GRL-compliant iStar extension for collaborative cyber-physical systems. Requir. Eng.,
26(3):325–370, 2021.

[IT18] ITU International Telecommunication Union: Recommendation ITU-T Z.151: User Require-
ments Notation (URN). Bericht, 2018.

https ://doi.org/10.6084/m9.figshare.13313 093

cbe

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 47

Model-based Requirements Engineering in Industry:
Experiences from Training and Application

Marian Daun1, Jennifer Brings2, Marcel Goger3, Walter Koch3, Thorsten Weyer4

Abstract: In this talk, we report on our findings from the paper Teaching Model-Based Requirements
Engineering to Industry Professionals: An Experience Report [Da21a], which received the best
paper award of the 43rd IEEE/ACM International Conference on Software Engineering: Software
Engineering Education and Training, ICSE (SEET) in 2021.

Keywords: Requirements Engineering; Software Engineering Education; Industrial Training

Introduction and Summary

In several consecutive joint research projects, an extensive industry-ready methodology
for model-based software engineering has been developed [Bö16, Bö21]. As part of this
undertaking, we developed a model-based requirements engineering approach tailored for
industry’s needs. In a technology transfer project, we developed a training program for
model-based requirements engineering and applied model-based requirements engineering
in industrial practice [Da17, TD19]. In this talk, we report on insights from (a) teaching
model-based requirements engineering and from (b) applying model-based requirements
engineering in a productive development project.

Model-based Requirements Engineering. The model-based requirements engineering
approach is based upon different building blocks: Properly defining and modeling the
requirements engineering context [Da16], defining high-level goals of the system using a
specifically designed profile of the goal-oriented requirements language to derive complex
interrelations of collaborative cyber-physical systems [Da21b], subsequently refining and
detailing these models with the use of scenario descriptions and later on the definition of
detailed system requirements from different perspectives.

Teaching Approach. Besides teaching technicalities of the model-based approach, the
course also emphasizes skills for working with requirements models. Among others, the
participants learn how to create requirements models and how modeling decisions impact
1 Technische Hochschule Würzburg-Schweinfurt, Center Robotics, Schweinfurt, marian.daun@thws.de
2 Universität Duisburg-Essen, Essen, jennifer.brings@uni-due.de
3 Schaeffler AG, Herzogenaurach, marcel.goger@schaeffler.com,walter.koch@schaeffler.com
4 Technische Hochschule Mittelhessen, Gießen, thorsten.weyer@mni.thm.de

https://creativecommons.org/licenses/by-nc/3.0/
marian.daun@thws.de
jennifer.brings@uni-due.de
marcel.goger@schaeffler.com, walter.koch@schaeffler.com
thorsten.weyer@mni.thm.de

48 Marian Daun, Jennifer Brings, Marcel Goger, Walter Koch, Thorsten Weyer

the understanding of requirements. Other topics include the evolution of requirements
models due to constantly changing requirements, the refinement of requirements models
into design artifacts, and validation of requirements models and their proper use to facilitate
verification (cf. [DWP19]).

Findings from Industry Application. Based on our experience, we provide guidelines for
educators designing requirements engineering courses for industry professionals. We found
nine important aspects to consider when teaching model-based requirements engineering to
industry professionals. In addition, we report on findings regarding relevance, practicality,
and use of model-based requirements engineering for system development.

Data Availability

Teaching materials have been created in the context of the SPEDiT project (funded by
BMBF) and are available at https://spedit.informatik.tu-muenchen.de/results.html.

Literaturverzeichnis
[Bö16] Böhm, W; Daun, M; Koutsoumpas, V; Vogelsang, A; Weyer, T: SPES XT Modeling

Framework. In: Advanced Model-Based Engineering of Embedded Systems, S. 29–42.
2016.

[Bö21] Böhm, B; Böhm, W; Daun, M; Hayward, A; Kranz, S; Regnat, N; Schröck, S; Stierand, I;
Vogelsang, A; Vollmar, J; Voss, S; Weyer, T; Wortmann, A: Engineering of Collaborative
Embedded Systems. In: Model-Based Engineering of Collaborative Embedded Systems, S.
15–48. 2021.

[Da16] Daun, M; Tenbergen, B; Brings, J; Weyer, T: SPES XT Context Modeling Framework. In:
Advanced Model-Based Engineering of Embedded Systems, S. 43–57. 2016.

[Da17] Daun, M; Brings, J; Aluko Obe, P; Pohl, K; Moser, S; Schumacher, H; Rieß, M: Teaching
Conceptual Modeling in Online Courses: Coping with the Need for Individual Feedback to
Modeling Exercises. In: IEEE Conf. Softw. Eng. Edu. and Training. S. 134–143, 2017.

[Da21a] Daun, M; Brings, J; Goger, M; Koch, W; Weyer, T: Teaching Model-Based Requirements
Engineering to Industry Professionals: An Experience Report. In: 43rd IEEE/ACM Int.
Conf. Softw. Eng.: Softw. Eng. Edu. and Training, ICSE (SEET) 2021. S. 40–49, 2021.

[Da21b] Daun, M; Brings, J; Krajinski, L; Stenkova, V; Bandyszak, T: A GRL-compliant iStar
extension for collaborative cyber-physical systems. Requir. Eng., 26(3):325–370, 2021.

[DWP19] Daun, M; Weyer, T; Pohl, K: Improving manual reviews in function-centered engineering of
embedded systems using a dedicated review model. Softw. Syst. Model., 18(6):3421–3459,
2019.

[TD19] Tenbergen, B; Daun, M: Industry Projects in Requirements Engineering Education:
Application in a University Course in the US and Comparison with Germany. In: 52nd
Hawaii Int. Conf. System Sciences. S. 1–10, 2019.

https://spedit.informatik.tu-muenchen.de/results.html

cbe

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 49

Zuverlässigkeit studentischer Selbsteinschätzungen zur
Vorhersage der Leistung im Software Engineering

Marian Daun1, Jennifer Brings2, Patricia Aluko Obe2, Viktoria Stenkova2

Abstract: Dieser Vortrag berichtet von dem Beitrag Reliability of Self-Rated Experience and
Confidence as Predictors for Students’ Performance in Software Engineering [Da21], der in der
Fachzeitschrift Empirical Software Engineering erschienen ist.

Keywords: Student performance; Self-rated Experience; Confidence; Model comprehension

1 Einleitung

Sowohl in der Software-Engineering-Forschung als auch in der Software-Engineering-Lehre
werden Studierende oft in Gruppen eingeteilt. Dahinter steht häufig der Wunsch, entweder
möglichst homogene Gruppen oder möglichst heterogene Gruppen bezogen auf die Leistung
der Studierenden zu bilden – bspw. um eine faire Verteilung von Treatment und Control zu
erreichen. Existierende Forschungsarbeiten haben gezeigt, dass bei Programmieraufgaben
Selbsteinschätzungen der Erfahrung von Studierenden gute Indikatoren für deren Leistungen
sind. Im Gegensatz dazu belegen die Ergebnisse unserer Studie, dass dies nicht auf alle
Software-Engineering-Bereiche übertragbar ist.

2 Leistungsvorhersage mittels Selbsteinschätzung von Erfahrung und
Konfidenz

Wir haben untersucht, inwiefern selbst eingeschätzte Erfahrung und Konfidenz zur Prognose
der Leistung im Modellverständnis genutzt werden können. Basierend auf Daten aus vier
Experimenten [DBW20, Da19, DWP19, DBW17] zum Thema Modellwirkung konnten
wir zeigen, dass viele Studierende Schwierigkeiten bei der Selbsteinschätzung haben.
In den Experimenten mussten die Studierenden entscheiden, ob ein natürlichsprachlich
beschriebener Sachverhalt in einem gezeigten Modell dargestellt ist oder nicht. Bei jeder
Antwort sollten die Studierenden auf einer fünfstufigen Skala angeben, wie sicher sie sich
sind, dass die gegebene Antwort richtig ist. Die Ergebnisse zeigen zwar einen statistisch
1 Technische Hochschule Würzburg-Schweinfurt, Center Robotics, Schweinfurt, marian.daun@fhws.de
2 Universität Duisburg-Essen, Essen, {jennifer.brings, patricia.aluko-obe, viktoria.stenkova}@uni-due.de

https://creativecommons.org/licenses/by-nc/3.0/
marian.daun@fhws.de

50 Marian Daun, Jennifer Brings, Patricia Aluko Obe, Viktoria Stenkova

signifikanten Unterschied in der Selbsteinschätzung zwischen richtigen und falschen
Antworten, jedoch weisen die Selbsteinschätzungen zwischen richtigen und falschen
Antworten auch einen starken Zusammenhang auf. D. h., Studierende, die bei richtigen
Antworten eine hohe Selbstsicherheit angegeben haben, haben auch bei falschen Antworten
eine hohe Selbstsicherheit angegeben. Gleiches gilt für Studierende, die sich eine niedrige
Selbstsicherheit attestieren.

Nach der Beantwortung der Fragen zu den Modellen sollten die Studierenden ihre Erfahrung
in Bezug auf relevante Themenbereiche (z. B. modellbasierte Entwicklung allgemein
oder die jeweiligen Modellierungssprachen) auf einer fünfstufigen Skala angeben. Die
Selbsteinschätzung der Erfahrung hat sich als noch schlechtere Vorhersage für die Leistung
der Studierenden erwiesen. Die statistische Auswertung ergab, dass kein Zusammenhang
zwischen der Leistung des Studierenden und dessen Selbsteinschätzung besteht.

Daher muss die Nutzung der Selbsteinschätzungen von Studierenden bei Forschung und
Lehre im Bereich konzeptueller Modellierung hinterfragt werden.

3 Data Availability

Die Fragebögen und die erhobenen Daten können über die originalen Veröffentlichungen,
bzw. im jeweiligen Online-Supplement zur Veröffentlichung eingesehen werden.

Literaturverzeichnis
[Da19] Daun, Marian; Brings, Jennifer; Krajinski, Lisa; Weyer, Thorsten: On the Benefits of

using Dedicated Models in Validation Processes for Behavioral Specifications. In: 2019
IEEE/ACM International Conference on Software and System Processes (ICSSP). S.
44–53, 2019.

[Da21] Daun, Marian; Brings, Jennifer; Aluko Obe, Patricia; Stenkova, Viktoria: Reliability of
self-rated experience and confidence as predictors for students’ performance in software
engineering. Empir. Softw. Eng., 26(4):80, 2021.

[DBW17] Daun, Marian; Brings, Jennifer; Weyer, Thorsten: On the Impact of the Model-Based
Representation of Inconsistencies to Manual Reviews - Results from a Controlled Expe-
riment. In: Conceptual Modeling - 36th International Conference, ER. Jgg. 10650 in
Lecture Notes in Computer Science. Springer, S. 466–473, 2017.

[DBW20] Daun, Marian; Brings, Jennifer; Weyer, Thorsten: Do Instance-Level Review Diagrams
Support Validation Processes of Cyber-Physical System Specifications: Results from a
Controlled Experiment. In: Proceedings of the International Conference on Software and
System Processes. ICSSP ’20, Association for Computing Machinery, New York, NY,
USA, S. 11–20, 2020.

[DWP19] Daun, Marian; Weyer, Thorsten; Pohl, Klaus: Improving manual reviews in function-
centered engineering of embedded systems using a dedicated review model. Softw. Syst.
Model., 18(6):3421–3459, 2019.

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 51

It’s Your Loss: Classifying Information Loss During
Variability Model Roundtrip Transformations

Kevin Feichtinger1, Chico Sundermann2, Thomas Thüm3, Rick Rabiser4

Abstract: This is a summary of a paper (with the same title) originally published at the 26th
ACM International Systems and Software Product Line Conference (SPLC) in 2022 discussing the
information loss occurring when transforming variability models.

Keywords: Software product lines; variability modeling; variability model transformations; informa-
tion loss.

1 Summary

Diverse variability modeling approaches have been developed to explicitly capture the
commonalities and variability of a set of software systems. Since variability modeling
approaches differ especially in terms of scope and expressiveness, it is difficult to assess
their properties and find the right approach for a specific use case. Transforming variability
models, i.e., of one type to another, would help to better understand and compare existing
approaches and would also enable users to switch between approaches. Unfortunately, due
to differences in scope and expressiveness, it is difficult to implement transformations
without information loss. We analyzed concrete variability modeling approaches, presented
a mapping of key concepts between them, and identified and classified the information
lost in one-way and round-trip transformations [Fe22]. We evaluated the applicability
of our information loss classes by transforming different models of varying sizes and
complexity using an existing implementation of transformations5. Our information loss
classes contribute to a better understanding of different variability modeling approaches,
simplify the comparability, and allow users to grasp the impact of transformations.

2 Information Loss Classes

We identified Conceptual Losses, i.e., regarding Configurability and Semantics, as well as
Structural Losses as distinct information loss classes. No Information Loss classifies fully
supported transformations [Fe22].
1 LIT CPS Lab, Johannes Kepler University Linz, Linz, Austria kevin.feichtinger@jku.at
2 University of Ulm, Ulm, Germany chico.sundermann@uni-ulm.de
3 University of Ulm, Ulm, Germany thomas.thuem@uni-ulm.de
4 CDL VaSiCS, LIT CPS Lab, Johannes Kepler University Linz, Linz, Austria rick.rabiser@jku.at
5 https://github.com/SECPS/TraVarT

https://creativecommons.org/licenses/by-sa/4.0/
mailto:kevin.feichtinger@jku.at
mailto:chico.sundermann@uni-ulm.de
mailto:thomas.thuem@uni-ulm.de
mailto:rick.rabiser@jku.at
https://github.com/SECPS/TraVarT

52 Kevin Feichtinger, Chico Sundermann, Thomas Thüm, Rick Rabiser

No Information Loss: An entity or a relationship, e.g., an optional feature, can be transformed
into another entity or relationship of the target notation with the same semantics, e.g., a
Boolean decision, and, hence, can be restored during the round-trip at its full capacity.

Structural Loss: The configuration space of both, the original and transformed model,
remains identical, though they are differing in structure. Structure changes because an entity
or a relationship, e.g., a conjunction constraint, may not be transformed into an identical
entity or relationship, e.g., an implies constraint. This in turn also causes additional entities
and relationships in the round-trip model.

Semantic Loss: An entity or relationship could not be transformed into the target language
because it is not supported in the target approach, e.g., commonalities in feature models are
out of scope for decision models. The configuration space of the original and the transformed
model still remains identical.

Configurability Loss: An entity or relationship could not be transformed into the target
language because it is not supported in the target approach, e.g., numerical or textual values
of decision models cannot be represented as features in feature models. This changes the
configuration space of the resulting (target/round-trip) model.

3 Data Availability

We investigated and evaluated the applicability of our information loss classes [Fe22] using
a set of existing variability models of different types6 , 7 . Specifically, we transformed 31
feature models, 6 DOPLER decision models, and 3 OVM models into each other.

4 Conclusion

Our evaluation [Fe22] showed that the defined information loss classes can be found
in transformed variability models. The classes indicate how information is lost during
one-way transformations and round-trip transformations and can therefore help modelers to
investigate transformed variability models, increase their awareness of information loss and
guide them when developing new transformations.

Literaturverzeichnis
[Fe22] Feichtinger, Kevin; Sundermann, Chico; Thüm, Thomas; Rabiser, Rick: It’s Your Loss:

Classifying Information Loss during Variability Model Roundtrip Transformations. In:
Proceedings of the 26th ACM International Systems and Software Product Line Conference -
Volume A. SPLC ’22, ACM, New York, NY, USA, S. 67–78, 2022.

6 https://github.com/Universal-Variability-Language/uvl-models

7 https://github.com/FeatureIDE/FeatureIDE/tree/v3.8.1/featuremodels

https://github.com/Universal-Variability-Language/uvl-models
https://github.com/FeatureIDE/FeatureIDE/tree/v3.8.1/featuremodels

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 53

Explainable Online Reinforcement Learning for Adaptive
Systems

Felix Feit1, Andreas Metzger2, Klaus Pohl3

Abstract: This talk presents our work on explainable online reinforcement learning for self-adaptive
systems published at the 3rd IEEE Intl. Conf. on Autonomic Computing and Self-Organizing Systems.

Keywords: Adaptation; Reinforcement Learning; Explainability; Interpretability

1 Presentation Summary

An adaptive system can automatically maintain its requirements in the presence of dynamic
environment changes. Developing an adaptive system is difficult due to design time
uncertainty, because how the environment will change at runtime and what precise effects
adaptations will have on the running system are typically unknown at design time [We20].

Online reinforcement learning, i.e., employing reinforcement learning (RL) at runtime,
is an emerging approach to realize self-adaptive systems in the presence of design time
uncertainty. Online RL learns via actual operational data and thereby leverages feedback
only available at runtime [Me22].

Deep RL algorithms represent the learned knowledge as a neural network. Compared with
classical RL algorithms, Deep RL algorithms offer important benefits for adaptive systems.
Deep RL can generalize over unseen inputs, it can handle continuous environment states
and adaptation actions, and it can readily capture concept and data drifts [PMP20]. Yet, a
fundamental problem of Deep RL is that learned knowledge is not represented explicitly.
For a human, it is practically impossible to relate neural network parameters to concrete RL
decisions. Figure 1 illustrates this problem by comparing how knowledge is represented.

Understanding RL decisions is key to (1) increase trust, and (2) facilitate debugging.
Debugging is especially relevant for adaptive systems, because the reward function, which
quantifies the feedback to the RL algorithm, must explicitly defined by developers, thus
introducing a source for human error.

We introduce XRL-DINE to make Deep RL decisions for self-adaptive systems explaina-
ble [FMP22]. XRL-DINE enhances and combines explainable RL techniques from machine
1 paluno, University of Duisburg-Essen, Essen, Germany, f.m.feit@gmail.com
2 paluno, University of Duisburg-Essen, Essen, Germany, andreas.metzger@paluno.uni-due.de
3 paluno, University of Duisburg-Essen, Essen, Germany, klaus.pohl@paluno.uni-due.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:f.m.feit@gmail.com
mailto:andreas.metzger@paluno.uni-due.de
mailto:klaus.pohl@paluno.uni-due.de

54 Felix Feit, Andreas Metzger, Klaus Pohl

St
at

e
S

A
ctio

n
 A

Learned Knowledge in Classical RL (e.g., Tabular Q-Learning)

24 25 26 27 28 29 30 31 32 33 34 35

UP -13,36 -12,57 -11,73 -10,74 -9,95 -8,91 -7,99 -6,98 -5,95 -4,92 -3,93 -2,98

RIGHT -12,00 -11,00 -10,00 -9,00 -8,00 -7,00 -6,00 -5,00 -4,00 -3,00 -2,00 -1,93

LEFT -12,99 -13,00 -11,98 -10,95 -9,99 -8,89 -7,97 -6,98 -5,94 -4,81 -3,94 -2,98

DOWN -13,95 -112,18 -112,80 -111,49 -112,13 -112,68 -112,91 -112,42 -111,81 -110,62 -112,86 -1,00

A
ct

io
n

 A

State S:

Learned Knowledge in Deep RL

Falling into the cliff Reaching the Goal (G)

Actions A = {UP, DOWN,
LEFT, RIGHT}

Reward

States S = {0, …, 47}
0 11

24 35

Cliff Walk Example (Learn how to reach G from S, while not falling into cliff)

Abb. 1: Illustration of how learned knowledge is represented for Cliff Walk example from [SB18].

learning research. We present a proof-of-concept implementation of XRL-DINE, as well as
qualitative and quantitative results that demonstrate the usefulness of XRL-DINE.

Data Availability. Source code and experimental data are available from https://git.
uni-due.de/rl4sas/xrl-dine. The submission version of the original paper is available
from https://arxiv.org/abs/2210.05931.

Literaturverzeichnis
[FMP22] Feit, Felix; Metzger, Andreas; Pohl, Klaus: Explaining Online Reinforcement Learning

Decisions of Self-Adaptive Systems. In (Di Nitto, Elisabetta; Gerostathopoulos, Ilias;
Bellman, Kirstie; Tomforde, Sven, Hrsg.): IEEE International Conference on Autonomic
Computing and Self-Organizing Systems, ACSOS 2022, Virtual, September 19-23, 2022.
IEEE, S. 51–60, 2022.

[Me22] Metzger, Andreas; Quinton, Clément; Mann, Zoltán Ádám; Baresi, Luciano; Pohl, Klaus:
Realizing Self-Adaptive Systems via Online Reinforcement Learning and Feature-Model-
guided Exploration. Computing, 2022.

[PMP20] Palm, Alexander; Metzger, Andreas; Pohl, Klaus: Online Reinforcement Learning for Self-
adaptive Information Systems. In (Dustdar, Schahram; Yu, Eric; Salinesi, Camille; Rieu,
Dominique; Pant, Vik, Hrsg.): 32nd International Conference on Advanced Information
Systems Engineering, CAiSE 2020, Grenoble, France, June 8-12, 2020. Jgg. 12127 in
LNCS. Springer, S. 169–184, 2020.

[SB18] Sutton, Richard S; Barto, Andrew G: Reinforcement learning: An introduction. MIT press,
2018.

[We20] Weyns, Danny: An Introduction to Self-adaptive Systems: A Contemporary Software
Engineering Perspective. John Wiley & Sons, 2020.

https://git.uni-due.de/rl4sas/xrl-dine
https://git.uni-due.de/rl4sas/xrl-dine
https://arxiv.org/abs/2210.05931

cba

 Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
 Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 55

Precomputing Reconfiguration Strategies based on Stochastic
Timed Game Automata

Hendrik Göttmann1, Birte Caesar2, Lasse Beers3, Malte Lochau4, Andy Schürr5, Alexander
Fay6

Abstract: We summarize our paper Precomputing Reconfiguration Strategies based on Stochastic
Timed Game Automata which has been published in the proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2022).

Keywords: Stochastic Timed Game Automata; Proactive Self-Adaptation; Strategy Synthesis;
Statistical Model-Checking

1 Summary

Many recent application domains require software-intense systems with reconfiguration
capabilities to be (self-)adaptable to changing contextual situations. As an example, in
today’s aircraft manufacturing assembly lines, human engineers are supported by mobile
robots, offering production capabilities (e.g., mountable toolsets) on demand. Depending
on the manufacturing context, requirements on capabilities may change (e.g., from riveting
at construction site A to welding at site B) thus requiring robots to repeatedly reconfigure
themselves to new contextual situations. Knowledge about occurrences of these contextual
situations is only partially available at design time as this information only becomes apparent
at runtime. Hence, entirely pre-planning these reconfiguration decisions is infeasible due to
the large state space and the high degree of uncertainty about the expected runtime behavior.
In contrast, making these highly-complex reconfiguration decisions at runtime may benefit
from perfect context knowledge. However, this excludes all non-trivial decision algorithms
except greedy-based heuristics as both computing resources and time for decision-making
are usually limited at runtime. Furthermore, in addition to functional properties also non-
functional properties such as real-time constraints have to be considered, too. For instance,
the robot movement, toolset reconfiguration and computing the reconfiguration decision
itself each require a certain amount of time ultimately influencing the throughput of the
overall production process. Again, uncertainty is an omnipresent issue.
1 Technical University of Darmstadt, RT Systems Lab, Darmstadt, DE hendrik.goettmann@es.tu-darmstadt.de
2 Helmut Schmidt University, Institute of Automation Technology, Hamburg, DE birte.caesar@hsu-hh.de
3 Helmut Schmidt University, Institute of Automation Technology, Hamburg, DE lasse.beers@hsu-hh.de
4 University of Siegen, Model-based Engineering Group, Siegen, DE malte.lochau@uni-siegen.de
5 Technical University of Darmstadt, RT Systems Lab, Darmstadt, DE andy.schuerr@es.tu-darmstadt.de
6 Helmut Schmidt University, Institute of Automation Technology, Hamburg, DE alexander.fay@hsu-hh.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:hendrik.goettmann@es.tu-darmstadt.de
mailto:birte.caesar@hsu-hh.de
mailto:lasse.beers@hsu-hh.de
mailto:malte.lochau@uni-siegen.de
mailto:andy.schuerr@es.tu-darmstadt.de
mailto:alexander.fay@hsu-hh.de

56 Hendrik Göttmann, Birte Caesar, Lasse Beers, Malte Lochau, Andy Schürr, Alexander Fay

To cope with these challenges, we rely on concepts from game theory. Both the system and
the context act as opponents in a two-player game derived from our reconfiguration model.
Our reconfiguration model combines (context) feature models describing the configuration
space with a domain specific constraint language providing means to define real-time
constraints on reconfigurations (i.e., changing from one configuration of the feature model
to another) which cannot be encoded into plain feature models. Additionally, the constraint
language supports the specification of stochastic delays given as probability distributions
instead of exact values for time bounds as those are unknown at design time. From this
reconfiguration specification (i.e., feature model and real-time constraints) we automatically
construct a stochastic timed game automaton exactly representing the specified behavior.
Based on this game-theoretic reconfiguration model, we are able to precompute winning
strategies by means of Uppaal Stratego which enable the system player to make fast
look-ups at runtime for presumably best-fitting reconfiguration decisions satisfying the
context player. Statistical model-checking further enables us to optimize the strategy w.r.t.
non-functional properties like real-time behavior. To summarize, our approach [Gö22]
makes the following contributions:

• integrated modeling of real-time reconfigurations comprising uncertain context
behaviors based on context feature models,

• application of game theory to synthesize both safe and optimized reconfiguration
strategies by means of Uppaal Stratego, and

• investigation of efficiency/effectiveness trade-offs by considering a real-world example
of a reconfigurable robot support system for the construction of aircraft fuselages.

2 Data Availability

To foster reproducibility, we provide the tool implementation and the evaluation data of our
real-world example online7.

3 Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of project
A4 within the Collaborative Research Center (CRC) 1053 MAKI.

Bibliography
[Gö22] Göttmann, Hendrik; Caesar, Birte; Beers, Lasse; Lochau, Malte; Schürr, Andy; Fay, Alexander:

Precomputing Reconfiguration Strategies based on Stochastic Timed Game Automata. In
(Syriani, Eugene; Sahraoui, Houari A.; Bencomo, Nelly; Wimmer, Manuel, eds): Proceedings
of the 25th International Conference on Model Driven Engineering Languages and Systems,
MODELS 2022, Montreal, Quebec, Canada, October 23-28, 2022. ACM, pp. 31–42, 2022.

7 https://doi.org/10.5281/zenodo.6962663

https://doi.org/10.5281/zenodo.6962663

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 57

Requirements document relations:
A reuse perspective on traceability through standards

Katharina Großer1, Volker Riediger1, Jan Jürjens1,2

Abstract: Our publication in the Software and Systems Modeling Journal 2022 started by observing
that relations of views, like requirements documents, are scarcely considered in requirements
traceability, despite being a key factor in requirements reuse. Explicit formalized document relations
can facilitate review activities to improve consistency and completeness. This is relevant for projects,
e.g., in the aerospace sector, with challenges related to complex document dependencies: 1. Several
contractors contribute. 2. Requirements from standards are applied in several projects. 3. Reuse
of requirements from previous phases. We exploit the concept of “layered traceability”, explicitly
considering documents as views on sets of requirements with relations between these different
representations. Different types of relations and their dependencies are investigated with a special
focus on requirement reuse through standards and findings formalized in an Object-Role Modelling
(ORM) conceptual model. Automated analyses of requirement graphs based on this model are able
to reveal inconsistencies in document integration. We show such queries in Neo4J/Cypher for the
EagleEye case study. This work is a step toward better support to handle highly complex requirement
document dependencies in large projects with a special focus on requirements reuse and to enable
automated quality checks on dependent documents to facilitate requirements reviews.

Keywords: Requirement Document Relations; Requirement Reuse; Standards; Space Engineering
Requirements; ECSS; Traceability

1 Summary

Relations between requirements have been described intensively in past research and are
part of nearly every requirements engineering approach, although in practice, there is little
support of specific relationships in common requirements engineering tools [GC17], even
though there is a need for high-end traceability, e.g., in highly standardized and safety
critical embedded systems domains, such as automotive, defense, or aerospace. There
exist different relations on different levels of representation granularity, which interact
for composite artifacts, such as documents [GF95]. Yet, relations between requirements
documents, are rarely considered. This is remarkable, as they are a key factor in requirement
reuse [Cas+10]. Re-occurring structures, e.g., specific sections or information on project
characteristics, provide abstraction. Standards or reference specifications are designed to be
reused, making this explicit. Yet, there is a lack of structured processes for integration. The
goal of our paper [GRJ22] is to handle highly complex requirement document dependencies
1 University of Koblenz, Universitätsstr. 1, 56070 Koblenz, Germany, {grosser|riediger|juerjens}@uni-koblenz.de
2 Fraunhofer ISST, Emil-Figge-Straße 91, 44227 Dortmund, Germany

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{grosser|riediger|juerjens}@uni-koblenz.de

58 Katharina Großer et al.

better in large projects to facilitate reviews and structured reuse by enabling automated
quality checks on these dependent documents.

To achieve this, we collected knowledge from expert interviews, requirements engineering
literature and guidelines, as well as analysis of specification documents from different space
engineering projects. Resulting from an ontological analysis, we define a conceptual model.
It provides a reference frame to define dependent relations on different layers, following the
idea of “layered traceability” [GF95], with a special focus on its applicability to different
document reuse scenarios observed in space engineering, in particular the application of
standards [ECSSS00]. Documents are considered as views on sets of requirements with
traceability relations on their own. Results are formalized as a conceptual model using the
Object-Role Modelling (ORM) notation. The EagleEye case study, a virtual earth observation
mission, is used to implement a proof of concept in Neo4J with Cypher queries that detect
completeness and consistency issues. Future work should focus on implementing a practical
tool to validate the framework in practice and enable semantic interoperability between
different tools used through the overall system development and operations life-cycle and
support advanced requirements reuse.

2 Data Availability

The EagleEye Neo4J trace graph and the Cypher queries presented in the paper are available
under https://uni-ko-ld.de/requirementrelations.

Bibliography

[Cas+10] Verónica Castañeda et al. “The use of ontologies in requirements engineering”.
In: Global journal of researches in engineering 10.6 (Nov. 2010), pp. 2–8.

[ECSSS00] ECSS Secretariat. ECSS system - Description, implementation and general
requirements. ECSS-S-ST-00C (ECSS). July 31, 2008.

[GC17] Hélène Gaspard-Boulinc and Stéphane Conversy. “Usability Insights for
Requirements Engineering Tools: A User Study with Practitioners in Aero-
nautics”. In: 25th IEEE International Requirements Engineering Conference
(RE’17). 2017, pp. 223–232.

[GF95] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. “Contribution struc-
tures [Requirements artifacts]”. In: 2nd IEEE International Symposium on
Requirements Engineering. 1995, pp. 100–107.

[GRJ22] Katharina Großer, Volker Riediger, and Jan Jürjens. “Requirements document
relations”. In: Software and Systems Modeling 21 (6 2022). Theme Section
Paper, pp. 1–37. doi: 10.1007/s10270-021-00958-y.

https://uni-ko-ld.de/requirementrelations
https://doi.org/10.1007/s10270-021-00958-y

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 59

Benchmarking Scalability of Cloud-Native Applications

Sören Henning1, Wilhelm Hasselbring2

Abstract: This contribution has been published in the journal Empirical Software Engineering
(Springer Nature) in 2022 [HH22], https://doi.org/10.1007/s10664-022-10162-1.

Keywords: Scalability; Benchmarking; Performance engineering; Cloud-Native

1 Introduction

Software architectures [Ha18] significantly influence the quality characteristics of the
resulting software systems. Scalability is such a quality characteristic that is in particular
relevant for data stream processing systems [HH20; HH21b; HHM19]. In the context of
analyzing IoT sensor data [HWD21], we study scalable architectures for power consumption
monitoring [He21]. Cloud-native applications constitute a recent trend for designing
large-scale software systems, with a focus on scalability (https://www.cncf.io/).

In this paper, we present the Theodolite benchmarking method, allowing researchers
and practitioners to conduct empirical scalability evaluations of cloud-native applications,
frameworks, and deployment options. Although scalability is often mentioned as a key driver
for adopting cloud-native architectures and microservices [KH19], we found that research
is lacking a commonly accepted method to empirically assess and compare the scalability
of cloud-native applications. In empirical software engineering, benchmarks are used as
a measuring instrument for comparing different technologies or configurations [Ha21].
Thus, we designed the Theodolite method for benchmarking scalability of cloud-native
applications [HH22]. Our benchmarking method consists of scalability metrics [HH21a],
measurement methods, and an architecture for a scalability benchmarking framework,
particularly suited for cloud-native applications. To balance usability and reproducibility,
our benchmarking method provides configuration options, controlling the trade-off between
overall execution time and statistical grounding. We performed an extensive experimental
evaluation of our method’s configuration options for data stream processing applications.
We find that, independent of the cloud platform, it only takes a few repetitions (≤ 5) and
short execution times (≤ 5 minutes) to assess whether SLOs are achieved. Combined with
our findings from evaluating different search strategies, we conclude that our method allows
to benchmark scalability in reasonable time.
1 Kiel University, Software Engineering Group, 24098 Kiel, Germany soeren.henning@email.uni-kiel.de
2 Kiel University, Software Engineering Group, 24098 Kiel, Germany hasselbring@email.uni-kiel.de

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1007/s10664-022-10162-1
https://www.cncf.io/
mailto:soeren.henning@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de

60 Sören Henning, Wilhelm Hasselbring

Data Availability A replication package is available at Zenodo (https://doi.org/10.
5281/zenodo.5596982). The source code is available at GitHub (https://github.com/
cau-se/theodolite) and the software documentation at https://www.theodolite.rocks/.

Literatur

[Ha18] Hasselbring, W.: Software Architecture: Past, Present, Future. In: The Essence
of Software Engineering. Springer, S. 169–184, 2018.

[Ha21] Hasselbring,W.: Benchmarking as Empirical Standard in Software Engineering
Research. In: International Conference on Evaluation and Assessment in
Software Engineering (EASE 2021). ACM, S. 365–372, Juni 2021.

[He21] Henning, S.; Hasselbring, W.; Burmester, H.; Möbius, A.; Wojcieszak, M.:
Goals and measures for analyzing power consumption data in manufacturing
enterprises. Journal of Data, Information and Management 3/1, S. 65–82, 2021.

[HH20] Henning, S.; Hasselbring, W.: Scalable and Reliable Multi-Dimensional Sensor
Data Aggregation in Data-Streaming Architectures. Data-Enabled Discovery
and Applications 4/1, S. 1–12, 2020.

[HH21a] Henning, S.; Hasselbring, W.: How to Measure Scalability of Distributed
Stream Processing Engines? In: Companion of the ACM/SPEC International
Conference on Performance Engineering. ACM, S. 85–88, Apr. 2021.

[HH21b] Henning, S.; Hasselbring, W.: Theodolite: Scalability Benchmarking of Dis-
tributed Stream Processing Engines in Microservice Architectures. Big Data
Research 25/100209, S. 1–17, Juli 2021.

[HH22] Henning, S.; Hasselbring, W.: A Configurable Method for Benchmarking
Scalability of Cloud-Native Applications. Empirical Software Engineering 27/
143, S. 1–42, 2022, url: https://doi.org/10.1007/s10664-022-10162-1.

[HHM19] Henning, S.; Hasselbring, W.; Möbius, A.: A Scalable Architecture for Power
Consumption Monitoring in Industrial Production Environments. In: 2019
IEEE International Conference on Fog Computing (ICFC). IEEE, Prague,
Czech Republic, S. 124–133, Juni 2019.

[HWD21] Hasselbring, W.; Wojcieszak, M.; Dustdar, S.: Control Flow Versus Data Flow
in Distributed Systems Integration: Revival of Flow-Based Programming for
the Industrial Internet of Things. IEEE Internet Computing 25/4, S. 5–12, 2021.

[KH19] Knoche, H.; Hasselbring, W.: Drivers and Barriers for Microservice Adoption
– A Survey among Professionals in Germany. Enterprise Modelling and Infor-
mation Systems Architectures (EMISAJ) – International Journal of Conceptual
Modeling 14/1, S. 1–35, 2019.

https://doi.org/10.5281/zenodo.5596982
https://doi.org/10.5281/zenodo.5596982
https://github.com/cau-se/theodolite
https://github.com/cau-se/theodolite
https://www.theodolite.rocks/
https://doi.org/10.1007/s10664-022-10162-1

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 61

Smoke testing for machine learning: simple tests to discover
severe bugs

Steffen Herbold1, Tobias Haar2

Abstract: We summarize the article Smoke testing for machine learning: simple tests to discover
severe bugs [HH22], which was published in Empirical Software Engineering in 2022.

Keywords: Machine learning; Classification; Software testing; Smoke testing; Combinatorial testing;
Equivalence classes; Boundary-value analysis

1 Overview

The article “Smoke testing for machine learning: simple tests to discover severe bugs” was
published in Empirical Software Engineering in 2022. Machine learning is nowadays a
standard technique for data analysis within software applications. Software engineers need
quality assurance techniques that are suitable for these new kinds of systems. Within this
article, we discuss the question whether standard software testing techniques that have been
part of textbooks since decades are also useful for the testing of machine learning software.
Concretely, we try to determine generic and simple smoke tests that can be used to assert
that basic functions can be executed without crashing.

2 Results

We found that we can derive such tests using techniques similar to equivalence classes and
boundary value analysis. Moreover, we found that these concepts can also be applied to
hyperparameters, to further improve the quality of the smoke tests. Even though our approach
is almost trivial, we were able to find bugs in all three machine learning libraries that we
tested and severe bugs in two of the three libraries. This demonstrates that common software
testing techniques are still valid in the age of machine learning and that considerations how
they can be adapted to this new context can help to find and prevent severe bugs, evenin
mature machine learning libraries.
1 Universität Passau, Fakultät für Informatik und Mathematik, Dr.-Hans-Kapfinger-Straße 30, 94032 Passau,

Deutschland steffen.herbold@uni-passau.de
2 Universität Göttingen, Deutschland

https://creativecommons.org/licenses/by-sa/4.0/
mailto:steffen.herbold@uni-passau.de

62 Steffen Herbold, Tobias Haar

3 Data Availability

The data and all analysis scripts are available online [He21].

Literatur

[He21] Herbold, S.: sherbold/replication-kit-2020-smoke-testing: v1.0.0, Version v1.0.0,
Dez. 2021, url: https://doi.org/10.5281/zenodo.5752045.

[HH22] Herbold, S.; Haar, T.: Smoke testing for machine learning: simple tests to
discover severe bugs. Empirical Software Engineering 27/2, Jan. 2022, url:
https://doi.org/10.1007/s10664-021-10073-7.

https://doi.org/10.5281/zenodo.5752045
https://doi.org/10.1007/s10664-021-10073-7

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 63

Problems with with SZZ and Features: An empirical
assessment of the state of practice of defect prediction data
collection

Steffen Herbold1, Alexander Trautsch2, Fabian Trautsch3, Benjamin Ledel4

Abstract: We summarize the article Problems with with SZZ and Features: An empirical assessment
of the state of practice of defect prediction data collection [He22], which was published in Empirical
Software Engineering in 2022.

Keywords: SZZ; Bug fix labeling; Bug inducing changes; Defect prediction data; Data set

1 Overview

The article “Problems with with SZZ and Features: An empirical assessment of the state
of practice of defect prediction data collection” was published in the Empirical Software
Engineering in 2022. The SZZ algorithm is the de facto standard for labeling bug fixing
commits and finding inducing changes for defect prediction data. Recent research uncovered
potential problems in different parts of the SZZ algorithm. Most defect prediction data sets
provide only static code metrics as features, while research indicates that other features are
also important. We provide an empirical analysis of the defect labels created with the SZZ
algorithm and the impact of commonly used features on results. We used a combination of
manual validation and adopted or improved heuristics for the collection of defect data. We
conducted an empirical study on 398 releases of 38 Apache projects.

2 Results

We found that only half of the bug fixing commits determined by SZZ are actually bug
fixing. If a six-month time frame is used in combination with SZZ to determine which bugs
affect a release, one file is incorrectly labeled as defective for every file that is correctly
labeled as defective. In addition, two defective files are missed. We also explored the impact
1 Universität Passau, Fakultät für Informatik und Mathematik, Dr.-Hans-Kapfinger-Straße 30, 94032 Passau,

Deutschland steffen.herbold@uni-passau.de
2 Universität Passau, Fakultät für Informatik und Mathematik, Dr.-Hans-Kapfinger-Straße 30, 94032 Passau,

Deutschland alexander.trautsch@uni-passau.de
3 Universität Göttingen, Deutschland
4 Universität Göttingen, Deutschland

https://creativecommons.org/licenses/by-sa/4.0/
mailto:steffen.herbold@uni-passau.de
mailto:alexander.trautsch@uni-passau.de

64 Steffen Herbold, Alexander Trautsch, Fabian Trautsch, Benjamin Ledel

of the relatively small set of features that are available in most defect prediction data sets, as
there are multiple publications that indicate that, e.g., churn related features are important
for defect prediction. We found that the difference of using more features is not significant.

3 Data Availability

The data and all analysis scripts are available online [He21].

Literatur

[He21] Herbold, S.; Trautsch, A.; Trautsch, F.; Ledel, B.: Replication kit for: Problems
with SZZ and Features: An empirical study of the state of practice of defect
prediction data collection, Zenodo, Nov. 2021, url: https://doi.org/10.5281/
zenodo.5675024.

[He22] Herbold, S.; Trautsch, A.; Trautsch, F.; Ledel, B.: Problems with SZZ and features:
An empirical study of the state of practice of defect prediction data collection.
Empirical Software Engineering 27/2, Jan. 2022, url: https://doi.org/10.
1007/s10664-021-10092-4.

https://doi.org/10.5281/zenodo.5675024
https://doi.org/10.5281/zenodo.5675024
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 65

Community Expectations for Research Artifacts and
Evaluation Processes

Ben Hermann1, Stefan Winter2, Janet Siegmund3

Abstract: Artifact evaluation has been introduced into the software engineering and programming
languages research community with a pilot at ESEC/FSE 2011 and has since then enjoyed a healthy
adoption throughout the conference landscape. We conducted a survey including all members of
artifact evaluation committees of major conferences in the software engineering and programming
language field from 2011 to 2019 and compared the answers to expectations set by calls for artifacts
and reviewing guidelines. While we find that some expectations exceed the ones expressed in calls and
reviewing guidelines, there is no consensus on a quality threshold for artifacts in general. We observe
very specific quality expectations for specific artifact types for review and later usage, but also a lack
of their communication in calls. We also find problematic inconsistencies in the terminology used to
express artifact evaluation’s most important purpose. We derive several actionable suggestions which
can help to mature artifact evaluation in the inspected community and also to aid its introduction into
other communities in computer science.

Keywords: Research Artifacts; Artifact Evaluation; Replicability; Reproducibility; Study

1 Summary

In this paper, we present a study on the expectations of the community toward research
artifacts and their evaluation processes which was originally presented at ESEC/FSE 2020
and has received the ACM SIGSOFT Distinguished Paper Award [HWS20]. Since the
publication of the original study it had impact on numerous artifact evaluation tracks
and inspired a quantitative study on artifact quality and visibility published at ESEC/FSE
2022 [Wi22].

In 2016, a replicability crisis became public, when more than 1500 researchers revealed
having trouble replicating previous research results. This replicability crisis also reached
the software engineering community, as it has embraced the importance of replication for
knowledge building. To improve the situation of missing or unusable research artifacts,
artifact evaluation has become a regular process for scientific conferences in computer
1 Technische Universität Dortmund, Fakultät für Informatik, Otto-Hahn-Straße 14, 44227 Dortmund, Deutschland

ben.hermann@cs.tu-dortmund.de
2 Ludwig-Maximilians-Universität München, Fakultät für Informatik, Oettingenstraße 67, 80538 München,

Deutschland sw@stefan-winter.net
3 Technische Universität Chemnitz, Fakultät für Informatik, Straße der Nationen 62, 09111 Chemnitz, Detuschland

janet.siegmund@informatik.tu-chemnitz.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:ben.hermann@cs.tu-dortmund.de
mailto:sw@stefan-winter.net
mailto:janet.siegmund@informatik.tu-chemnitz.de

66 Ben Hermann, Stefan Winter, Janet Siegmund

science. Since the first piloting of the process at ESEC/FSE 2011, many other conferences
have included artifact evaluations as an additional step.

The overarching goal of our work is to enable an assessment of the efficacy of artifact
evaluations and to identify possible improvements for these processes. As a first step towards
a systematic assessment of artifact evaluation processes, the objective of our work is to
assess their current perception in the AE-pioneering communities. We have conducted
a survey among researchers who have served on artifact evaluation committees (AECs).
To this end, we have contacted all members of AECs, including the respective chairs,
for all artifact evaluations conducted at software engineering and programming language
conferences between 2011 and 2019.

We found that the perceived purpose of artifact evaluation is to foster replicability and
reusability at the same time. While we could observe several quality criteria to be expected
from artifacts, we found no clear consensus on them. Moreover, the expressed expectations
were largely not represented in the calls for artifacts. This makes it hard to define a quality
standard. The results of our study show that the lack of such quality standards leaves
reviewers without guidance how to decide on artifact acceptance or rejection. Moreover, it
creates an ambiguity for readers how to interpret the badges awarded to papers after AE.

In summary, we make the following contributions: (1) We provide an overview of the current
perception and practice of artifact evaluation and the expectations toward artifacts and the
process. (2) Based on community inputs, we present suggestions for future development
and improvement of artifact evaluations. (3) We published a research artifact for replication,
further analysis, and extension by the community.

2 Data Availability

The original publication is accessible under the DOI 10.1145/3368089.3409767 [HWS20].
Our artifact is available on Github (https://github.com/bhermann/artifact-survey) and
Zenodo (DOI: 10.5281/zenodo.3951724).

Bibliography
[HWS20] Hermann, Ben; Winter, Stefan; Siegmund, Janet: Community Expectations for Research

Artifacts and Evaluation Processes. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2020, Association for Computing Machinery, New
York, NY, USA, p. 469–480, 2020.

[Wi22] Winter, Stefan; Timperley, Christopher S.; Hermann, Ben; Cito, Jürgen; Bell, Jonathan;
Hilton, Michael; Beyer, Dirk: A Retrospective Study of One Decade of Artifact Evaluations.
In: Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2022, Association
for Computing Machinery, New York, NY, USA, p. 145–156, 2022.

https://doi.org/10.1145/3368089.3409767
https://github.com/bhermann/artifact-survey
https://doi.org/10.5281/zenodo.3951724

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 67

On the Subjectivity of Emotions in Software Projects: How
Reliable are Pre-Labeled Data Sets for Sentiment Analysis?
(Summary)

Marc Herrmann1, Martin Obaidi2, Larissa Chazette3, Jil Klünder4

Abstract:

Social aspects (e.g., the sentiment of developers) are important for software development. In order to
automatically analyze sentiments, sentiment analysis tools use machine learning methods that require
data sets labeled according to emotion or polarity. As these labeled data sets strongly influence the
tools’ accuracy, we investigate whether the labels match developers’ perceptions. For this purpose,
we conducted an international survey with 94 participants who labeled 100 statements. We compare
the median as well as every single participant’s perception with the labels. The results show that the
median perception of all participants coincides with the predefined labels for 62.5% of the statements,
and that the difference between the single participant’s ratings and the labels is even worse.

This summary refers to the paper with the title “On the subjectivity of emotions in software projects:
How reliable are pre-labeled data sets for sentiment analysis?” [He22b]. It was published in the
Journal of Systems and Software (JSS) in 2022 peer-reviewed.

Keywords: Sentiment analysis; software projects; polarity; development team; communication

1 Introduction

Sentiment analysis can be used to investigate the emotions of a team by analyzing whether
text messages convey a positive, negative, or neutral feeling. To automize this kind of
analysis, an increasing number of sentiment analysis tools has been developed in the last
years [Ob22]. These tools analyze text and provide the polarity of the text. Many of these
tools are based on machine learning methods that require a training data set. Such data sets
were crawled by researchers from platforms such as GitHub or Stack Overflow and manually
labeled with an emotion or a polarity. However, considering the diversity of software teams,
it seems unlikely that such a gold standard data set reflects all these differences. To analyze
1 Leibniz Universität Hannover, Fachgebiet Software Engineering, Welfengarten 1, 30167 Hannover, Deutschland
marc.herrmann@stud.uni-hannover.de
2 Leibniz Universität Hannover, Fachgebiet Software Engineering, Welfengarten 1, 30167 Hannover, Deutschland
martin.obaidi@inf.uni-hannover.de
3 Leibniz Universität Hannover, Fachgebiet Software Engineering, Welfengarten 1, 30167 Hannover, Deutschland
larissa.chazette@inf.uni-hannover.de
4 Leibniz Universität Hannover, Fachgebiet Software Engineering, Welfengarten 1, 30167 Hannover, Deutschland
jil.kluender@inf.uni-hannover.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:marc.herrmann@stud.uni-hannover.de
mailto:martin.obaidi@inf.uni-hannover.de
mailto:larissa.chazette@inf.uni-hannover.de
mailto:jil.kluender@inf.uni-hannover.de

68 Marc Herrmann, Martin Obaidi, Larissa Chazette, Jil Klünder

this more specifically, we conducted an international study to investigate the median and
individual perceptions of developers on statements of such data sets.

2 Results

We analyzed 94 data points by (1) comparing the median labels of all participants with the
predefined labels, and by (2) calculating Cohen’s ^ between every single participant and the
predefined labels as a measure for agreement. These analyses show a remarkable difference
between the median and the predefined labels: In 62.5% only, the median label coincide
with the predefined labels. Even more, we observe a wide variety in the agreement when
comparing the single participant’s perception with the predefined labels. A few participants
achieve a very high agreement, but others achieve a substantial disagreement.

3 Conclusion

Our results show that both a large number of developers individually and in median often do
not match the labels of the data sets. However, these data sets are the training basis for the
sentiment analysis tools. This said, it is questionable whether tools trained on such data sets
should be used to analyze what is going on in a software team. As long as the predefined
labels often do not match the perception of single persons, it is unlikely that the automated
analysis reflects the perception of such person. Indeed, tools should be adapted to each
individual team, taking into account the different perceptions of the team members.

Data Availability

This paper is based on the data set of the SentiSurvey. The raw data is online available [He22a].

Bibliography
[He22a] Herrmann, Marc; Obaidi, Martin; Chazette, Larissa; Klünder, Jil: Dataset: SentiSurvey for

Sentiment Analysis in Software Projects. Zenodo, 2022.

[He22b] Herrmann, Marc; Obaidi, Martin; Chazette, Larissa; Klünder, Jil: On the subjectivity of
emotions in software projects: How reliable are pre-labeled data sets for sentiment analysis?
Journal of Systems and Software, 193:111448, 2022.

[Ob22] Obaidi, Martin; Nagel, Lukas; Specht, Alexander; Klünder, Jil: Sentiment analysis tools in
software engineering: A systematic mapping study. Information and Software Technology,
151:107018, 2022.

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 69

Early Timing Analysis based on Scenario Requirements and
Platform Models (Extended Abstract)

Jörg Holtmann1, Julien Deantoni 2, Markus Fockel 3

Abstract: This extended abstract summarizes our article [HDF22], published in the Journal of
Software and Systems Modeling and presented as Journal First paper at MODELS’22.

Keywords: scenario-based requirements; platform modeling; real-time systems; timing analysis

Distributed, software-intensive systems must fulfill communication requirements under
hard real-time constraints. The requirements have to be documented and validated carefully
using a systematic requirements engineering (RE) approach, for example, by applying
scenario-based requirements notations. The resources of the execution platforms and their
properties induce effects on the timing behavior, which may lead to violations of the
real-time requirements.

Such violations of the real-time requirements can occur for various reasons: The ECUs
executing the software have restricted resources that increase execution times; the buses
and wireless communication media have restricted resources increasing transmission times;
the preemption induced by scheduling policies increase response times, et cetera. More
generally, the various properties of the particular resources of the execution platform
(resource properties) impact the timing behavior by inducing timing effects (i.e., delays)
during the provision of the actual functionality.

Nowadays, the platform resource properties and their induced timing effects are verified
against the real-time requirements by means of timing analysis techniques mostly imple-
mented in commercial-off-the-shelf tools. However, such timing analyses are conducted in
late development phases since they rely on artifacts produced during these phases.

For enabling timing analyses already in the early RE phase, related work provides means to
specify and analyze timed behavioral models (typically relying on scenario- or automata-
based notations), thereby abstracting from the final platform-specific artifacts. However,
such approaches typically require to reenact and pre-calculate the timing effects induced by
the resource properties and to specify them as part of the timed behavioral models.

Thus, in order to enable early timing analyses already during RE and to relieve the timing
analysts from the burden to pre-calculate and to specify the timing effects induced by the
1 Chalmers | University of Gothenburg, Interaction Design & Software Engineering, Sweden jorg.holtmann@gu.se
2 Universite Cote d’Azur, I3S/INRIA Kairos, France julien.deantoni@univ-cotedazur.fr
3 Fraunhofer IEM, Safe and Secure IoT Systems, Germany markus.fockel@iem.fraunhofer.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:jorg.holtmann@gu.se
mailto:julien.deantoni@univ-cotedazur.fr
mailto:markus.fockel@iem.fraunhofer.de

70 Jörg Holtmann, Julien Deantoni

platform resource properties as part of behavioral models, we extend a scenario-based
requirements notation with allocation means to platform models and define operational
semantics for the purpose of simulation-based, platform-aware timing analyses. Figure 1
sketches an overview of the approach and of the contributions.

2022-12-09

Timing Analysis
Modeling (TAM)
Profile

Approach to Solution
Overview

1

Timed Modal Sequence
Diagrams (MSDs)

Early platform-specific timing analysis based on timed scenario requirements and platform models

Simulative timing
analysis toolFoundations

Contribution 1:
Language for
platform modeling

Contribution 2: Operational MSD &
TAM semantics for platform-specific
timing analyses, declaratively
specified with the executable
modeling workbench GEMOC Studio

Holtmann, Deantoni, Fockel: Early timing analysis based on scenario requirements and platform models.
Journal of Software and Systems Modeling 21:6, 2022. J1st @ MODELS’22

tFoundations

Fig. 1: Overview of the Approach and Contributions

Since the targeted real-time software-intensive systems strongly rely on message-based
communication, we base the real-time requirements on our timed and component-based
dialect of the scenario-based notation of Modal Sequence Diagrams (MSDs) (cf. left-hand
side of Figure 1). Like the related work, the modeling and analysis means provided by our
dialect enable specifying and validating real-time requirements but incorporate platform-
specific aspects only insufficiently. To provide both an abstract specification of the execution
platform with its particular resource properties and the allocation of MSD specifications to
the execution platform, we furthermore extend platform modeling concepts of the real-time
modeling UML profile Marte (cf. middle of Figure 1). Based on the modeling languages
mentioned above, we introduce as main contribution a new operational semantics for
platform-aware MSDs dedicated to timing analyses (cf. arrow in the middle of Figure 1).
This semantics encompasses an extended MSD message event handling semantics and
particularly encapsulates the computation of the resource properties into platform-induced
timing effects. To operationalize the semantics, we apply our workbench Gemoc Studio
for the declarative specification of executable modeling languages. The overall approach
then enables verifying the timing effects w.r.t. the real-time requirements specified by timed
MSDs in platform-aware timing analyses through applying simulation and model checking
in our tool suite TimeSquare (cf. right-hand side of Figure 1).

Data Availability The supplementary material encompasses the tooling for the actual
approach, the tooling for parts of the evaluation, and evaluation data that is more detailed
than in the published article. We published it at Zenodo (cf. reference in the article).

Bibliography
[HDF22] Holtmann, Jörg; Deantoni, Julien; Fockel, Markus: Early Timing Analysis based on Scenario

Requirements and Platform Models. Software and Systems Modeling (Theme Section on
Model-Driven Requirements Engineering), 21(6):2171–2211, 2022. J1st @ MODELS’22.

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 71

A systematic literature review on counterexample
explanation – Summary

Arut Prakash Kaleeswaran1, Arne Nordmann1, Thomas Vogel2, Lars Grunske2

Abstract: In this extended abstract, we summarize our systematic literature review on counterexample
explanation published in the journal Information and Software Technology (IST) in 2022 [Ka22].

Keywords: Model checking; Counterexample explanation; Safety

Summary. In order to assure the safety of the systems, automotive systems are often created
in accordance with standards like ISO 26262. These standards use time-consuming and
error-prone manual safety analysis techniques, such as Failure Mode and Effect Analysis,
Fault Tree Analysis, and Hazard and Operability, to undertake safety analysis. To overcome
these challenges, formal methods is a potential option, e.g., model checking, an automated
verification method. Model checkers take the system model and specifications as input
and verify whether the specifications are satisfied by the system model. If not, then a
counterexample is provided by the model checker that illustrates the violation with the
execution path and system states. Nevertheless, comprehending the counterexample is
challenging because it is cryptic, relevant erroneous states and variables are not highlighted,
and debugging is performed manually. These challenges call for a method counterexample
explanation to ease the error comprehension. Thus, the systematic literature review (SLR)
is performed on counterexample explanation to provide an overview on the state of the art,
mainly focusing on the types of counterexample representation, the methods to transform or
optimize a counterexample, to provide an explanation, influence of the input system and
requirement on counterexample explanation, and the different domains and applications to
evaluate approaches to counterexample explanation. The SLR has been conducted as part
of a research project between BOSCH and HU Berlin on making model-checking results in
contract-based design of safety-critical systems easier to understand [Ka20].

The survey is performed by collecting answers for the eight specific research questions from
116 primary studies. By surveying 116 primary studies, four counterexample representations
types are identified: graphical, textual, tabular, and trace representations. Among these,
graphical and trace formats are predominantly used (89 of 116 primary studies, 77%) to rep-
resent a counterexample. For instance, the counterexample is presented in a SysML or UML
diagram. A trace representation is a modified form of a counterexample with the addition or
removal of (sub)-traces. Trace representation is further categorized into three types based
1 Bosch Corporate Sector Research, Renningen, Germany. ArutPrakash.Kaleeswaran@bosch.com
2 Humboldt-Universität zu Berlin, Software Enginering Group, Unter den Linden 6, 10099 Berlin, Germany.
{thomas.vogel, grunske}@informatik.hu-berlin.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:ArutPrakash.Kaleeswaran@bosch.com

72 Arut Prakash Kaleeswaran, Arne Nordmann, Thomas Vogel, Lars Grunske

on processing a counterexample: minimized counterexample, multiple counterexamples,
and witness traces (traces that satisfy the failed specification, which is contrary to the
counterexample). Among 54 primary studies that process the counterexample, majority (38,
70%) use minimized counterexample approach. Providing additional information along with
the counterexample explanation improves error comprehension, for example, highlighting
erroneous state transitions in the state-machine. However, only 8 of 116 primary studies are
found to provide additional information along with the counterexample explanation.

In this study, we also investigated whether counterexample explanations are represented and
explained with the user given input domain or those different from the input domain. Among
81 primary studies (excluding 31 studies that use trace representation), 60 studies represent
the counterexample different from the given input domain, and only 21 studies represent the
counterexample in the given input domain. Furthermore, we have also collected verification
tools and frameworks used for verification and explaining counterexamples, as well as
temporal logic and specification properties used to express system specifications. Mostly
used verification tools are NuSMV/nuXmv, PRISM, and SPIN, frameworks are ASSERT,
DiPro, and MODCHK, temporal logics are LTL and CTL, and specification properties
are safety properties. Finally, focusing on the evaluation methods, evaluation aspects, and
applications used for the evaluation, the majority employs use-case based evaluation method
focusing on effectiveness by using industrial applications.

This survey reveals several open points and future directions to enhance the counterexample
explanation approach. One of the main findings is still the counterexample explanation
needs improvement for non-experts in formal methods. We found many frameworks for
counterexample explanation and a considerable number of these are open-source. Therefore,
it seems advisable to build upon existing frameworks and improve them. To improve
the effectiveness and usability of counterexample explanations, user studies need to be
performed where one could gain insights on the degree of error comprehension. Such user
studies will provide evidence for the effectiveness and usability of such approaches from a
user’s point of view and hence can guide future research on counterexample explanation.

Data Availability. We published an online appendix [Ka21] on Zenodo (https://doi.org/
10.5281/zenodo.5679227) that lists the data items to be extracted and a bibliography of the
primary studies, and tabulates primary studies and extracted data for the quantitative items.

Bibliography
[Ka20] Kaleeswaran, Arut Prakash; Nordmann, Arne; Vogel, Thomas; Grunske, Lars: Counterex-

ample Interpretation for Contract-Based Design. In: 7th Intl. Symposium on Model-Based
Safety and Assessment, IMBSA. volume 12297 of LNCS. Springer, pp. 99–114, 2020.

[Ka21] Kaleeswaran, Arut Prakash; Nordmann, Arne; Vogel, Thomas; Grunske, Lars: Appendix of
the paper: A Systematic Literature Review on Counterexample Explanation. 2021.

[Ka22] Kaleeswaran, Arut Prakash; Nordmann, Arne; Vogel, Thomas; Grunske, Lars: A systematic
literature review on counterexample explanation. Information and Software Technology,
145:106800, 2022.

https://doi.org/10.5281/zenodo.5679227
https://doi.org/10.5281/zenodo.5679227

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 73

Meetings and Mood – Related or Not? Insights from Student
Software Projects (Summary)

Jil Klünder1, Oliver Karras2

Abstract: Meetings are part of most software projects which is why they have been frequently
analyzed by researchers. Often, this research focuses on the interactions. We analyze meetings from a
more abstract view by applying sentiment analysis to the statements made during the meeting. That is,
we analyze whether the statements are positive, negative, or neutral, and how the statements made are
related to the mood of a team before and after the meeting. Our results are based on insights from 21
student software projects and show some interesting findings, including that the amount of positive
and negative statements during the meeting has no measurable influence on the mood afterwards.

This summary refers to the paper “Meetings and Mood – Related or Not? Insights from Student
Software Projects” [KK22]. This paper was published in the proceedings of the 16th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, 2022.

Keywords: Software development teams, sentiment analysis, meeting, mood

1 Introduction

As most software projects require team work, adequate collaboration and interactions
between the project team members are essential. This also includes the information
exchange in meetings. So far, research has focused on interactions in meetings, that is
what kind of statements they made (e.g., whether they blame or support others, or express
interest). In our research [KK22], we investigated meetings from a more abstract view by
analyzing the polarity of the statements made. We then compared the amount of positive
and negative statements with respect to their relation to the mood of a team and conflicts.

2 Methodology

Overall, we wanted to analyze relations between (1) the mood before a meeting, (2) the
polarity of statements in a meeting, and (3) the mood and other social aspects after a meeting.
For this purpose, we analyzed the transcripts of 21 student software project meetings.
In addition, in these projects, we collected data on social aspects such as the affective
1 Leibniz Universität Hannover, Fachgebiet Software Engineering, Welfengarten 1, 30167 Hannover, Deutschland,

jil.kluender@inf.uni-hannover.de
2 TIB - Leibniz-Informationszentrum für Technik und Naturwissenschaften, Welfengarten 1B, 30167 Hannover,

Deutschland, oliver.karras@tib.eu

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{jil.kluender@inf.uni-hannover.de}
mailto:oliver.karras@tib.eu

74 Jil Klünder, Oliver Karras

state and the perceived likelihood for social or task-related conflicts. The data analysis
followed a two-step approach: (1) We applied sentiment analysis to the meeting transcripts
using the SEnti-Analyzer [HOK20] and retrieved the amount of positive, negative, and
neutral statements for each meeting. (2) Then, we applied hypothesis testing to analyze the
data with respect to the relationships mentioned above. In total, we tested 8 main and 20
sub-hypotheses [KK22].

3 Results

The data analysis provides some interesting insights, including that (1) the amount of
positive statements depends on the positive mood before the meeting, that (2) the perceived
likelihood for social conflicts depends on the amount of negative statements during the
meeting, and that (3) the perceived likelihood for task-related conflicts depends on the
amount of positive and negative statements during the meeting. Even more interesting,
there are two cases for which we did not find a measurable influence: (1) We neither find
an evidence for an influence of the overall mood before the meeting and the polarity of
statements during the meeting, nor (2) an evidence for an influence of the polarity of
statements during the meeting on the mood of a team after the meeting.

4 Conclusion

We can conclude that starting a meeting with a high positive mood can smooth both the
meeting start as well as the meeting as a whole and that the polarity of statements made
during the meeting has no measurable influence on the mood afterwards. Nevertheless, one
should not assume that the behavior during the meeting does not matter. Indeed, we argue
that it is more likely that such behavior influences the short-term emotional state after the
meeting (which needs to be proven by future research) rather then the long-term affective
state which we considered in this research.

Data Availability

Due to ethical concerns, we are not allowed to share the raw data publicly.

Bibliography
[HOK20] Herrmann, Marc; Obaidi, Martin; Klünder, Jil: SEnti-Analyzer: Joint Sentiment Analysis

For Text-Based and Verbal Communication in Software Projects. Technical Report 1.0,
Software Engineering Group, Leibniz Universität Hannover, 2020. arXiv.

[KK22] Klünder, Jil; Karras, Oliver: Meetings and Mood–Related or Not? Insights from Student
Software Projects. In: Proceedings of the 16th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. 2022.

cbe

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 75

Evaluation Methods and Replicability of Software
Architecture Research Objects

Marco Konersmann1, Angelika Kaplan2, Thomas Kühn2, Robert Heinrich2, Anne Koziolek2,
Ralf Reussner2, Jan Jürjens34, Mahmood al-Doori3, Nicolas Boltz2, Marco Ehl3, Dominik
Fuchß2, Katharina Großer3, Sebastian Hahner2, Jan Keim2, Matthias Lohr3, Timur Sağlam2,
Sophie Schulz2, Jan-Philipp Töberg2, §

Abstract: Our paper at the 19th IEEE International Conference on Software Architecture (ICSA 2022)
started by noticing that Software Architecture (SA) as research area experienced an increase in
empirical research. Empirical research builds a sound foundation for validity and comparability. A
current overview of the evaluation and replicability of SA research objects could help to discuss
our empirical standards as a community. However, no current overview existed. We assessed the
current state of practice of evaluating SA research objects and replication artifact provision in full
technical conference papers from ICSA and the European Conference on Software Architecture
(ECSA) 2017–2021. We first developed a categorization schema for SA research object evaluation and
artifact provisioning. In a systematic literature review with 153 papers, we then classified the papers
according to that schema. From our findings we derive and describe four proposals for improving the
state of practice in evaluating SA research objects.

Keywords: software architecture research, meta-research, systematic literature review, evaluation

Motivation: Software Architecture (SA) as research area experienced an increase in
empirical research [GW16], which can be considered important for the validity and
comparability. Our paper [Ko22] creates an overview of the evaluation and replicability of
SA research objects to help discussing our empirical standards as a community.
Research Method: We categorized SA research w.r.t. their evaluation and replicability and
created an overview of the current state of practice in evaluating SA research. Therefore, we
created a classification schema for the validation of SA research evaluations and conducted a
systematic literature review (SLR) of 153 full technical papers published at ECSA and ICSA
from 2017 to 2021. We discussed our findings and presented proposals for improvement.
Findings: Although there are valid reasons for not publishing replication packages, our
results indicate that improvements of generalizability and repeatability of evaluations could
enhance the field’s maturity. We summarize the answers to our research questions as follows:
RQ 1: What is the distribution of research objects and their evaluation and how did
their proportions change over time? SA research at the ECSA and ICSA is quite diverse
w.r.t. research objects with a focus on analysis and design methods (33% of research objects).
1 Software Engineering, RWTH Aachen University, Germany, konersmann@se-rwth.de
2 Karlsruhe Institute of Technology, Germany, {firstname.lastname}@kit.edu, §uexdy@student.kit.edu
3 University of Koblenz-Landau, Germany, {lastname,mahmoodaldoori,mehl,matthiaslohr}@uni-koblenz.de
4 Fraunhofer Institute for Software and Systems Engineering, ISST, Germany

https://creativecommons.org/licenses/by-nc/3.0/

76 Marco Konersmann et al.

Case studies and technical experiments are the dominating evaluation methods. Most (58%)
evaluation methods are used to measure exactly one quality. We see that neither research
objects nor evaluation methods heavily changed in the past five years with a trend to more
artifact provisioning since 2019.
RQ 2: How are specific research objects evaluated and how accessible are their evaluation
artifacts? The most prominent way of evaluation in the investigate papers is to measure
the functional suitability and performance using technical experiments and case studies.
The human-centered practice architecture decision making is mostly evaluated with human-
centered evaluation methods: interviews and focus groups. Few comparative methods, like
benchmarks, are used. Overall, we see no clear agreement on which properties should be
evaluated for specific research objects or which methods to use for specific properties.
RQ 3: Which guidelines are used for evaluation? 17% of the papers reference evaluation
guidelines. 14% reference guidelines for threats to validity. The two most-referenced
guidelines in both categories describe how to conduct and report case studies and how to
describe their threats to validity. Overall, we can observe that guidelines are not systematically
referenced in the investigated papers.
Conclusion: We derive and describe four proposals for improving the state of practice
in evaluating SA research objects: (P1) to foster the generalizability of evaluation results,
(P2) to develop more benchmarks to compare approaches, (P3) to foster the provision of
replication packages, and (P4) to build guidelines for what and how to evaluate, and which
threats to validity should be discussed for these methods. Researchers can use our results to
identify recommendations on relevant properties and methods for evaluation and to find
reusable artifacts to compare their approaches with existing research. Reviewers can use
our results to compare the evaluation and replicability of submissions with the state of the
practice.
Data Availability: We provide a replication package5 with the tabulated and visualized
review data, a BibTeX file with all papers considered, scripts for summarizing and visualizing,
and a copy of a wiki that was used for collaboration of the reviewers in our SLR. All
investigated papers are listed online6.

References
[GW16] Galster, Matthias; Weyns, Danny: Empirical Research in Software Architecture: How Far

have We Come? In: 13th Working IEEE/IFIP Conference on Software Architecture, WICSA
2016, Venice, Italy, April 5-8, 2016. IEEE Computer Society, pp. 11–20, 2016.

[Ko22] Konersmann, Marco; Kaplan, Angelika; Kühn, Thomas; Heinrich, Robert; Koziolek, Anne;
Reussner, Ralf; Jürjens, Jan; Al-Doori, Mahmood; Boltz, Nicolas; Ehl, Marco; Fuch,
Dominik; Großer, Katharina; Hahner, Sebastian; Keim, Jan; Lohr, Matthias; Sağlam, Timur;
Schulz, Sophie; Töberg, Jan-Philipp: Evaluation Methods and Replicability of Software
Architecture Research Objects. In: 2022 IEEE 19th International Conference on Software
Architecture (ICSA). IEEE, Los Alamitos, CA, USA, pp. 157–168, March 2022.

5 Replication Package: https://doi.org/10.5281/zenodo.6044059
6 Wiki: https://gitlab.com/SoftwareArchitectureResearch/StateOfPractice/-/wikis/Results

https://doi.org/10.5281/zenodo.6044059
https://gitlab.com/SoftwareArchitectureResearch/StateOfPractice/-/wikis/Results

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 77

Collaborative Program Comprehension in Extended Reality

Alexander Krause-Glau1, Malte Hansen2, Wilhelm Hasselbring3

Abstract: This contribution has been published in the journal Information and Software Technology
(Elsevier) in 2022 [KHH22], https://doi.org/10.1016/j.infsof.2022.107007.

Keywords: Program Comprehension; Software Visualization; City Metaphor; Extended Reality;
Virtual Reality; Augmented Reality

1 Introduction

In software visualization research, various approaches strive to create immersive environ-
ments by employing extended reality devices. In that context, only few research has been
conducted on the effect of collaborative, i.e., multi-user, extended reality environments.
ExplorViz’s multi-user modes are our approach to enable heterogeneous collaborative
software visualizations. Unlike related work, we approach the latter by introducing a
multi-user augmented reality environment for software visualizations based on off-the-shelf
mobile devices.

In this paper [KHH22], we present our journey toward a web-based approach to enable
(location-independent) collaborative program comprehension using desktop [Fi13], vir-
tual reality [FKH15b], physical 3D Models [FKH15a], and mobile augmented reality
devices [KHH21]. We designed and implemented a device-heterogenous multi-user mode
in our web-based live trace visualization tool ExplorViz [FKH17; HKZ20]. Users can
employ desktop, mobile, and virtual reality devices to collaboratively explore software
visualizations. We conducted user studies for common program comprehension tasks [Fi15;
FKH15c; KBH22; KHH22]. In this context, we also investigate the scalable implementation
and deployment of ExplorViz in the cloud [KH22].

2 Data Availability

A supplementary data package is available at Zenodo (https://doi.org/10.5281/zenodo.
5790175). The source code is available at GitHub (https://github.com/ExplorViz) and
the software documentation at https://explorviz.dev/.
1 Kiel University, Software Engineering Group, D-24098 Kiel, Germany akr@informatik.uni-kiel.de
2 Kiel University, Software Engineering Group, D-24098 Kiel, Germany mha@informatik.uni-kiel.de
3 Kiel University, Software Engineering Group, D-24098 Kiel, Germany hasselbring@email.uni-kiel.de

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/10.5281/zenodo.5790175
https://doi.org/10.5281/zenodo.5790175
https://github.com/ExplorViz
https://explorviz.dev/
mailto:akr@informatik.uni-kiel.de
mailto:mha@informatik.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de

78 Alexander Krause-Glau, Malte Hansen, Wilhelm Hasselbring

Literatur

[Fi13] Fittkau, F.; Waller, J.; Wulf, C.; Hasselbring, W.: Live Trace Visualization for
Comprehending Large Software Landscapes: The ExplorViz Approach. In: 1st
IEEE International Working Conference on Software Visualization (VISSOFT
2013). S. 1–4, Sep. 2013.

[Fi15] Fittkau, F.; Finke, S.; Hasselbring, W.; Waller, J.: Comparing Trace Visua-
lizations for Program Comprehension through Controlled Experiments. In:
Proceedings of the 23rd IEEE International Conference on Program Compre-
hension (ICPC 2015). IEEE, S. 266–276, Mai 2015.

[FKH15a] Fittkau, F.; Koppenhagen, E.; Hasselbring, W.: Research Perspective on
Supporting Software Engineering via Physical 3D Models. In: Proceedings of
the 3rd IEEEWorking Conference on Software Visualization (VISSOFT 2015).
IEEE, S. 125–129, Sep. 2015.

[FKH15b] Fittkau, F.; Krause, A.; Hasselbring, W.: Exploring Software Cities in Virtual
Reality. In: Proceedings of the 3rd IEEE Working Conference on Software
Visualization (VISSOFT 2015). IEEE, S. 130–134, Sep. 2015.

[FKH15c] Fittkau, F.; Krause, A.; Hasselbring, W.: Hierarchical Software Landscape
Visualization for System Comprehension: A Controlled Experiment. In: Pro-
ceedings of the 3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015). IEEE, S. 36–45, Sep. 2015.

[FKH17] Fittkau, F.; Krause, A.; Hasselbring, W.: Software Landscape and Application
Visualization for System Comprehension with ExplorViz. Information and
Software Technology 87/, S. 259–277, Juli 2017.

[HKZ20] Hasselbring, W.; Krause, A.; Zirkelbach, C.: ExplorViz: Research on soft-
ware visualization, comprehension and collaboration. Software Impacts 6/,
S. 100034, Nov. 2020, url: https://doi.org/10.1016/j.simpa.2020.
100034.

[KBH22] Krause-Glau, A.; Bader, M.; Hasselbring, W.: Collaborative Software Visua-
lization For Program Comprehension. In: 10th IEEE Working Conference on
Software Visualization (VISSOFT 2022). Limassol, Cyprus, Okt. 2022.

[KH22] Krause-Glau, A.; Hasselbring, W.: Scalable Collaborative Software Visua-
lization as a Service: Short Industry and Experience Paper. In: 10th IEEE
International Conference on Cloud Engineering (IC2E 2022). Sep. 2022.

[KHH21] Krause, A.; Hansen, M.; Hasselbring, W.: Live Visualization of Dynamic
Software Cities with Heat Map Overlays. In: 2021 Working Conference on
Software Visualization (VISSOFT). IEEE, S. 125–129, Sep. 2021.

[KHH22] Krause-Glau, A.; Hansen, M.; Hasselbring, W.: Collaborative program com-
prehension via software visualization in extended reality. Information and
Software Technology 151/, Nov. 2022, url: https://doi.org/10.1016/j.
infsof.2022.107007.

https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/10.1016/j.infsof.2022.107007

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 79

Incremental Software Product Line Verification —
A Performance Analysis with Dead Variable Code

Christian Kröher1, Moritz Flöter2, Lea Gerling3, Klaus Schmid4

Abstract: In this work, we summarize our journal paper published in Empirical Software Engineering
(EMSE) in 2022 [Kr22]. Verification approaches for Software Product Lines (SPL) aim at detecting
variability-related defects and inconsistencies. In general, these analyses take a significant amount
of time to provide complete results for an entire, complex SPL. If the SPL evolves, these results
potentially become invalid, which requires a time-consuming re-verification of the entire SPL for
each increment.

However, in previous work we showed that variability-related changes occur rather infrequently and
typically only affect small parts of a SPL. In this paper, we utilize this observation and present
an incremental dead variable code analysis as an example for incremental SPL verification, which
achieves significant performance improvements. It explicitly considers changes and partially updates
its previous results by re-verifying changed artifacts only. We apply this approach to the Linux
kernel demonstrating that our fastest incremental strategy takes only 3.20 seconds or less for most of
the changes, while the non-incremental approach takes 1,020 seconds in median. We also discuss
the impact of different variants of our strategy on the overall performance, providing insights into
optimizations that are worthwhile.

Keywords: Software product line analysis; Evolution; Incremental verification; Dead variable code
analysis

1 Summary

Software Product Line (SPL) engineering aims at developing software as a set of related
products. They share a common infrastructure, but vary in their individual capabilities. This
variability enables the configuration and combination of generic artifacts to create a wide
range of specific product variants.

A significant challenge in SPL engineering is the correct and consistent evolution of
variability information. One of the reasons for this is the scattering of variability information
1 University of Hildesheim, Institute of Computer Science, Software Systems Engineering, Universitätsplatz 1,

31141 Hildesheim, Germany kroeher@sse.uni-hildesheim.de
2 University of Hildesheim, Institute of Computer Science, Software Systems Engineering, Universitätsplatz 1,

31141 Hildesheim, Germany moritzf@gmail.com
3 University of Hildesheim, Institute of Computer Science, Software Systems Engineering, Universitätsplatz 1,

31141 Hildesheim, Germany gerling@sse.uni-hildesheim.de
4 University of Hildesheim, Institute of Computer Science, Software Systems Engineering, Universitätsplatz 1,

31141 Hildesheim, Germany schmid@sse.uni-hildesheim.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:kroeher@sse.uni-hildesheim.de
mailto:moritzf@gmail.com
mailto:gerling@sse.uni-hildesheim.de
mailto:schmid@sse.uni-hildesheim.de

80 Kröher et al.

across different artifacts, like code and build files. In large SPLs, this includes thousands
of files, which are connected by a vast number of variability-related configuration options,
conditions and references. This complexity contains the risk of unintentionally introducing
variability-related defects in or inconsistencies among those files as part of an evolutionary
change. SPL verification approaches exist to detect such problems requiring multiple seconds
up to entire days to provide their results. Upon evolution of a SPL, these delays will occur
for every update (even minor changes), if verification is used to ensure correctness and
consistency continuously.

In this paper, we present an approach based on a regression concept over all relevant types of
artifacts and the results of analyzing its performance. The approach relies on a fine-grained
commit analysis as well as the consideration of the relations between input artifacts, extracted
variability information, and the core algorithm of an analysis. We explicitly omit introducing
additional models for change impact analysis, but utilize already available information
only, like the changes documented by individual commits of a repository. The core analysis
algorithm remains unmodified as we exemplify by the dead variable code analysis, which
identifies never used variable code blocks.

In order to analyze potential strategies for our approach and to compare their performance,
we conceptually introduce different levels of change granularity and technically realize
adaptation options to switch among them. The result is a set of three incremental variants of
the dead variable code analysis, which consider changes on the level of files, file content,
and variability information as part of file content changes. Our analysis compares these three
incremental variants and the original non-incremental one with respect to their performances
by applying them to a subset of the Linux kernel evolution history.

The results of our performance analysis show that our incremental approach significantly
accelerates a dead variable code analysis. Our fastest incremental variant takes only 3.20
seconds or less for most of the changes, while the non-incremental variant takes 1,020
seconds in median. At the same time, the analysis results are 100% accurate and the
introduced overhead is neglectable.

2 Data Availability

The original journal paper is publicly available via the DOI 10.1007/s10664-021-10090-6.
All data related to this paper is publicly available on GitHub (https://github.com/SSE-
LinuxAnalysis/IncrementalAnalysesEvaluation/).

Bibliography
[Kr22] Kröher, Christian; Flöter, Moritz; Gerling, Lea; Schmid, Klaus: Incremental Software Product

Line Verification - A Performance Analysis with Dead Variable Code. Empirical Software
Engineering, 27(68):1–41, March 2022.

https://doi.org/10.1007/s10664-021-10090-6
https://github.com/SSE-LinuxAnalysis/IncrementalAnalysesEvaluation/
https://github.com/SSE-LinuxAnalysis/IncrementalAnalysesEvaluation/

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 81

Hacking or Engineering? Towards an Extended
Entrepreneurial Software Engineering Model

Marco Kuhrmann1, Jürgen Münch2, Jil Klünder3

Abstract: Entrepreneurial software engineering gains increasing interest in research and practice, as
it is not necessary to be an experienced software engineer to start a software startup. Nevertheless,
there are (e.g., quality and security) requirements that need to be fulfilled. Based on a proposed
solution fo a systematic software development for early-stage startups, we identify the methodological
and technical priorities of software startups.

This summary refers to the paper “Hacking or Engineering? Towards an Extended Entrepreneurial
Software Engineering Model” [KMK22]. This paper was published in the proceedings of the
International Conference on Software and Systems Processes 2022.

Keywords: Software development in startups; software process; hybrid development method

1 Introduction

Startups play a key role in software-based innovation. They make an important contribution
to an economy’s ability to compete and innovate, and their importance will continue to
grow due to increasing digitalization. However, the success of a startup depends primarily
on market needs and the ability to develop a solution that is attractive enough for customers
to choose. A sophisticated technical solution is usually not critical, especially in the early
stages of a startup. It is not necessary to be an experienced software engineer to start a
software startup. However, this can become problematic as the solution matures and software
complexity increases. Based on a proposed solution for systematic software development for
early-stage startups, in this paper, we present the key findings of a survey study to identify
the methodological and technical priorities of software startups, and we update the initial
“Entrepreneurial Software Engineering Model”, respectively.

2 Methodology

We conducted a survey study to analyze how software startups develop software and
how research can provide them with proper methodological support. In particular, we are
1 Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany kuhrmann@acm.org
2 Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany j.muench@computer.org
3 Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany jil.kluender@inf.uni-hannover.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:kuhrmann@acm.org
mailto:j.muench@computer.org
mailto:jil.kluender@inf.uni-hannover.de

82 Marco Kuhrmann, Jürgen Münch, Jil Klünder

interested in the requirements engineering process, the architecture and design approaches,
the product development strategies, and in how far these processes change over time. The
research is grounded in an initial “Entrepreneurial Software Engineering” model [BMK21],
which provides the basic structure for the questionnaire. In total, we received 70 responses
of which 40 responses are complete. These responses are described and analyzed using
descriptive and analytical statistics.

3 Results

The results of the survey draw a mixed picture. On the one hand, all software engineering di-
sciplines are considered important. On the other hand, we observe inconclusive requirements
engineering approaches and absent or unknown architecture and design approaches.

In particular, from a software engineering perspective, several methods and practices reported
to be used do not solve the problem they are meant to solve (according to the entrepreneurs).
A structured and systematic method is often absent. In addition, the pragmatic approach
used in the very early stages often does not change over time: If a startup decides in the very
beginning to start without a profound architectural design, it is unlikely that this will change
after a couple of months.

4 Discussion and Conclusion

Among other things, we found that requirements engineering and architecture pose challenges
for startups. In addition, we found evidence that startups’ software development approaches
do not tend to change over time. An early investment in a more scalable development
approach could help avoid long-term software problems. To support such an investment,
we propose an extended model for “Entrepreneurial Software Engineering” that, notably,
extends the requirements engineering parts to provide a better guideline in the early stages
of developing a software product. This extended model also provides a foundation for future
research.

Literaturverzeichnis
[BMK21] Brunner, Daniel; Münch, Jürgen; Kuhrmann, Marco: Entrepreneurial Software Engineering:

Towards a Hybrid Development Method for Early-Stage Startups. 45. WI-MAW-Rundbrief,
27(1):5–15, March 2021.

[KMK22] Kuhrmann, Marco; Münch, Jürgen; Klünder, Jil: Hacking or Engineering? Towards an
Extended Entrepreneurial Software Engineering Model. In: Proceedings of the International
Conference on Software and System Processes and International Conference on Global
Software Engineering. ICSSP. ACM, S. 66–76, 2022.

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 83

Tseitin or not Tseitin? The Impact of CNF Transformations
on Feature-Model Analyses

Elias Kuiter1, Sebastian Krieter2, Chico Sundermann3, Thomas Thüm4, Gunter Saake5

Abstract: This work was published at the 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE) 2022 [Ku22].

Feature modeling is widely used to systematically model features of variant-rich software systems
and their dependencies. By translating feature models into propositional formulas and analyzing
them with solvers, a wide range of automated analyses across all phases of the software development
process become possible. Most solvers only accept formulas in conjunctive normal form (CNF), so an
additional transformation of feature models is often necessary. However, it is unclear whether this
transformation has a noticeable impact on analyses. We compare three transformations for bringing
feature-model formulas into CNF. We analyze which transformation can be used to correctly perform
feature-model analyses and evaluate three CNF transformation tools on a corpus of 22 real-world
feature models. Our empirical evaluation illustrates that some CNF transformations do not scale to
complex feature models or even lead to wrong results for model-counting analyses. Further, the choice
of the CNF transformation can substantially influence the performance of subsequent analyses.

Keywords: Feature Modeling; Automated Reasoning; Conjunctive Normal Form

Many software systems in today’s industry can be diversely configured to serve specific
customer needs, making it necessary to systematically model their features and dependencies.
To this end, feature models are widely used. Satisfiability (SAT) solvers search for satisfying
assignments of propositional formulas and are routinely used for the automated analysis of
feature models. Similarly, model-counting (#SAT) solvers count satisfying assignments of
propositional formulas and also empower numerous feature-model analyses.

To analyze feature models using solvers, they must be translated into propositional formulas.
For automated analysis using solvers, these formulas typically must be supplied in conjunctive
normal form (CNF), which necessitates a transformation into CNF. However, in many papers
on feature-model and variability analysis, this step (although necessary) is not mentioned
or discussed only superficially; and evaluations using tools for feature-model extraction or
analysis typically do not document the chosen CNF transformation. Moreover, we repeatedly
observed in industry collaborations that using different CNF transformations may affect the
efficiency and results of analyses.
1 Otto-von-Guericke University Magdeburg kuiter@ovgu.de
2 University of Ulm sebastian.krieter@uni-ulm.de
3 University of Ulm chico.sundermann@uni-ulm.de
4 University of Ulm thomas.thuem@uni-ulm.de
5 Otto-von-Guericke University Magdeburg saake@ovgu.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:kuiter@ovgu.de
mailto:sebastian.krieter@uni-ulm.de
mailto:chico.sundermann@uni-ulm.de
mailto:thomas.thuem@uni-ulm.de
mailto:saake@ovgu.de

84 Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thüm, Gunter Saake

To assess the impact of CNF transformations on SAT- and #SAT-based feature-model
analyses, we describe and compare three state-of-the-art techniques for transforming
feature-model formulas into CNF: the distributive [BL99], Tseitin [Ts83], and Plaisted-
Greenbaum [PG86] transformation. As a tool for comparison, we propose a taxonomy of
five properties (two of which have not been considered in the literature before) by which we
classify these three transformations. We characterize how our taxonomy relates to selected
feature-model analyses, finding that the distributive and Tseitin transformations are suitable
for for model-counting analyses, while the Plaisted-Greenbaum transformation is not.

In addition, we empirically evaluate the efficiency of three CNF transformation tools
commonly used for feature-model analyses on a corpus of 22 real-world feature models.
We find that the selection of a CNF transformation has a substantial impact not only on the
performance of the transformation itself, but also on the efficiency and even the correctness
of subsequent analyses.

In summary, both our theoretical analysis and empirical evaluation show that the selection
of CNF transformations is highly relevant for practitioners and researchers, especially when
using performance-critical analyses, and has to be considered carefully.

Data Availability To ensure reproducibility, we disclose our fully automated evaluation
pipeline6 and all feature models, solvers, and results as a replication package.7

Bibliography
[BL99] Büning, Hans Kleine; Lettmann, Theodor: Propositional logic: deduction and algorithms,

volume 48. Cambridge University Press, 1999.

[Ku22] Kuiter, Elias; Krieter, Sebastian; Sundermann, Chico; Thüm, Thomas; Saake, Gunter: Tseitin
or not Tseitin? The Impact of CNF Transformations on Feature-Model Analyses. In: Proc.
Int’l Conf. on Automated Software Engineering (ASE). ACM, October 2022.

[PG86] Plaisted, David A; Greenbaum, Steven: A Structure-Preserving Clause Form Translation. J.
Symbolic Computation, 2(3):293–304, 1986.

[Ts83] Tseitin, Grigori S.: On the Complexity of Derivation in Propositional Calculus. In: Automation
of Reasoning: 2: Classical Papers on Computational Logic 1967–1970. Springer, pp. 466–483,
1983.

6 Automation scripts available at: https://doi.org/10.5281/zenodo.6922807
7 Replication package available at: https://doi.org/10.5281/zenodo.6525375

https://doi.org/10.5281/zenodo.6922807
https://doi.org/10.5281/zenodo.6525375

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 85

variED: An Editor for Collaborative, Real-Time Feature
Modeling

Elias Kuiter1, Sebastian Krieter2, Jacob Krüger3, Gunter Saake4, Thomas Leich5

Abstract: This work was published in Empirical Software Engineering (EMSE) 26, 2 (2021) [Ku21].

Feature models are a helpful means to document, manage, maintain, and configure the variability of a
software system. Various stakeholders in an organization may get involved in modeling the features in
such a software system. Currently, collaboration in such a scenario can only be done with face-to-face
meetings or by combining single-user feature-model editors with additional communication and
version-control systems. While face-to-face meetings are often costly and impractical, using version-
control systems can cause merge conflicts and inconsistency within a model. Advanced tools that solve
these problems by enabling collaborative, real-time feature modeling, analogous to Google Docs or
Overleaf for text editing, are missing. We describe the formal foundations of collaborative, real-time
feature modeling; a conflict resolution algorithm; proofs that our formalization converges and preserves
causality as well as user intentions; a prototype; and the results of an empirical evaluation to assess
the prototype’s usability. Our contributions provide the basis for advancing existing feature-modeling
practices to support collaborative feature modeling. Our prototype is considered helpful and valuable
by 17 users, also indicating opportunities for new research directions.

Keywords: Feature Modeling; Collaboration; Consistency Maintenance

Modeling the variability of a software product line in a feature model is essential for an
organization to document and manage all implemented features, and also to derive valid
configurations that are tailored to different customer requirements. To create a meaningful
feature model, all relevant stakeholders must work collaboratively—however, there is neither
a tool nor a technique that supports collaborative, real-time editing of the same feature model,
similar to the text editors Google Docs and Overleaf. Nonetheless, such a tool promises
advantages in several use cases, for instance when (a) working simultaneously on different
or coordinated tasks, (b) sharing the model with domain experts for real-time feedback and
evolution, or (c) teaching feature-modeling concepts and performing hands-on exercises. In
particular, the COVID-19 pandemic highlighted the value of remote collaboration.

To support these use cases, we describe the conceptual foundations of collaborative, real-
time feature modeling [Ku19, Ku21]. We define requirements that our technique aims
to fulfill, derive formal specifications for the operations that we need to develop, extend
1 Otto-von-Guericke University Magdeburg, Germany kuiter@ovgu.de
2 University of Ulm, Germany sebastian.krieter@uni-ulm.de
3 Eindhoven University of Technology, The Netherlands j.kruger@tue.nl
4 Otto-von-Guericke University Magdeburg, Germany saake@ovgu.de
5 Harz University of Applied Sciences, Wernigerode, Germany tleich@hs-harz.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:kuiter@ovgu.de
mailto:sebastian.krieter@uni-ulm.de
mailto:j.kruger@tue.nl
mailto:saake@ovgu.de
mailto:tleich@hs-harz.de

86 Elias Kuiter, Sebastian Krieter, Jacob Krüger, Gunter Saake, Thomas Leich

Fig. 1: Editing a feature model (left) and resolving a conflict (right) in variED.

the concurrency-control technique MVMD [SC02] to detect and resolve conflicts, and
implement variED, an editor for collaborative, real-time feature modeling (cf. Figure 1).

We further prove that our technique is correct and evaluate it empirically in a user study
with 17 participants. The results of our empirical user study show that our tool supports the
defined use cases well and is a helpful means to extend current collaboration strategies (e.g.,
versioning via Git). More precisely, the results show that our tool facilitates important use
cases that are not covered by currently employed strategies and it received far more positive
feedback compared to these strategies, despite its technical limitations.

Data Availability We provide Zenodo records for the open-source implementation of our
tool6 as well as our questionnaire and anonymized responses.7

Acknowledgments The work of Elias Kuiter, Sebastian Krieter, and Jacob Krüger has
been supported by a pure-systems Go SPLC 2019 Challenge project.

Bibliography
[Ku19] Kuiter, Elias; Krieter, Sebastian; Krüger, Jacob; Leich, Thomas; Saake, Gunter: Foundations

of Collaborative, Real-Time Feature Modeling. In: Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, pp. 257–264, September 2019.

[Ku21] Kuiter, Elias; Krieter, Sebastian; Krüger, Jacob; Saake, Gunter; Leich, Thomas: variED: An
Editor for Collaborative, Real-Time Feature Modeling. Empirical Software Engineering
(EMSE), 26(2), March 2021.

[SC02] Sun, Chengzheng; Chen, David: Consistency Maintenance in Real-Time Collaborative
Graphics Editing Systems. ACM Trans. on Computer-Human Interaction (TOCHI), 9(1):1–41,
2002.

6 https://doi.org/10.5281/zenodo.4259912

7 https://doi.org/10.5281/zenodo.4259914

https://doi.org/10.5281/zenodo.4259912
https://doi.org/10.5281/zenodo.4259914

cbe

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 87

Summary: Social Science Theories in Software Engineering
Research

Tobias Lorey1, Paul Ralph2, Michael Felderer3

Abstract: Human aspects are becoming increasingly important in software engineering research.
Despite this, it is unclear how software engineering utilizes existing theories from social sciences. As
a result, the objective of this critical review is to assess which and how social science theories are used
in five high-quality software engineering research journals. 87 unique social science theories from
disciplines such as psychology, management, and economics are identified. However, the results show
that less than two percent of articles employ a social science theory, and there are still challenges with
incorporating social science theories in software engineering research.

Keywords: software engineering research; theories; social science

1 Summary

This summary reports on the paper Social Science Theories in Software Engineering
Research [LRF22] which was published in the proceedings of the 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE). We performed a critical review
to investigate the social science theory-use in five high-quality software engineering
journals. All research articles published in ACM Transactions on Software Engineering
and Methodology (TOSEM), Empirical Software Engineering (EMSE), IEEE Transactions
on Software Engineering (TSE), Information and Software Technology (IST), and Journal
of Systems and Software (JSS) between 2007 and 2019 were electronically searched for
the term "theory". Non-research publications, such as editorials and commentaries, were
excluded. Each search result was manually inspected whether a theory has actually been
used and meets the definition of originating from a social science discipline.

Information from all relevant primary studies such as the theory name, author, and journal
name have been extracted. We then classified theories according to various criteria such as
the originating discipline, where in the paper the theory was used and for which purpose.

We identified 87 individual social science theories used in one or more software engineering
research articles during the 13 year time span reviewed. This implies that less than two
1 University of Innsbruck, Innsbruck, Austria, tobias.lorey@student.uibk.ac.at
2 Dalhousie University, Halifax, Canada, paulralph@dal.ca
3 University of Innsbruck, Innsbruck, Austria, michael.felderer@uibk.ac.at

https://creativecommons.org/licenses/by-nc/3.0/
tobias.lorey@student.uibk.ac.at
paulralph@dal.ca
michael.felderer@uibk.ac.at

88 Tobias Lorey, Paul Ralph, Michael Felderer

percent of published articles in the field use a social science theory. The identified 87
theories originate mostly from psychology (34), management including information systems
(23), and economics (10). We found that theories are most commonly used in the method and
introduction sections. Theories were most often used to facilitate the design of a research
method including the formulation of hypotheses and surveys and as an explanation of study
results. The most used theory is the technology acceptance model (TAM) followed by
diffusion of innovations theory, and dual coding theory.

We also sent a questionnaire to authors who published articles that we identified as primary
studies. We asked them about their perceived challenges and benefits when using social
science theories. Respondents to the questionnaire reported difficulty when using theories.
It was noted that everybody does it differently and problems arise when looking for suitable
social concepts to explain software engineering phenomena. Reported benefits included not
needing to re-invent the wheel, allowing to relate human and technical aspects, and being
able to use established concepts from other disciplines to answer questions in software
engineering research. Given how human factors are increasingly important to investigating
the field’s phenomena, social science theories can help researchers grow and mature software
engineering as a discipline.

2 Data Availability

We provide the anonymized data package at https://doi.org/10.5281/zenodo.6036076. It
contains primary studies, inclusion and exclusion criteria, meta data of articles using theories
and theory classifications.

References
[LRF22] Lorey, Tobias; Ralph, Paul; Felderer, Michael: Social Science Theories in Software

Engineering Research. In: 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE). IEEE, pp. 1994–2005, 2022.

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 89

Understanding and Predicting Typed Links in Issue Tracking
Systems

Clara Marie Lüders, Abir Bouraffa, Tim Pietz, Walid Maalej1

Abstract: This talk summarizes two recent papers: “Beyond Duplicates: Towards Understanding and
Predicting Link Types in Issue Tracking Systems” accepted at MSR 2022, and “Automated Detection
of Typed Links in Issue Trackers” accepted at RE 2022. In issue trackers like JIRA, stakeholders
connect issues via links of certain types, such as Epic-, Block-, Duplicate-, or Relate-links. While
previous research focused on Duplicate-links, we aim at understanding and predicting other link
types. In the MSR paper, we studied issues linking in 15 public JIRA repositories. We evaluated the
robustness of state-of-the-art duplicate detection approaches on our dataset with diversified link types.
We found that current deep-learning approaches confuse duplicates and other links. Extending the
training sets with other link types partly solves this problem. In the RE paper, we trained and evaluated
various machine learning models to detect typed links. We found that a BERT model trained on
titles and descriptions of linked issues outperforms other deep learning models, achieving an average
macro F1-score of 0.64. We also studied what impacts the prediction performance and found that this
depends on how repositories are used (e.g. linking quality) and by whom.

Keywords: Issue Tracking System; Typed Link Detection; Dependency Management; Deep Learning

1 Summary of Papers

Software projects use Issue Tracking Systems (ITS) like JIRA to track and organize
issues and their workflows. Issues are often interconnected via different links, such as the
default JIRA link types Duplicate, Relate, Block, or Subtask. These links are essential for
stakeholders to quickly find the information they want. However, managing and finding the
links between issues in large ITS is challenging.

2 MSR22 Paper: Beyond Duplicates: Towards Understanding and
Predicting Link Types in Issue Tracking Systems

Previous research has primarily focused on analyzing and predicting duplication links,
but this work aims to understand the various other link types, their prevalence, and their
characteristics. We studied 607,208 links connecting 698,790 issues in 15 public JIRA
repositories [MLM22]. Besides the default types, the custom types Depend, Incorporate,
1 Universität Hamburg, Abteilung, Vogt-Kölln-Straße 30, 22527 Hamburg, Deutschland [vorname.nachname]
@uni-hamburg.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:[vorname.nachname]@uni-hamburg.de
mailto:[vorname.nachname]@uni-hamburg.de

90 Clara Marie Lüders, Abir Bouraffa, Tim Pietz, Walid Maalej

Split, and Cause were also common. Motivated by the differences between the link types
and their popularity, we evaluated the robustness of two state-of-the-art duplicate detection
approaches [De17, He20] from the literature on the JIRA dataset. We found that current
deep-learning approaches confuse Duplicate and other links in almost all repositories. On
average, the classification accuracy dropped by 6% for one approach and 12% for the other.
Extending the training sets with other link types partly solves this issue.

3 RE22 Paper: Automated Detection of Typed Links in Issue Trackers

In addition to analyzing the link types, we also examined how state-of-the-art machine
learning models can automatically detect common link types in software projects. A BERT
model trained on the titles and descriptions of linked issues significantly outperformed
other deep learning models, achieving an average macro F1-score of 0.64 for detecting
nine popular link types across all repositories (weighted F1-score of 0.73). The model
performed exceptionally well on Subtask- and Epic-links, achieving F1-scores of 0.89
and 0.97, respectively. We found that Relate-links often get confused with the other links,
which suggests that they are likely used as default links in unclear cases. We also observed
significant differences across the repositories. We discuss different implementation strategies
based on these findings. If we restrict the detection to links and non-links, the classifier
achieves an average F1-score of 0.95.

4 Data Availability

The data set is available in zenodo2 and both papers have a replication package34.

Literaturverzeichnis
[De17] Deshmukh, Jayati; Annervaz, K. M.; Podder, Sanjay; Sengupta, Shubhashis; Dubash,

Neville: Towards Accurate Duplicate Bug Retrieval Using Deep Learning Techniques. In:
2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, USA, S. 115–124, 2017.

[He20] He, Jianjun; Xu, Ling; Yan, Meng; Xia, Xin; Lei, Yan: Duplicate Bug Report Detection
Using Dual-Channel Convolutional Neural Networks. In: Proceedings of the 28th
International Conference on Program Comprehension. Association for Computing
Machinery, New York, NY, USA, S. 117–127, 2020.

[MLM22] Montgomery, Lloyd; Lüders, Clara; Maalej, Walid: An Alternative Issue Tracking Dataset
of Public Jira Repositories. In: 2022 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, USA, 2022.

2 https://doi.org/10.5281/zenodo.5882881

3 https://github.com/RegenKordel/LYNX-BeyondDuplicates

4 https://github.com/RegenKordel/LYNX-TypedLinkDetection

https://doi.org/10.5281/zenodo.5882881
https://github.com/RegenKordel/LYNX-BeyondDuplicates
https://github.com/RegenKordel/LYNX-TypedLinkDetection

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 91

Empirical research on requirements quality: a systematic
mapping study

Lloyd Montgomery1, Davide Fucci2, Abir Bouraffa3, Lisa Scholz4, Walid Maalej5

Abstract: Dieser Artikel ist ursprünglich im Requirements Engineering Journal in 2022 erschienen.
Bisherige Forschung hat wiederholt gezeigt, dass qualitativ hochwertige Anforderungen maßgeblich
für den Erfolg von Entwicklungsprojekten sind. Obwohl der Begriff “Qualität” im Bereich des Require-
ments Engineering allgegenwärtig ist und trotz umfangreicher Forschungsarbeiten, gibt es bisher keine
Metastudien, die einen Überblick über Qualitätsattribute geben und diese miteinander vergleichen.
Daher haben wir eine systematische Literaturstudie durchgeführt: Wir haben 6905 Artikel aus sechs
akademischen Datenbanken abgerufen und auf 105 relevante Primärstudien heruntergebrochen. Diese
nutzen empirische Forschung zur Definition, Verbesserung und Bewertung der Anforderungsqualität.
Unsere Ergebnisse zeigen, dass die empirische Forschung zur Anforderungsqualität bislang hauptsäch-
lich auf Verbesserungstechniken fokussiert, während sich nur wenige Primärstudien mit Definitionen
und Bewertungen von Qualitätsattributen befassen. Von den 12 identifizierten Qualitätsattributen sind
Mehrdeutigkeit, Vollständigkeit, Konsistenz und Korrektheit von Anforderungen die bekanntesten.
Wir haben 111 Untertypen von Qualitätsattributen identifiziert, wie beispielsweise “Template- Kon-
formität” für Konsistenz oder “passive Form” für Mehrdeutigkeit. Nur wenige Arbeiten haben bislang
gezielt Qualitätsattribute von spezifischen Arten von Anforderungen, wie z.B. Anwendungsfälle
oder User Stories, untersucht. Unsere Ergebnisse verdeutlichen somit die Notwendigkeit weiterer
empirisch fundierter Forschung zur Definition von Anforderungsqualität unter Einsatz vielfältigerer
Forschungsmethoden sowie zur Untersuchung eines breiteren Spektrums an Anforderungstypen.

Keywords: Systematic mapping study; Secondary study; Requirements quality; Empirical research

1 Zusammenfassung des Artikels

Requirements Engineering (RE) ist ein wichtiger Bestandteil von Softwareprojekten, der
u.a. zu einer Reihe von Artefakten wie User Stories, Spezifikationsdokumente, Use Cases,
oder Feature Requests führt. Die “Qualität der Anforderungen” bezieht sich auf die Qualität
dieser Artefakte und umfasst Aspekte wie Lesbarkeit, Mehrdeutigkeit, Konsistenz und
Überprüfbarkeit (um nur einige zu nennen). Dieser Forschungsbereich hat in der letzten
Dekade zu einer Reihe von Veröffentlichungen auf führenden RE-Konferenzen geführt.
Trotz der gestiegenen Aufmerksamkeit fehlte bisher ein ganzheitlicher Überblick über die
empirische Erforschung der Anforderungsqualität. Um diese Lücke zu schließen, haben wir
1 University of Hamburg, 20146 Hamburg, Germany lloyd.montgomery@uni-hamburg.de
2 Blekinge Tekniska Högskola, Valhallavägen 1, 371 41 Karlskrona, Sweden davide.fucci@bth.se
3 University of Hamburg, 20146 Hamburg, Germany abir.bouraffa@uni-hamburg.de
4 University of Hamburg, 20146 Hamburg, Germany lisa.scholz@uni-hamburg.de
5 University of Hamburg, 20146 Hamburg, Germany walid.maalej@uni-hamburg.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:lloyd.montgomery@uni-hamburg.de
mailto:davide.fucci@bth.se
mailto:abir.bouraffa@uni-hamburg.de
mailto:lisa.scholz@uni-hamburg.de
mailto:walid.maalej@uni-hamburg.de

92 Lloyd Montgomery, Davide Fucci, Abir Bouraffa, Lisa Scholz, Walid Maalej

eine systematische Mapping-Studie (SMS) durchgeführt und die Ergebnisse im RE Journal
veröffentlicht [Mo22].

Unsere Studie bestand aus vier Hauptphasen: Artikelsuche, Artikelauswahl, Datenextraktion
und Kartierung. Bei der Artikelsuche haben wir sechs Datenbanken verwendet: ACM
Digital Library, IEEE Xplore, Elsevier ScienceDirect, SpringerLink, Web of Science und
Google Scholar. Unsere Datenbankrecherche ergab 6.905 Artikel. Während der Auswahl
der Artikel und der Datenextraktion reduzierten wir diese Zahl systematisch auf unsere
endgültigen 105 Primärstudien.

Aus den 105 Primärartikeln haben wir 12 Typen von Anforderungsqualität und 111
Untertypen ermittelt. Die 12 Typen sind: Mehrdeutigkeit, Vollständigkeit, Komplexität,
Konsistenz, Korrektheit, Redundanz, Relevanz, Wiederverwendbarkeit, Nachvollziehbarkeit,
Verständlichkeit, Überprüfbarkeit und undefiniert (bzw. unklar). Eine vollständige Liste der
Untertypen ist in dem Originalartikel zu finden [Mo22]. Wir haben eine große Vielfalt und
ein großes Ausmaß an untersuchten Themen und Codes für Qualitätsattribute gefunden,
die sich hauptsächlich auf Mehrdeutigkeit, Vollständigkeit, Konsistenz und Korrektheit
konzentrieren. Es gibt einige Studien, die sich mit der Verbesserung der Anforderungsqualität
befassen, aber nur wenige, die die Anforderungsqualität definieren oder evaluieren. Studien,
die explizit Teilnehmenden einbeziehen, haben einen Median von 20 Teilnehmenden,
während Studien, die Ersteller von Wahrheitsdatensätzen einbeziehen, einen viel niedrigeren
Median von 4 Teilnehmern haben. Bei den Primärstudien ist die Strenge angemessen
(mit Raum für Verbesserungen), während die Relevanz gering ist. Die Granularität der
untersuchten Artefakte reicht vom allgemeinen Konzept der “Anforderungen” bis hin zur
spezifischen Aufschlüsselung von Wörtern und Sätzen.

Unser Artikel diskutiert die Mängel an Definitionen und Bewertungen der Anforderungsqua-
lität. Wir sind der Meinung, dass der Schwerpunkt auf die Definition von Qualität verlagert
werden soll, damit Bemühungen zur Qualitätsverbesserung darauf ausgerichtet sind, wie
die Entwicklungsteams mit Requirementsdokumenten arbeiten. Anschließend wird die
Notwendigkeit einer stärkeren Beteiligung der Industrie sowie eine größeren Vielfalt der
Anforderungsarten diskutiert.

2 Dataverfügbarkeit

Alle Daten und Skripte sind in unserem Replication Package online verfügbar6.

Literaturverzeichnis
[Mo22] Montgomery, Lloyd; Fucci, Davide; Bouraffa, Abir; Scholz, Lisa; Maalej, Walid: Empirical

research on requirements quality: a systematic mapping study. Requirements Engineering, S.
1–27, 2022.

6 https://doi.org/10.5281/zenodo.5510222

https://doi.org/10.5281/zenodo.5510222

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 93

On the validity of pre-trained transformers for natural
language processing in the software engineering domain

Julian von der Mosel1, Alexander Trautsch2, Steffen Herbold3

Abstract: We summarize the article On the validity of pre-trained transformers for natural language
processing in the software engineering domain [VTH22], which was published in the IEEE Transactions
on Software Engineering in 2022.

Keywords: Defect Prediction; Costs; Return On Investment

1 Overview

The article “On the validity of pre-trained transformers for natural language processing in
the software engineering domain” was published in the IEEE Transactions on Software
Engineering in 2022. Transformers are the current state-of-the-art of natural language
processing in many domains and are using traction within software engineering research as
well. Such models are pre-trained on large amounts of data, usually from the general domain.
However, we only have a limited understanding regarding the validity of transformers within
the software engineering domain, i.e., how good such models are at understanding words and
sentences within a software engineering context and how this improves the state-of-the-art.
Within this article, we shed light on this complex, but crucial issue. We compare BERT
transformer models trained with software engineering data with transformers based on
general domain data in multiple dimensions: their vocabulary, their ability to understand
which words are missing, and their performance in classification tasks.

2 Results

Our results show that for tasks that require understanding of the software engineering context,
pre-training with software engineering data is valuable, while general domain models are
sufficient for general language understanding, also within the software engineering domain.
1 Georg-August-Universität Göttingen, Fakultät für Mathematik und Informatik, Goldschmidtstr. 7, 37077

Göttingen, Deutschland
2 Universität Passau, Fakultät für Informatik und Mathematik, Dr.-Hans-Kapfinger-Straße 30, 94032 Passau,

Deutschland alexander.trautsch@uni-passau.de
3 Universität Passau, Fakultät für Informatik und Mathematik, Dr.-Hans-Kapfinger-Straße 30, 94032 Passau,

Deutschland steffen.herbold@uni-passau.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:alexander.trautsch@uni-passau.de
mailto:steffen.herbold@uni-passau.de

94 Julian von der Mosel, Alexander Trautsch, Steffen Herbold

3 Data Availability

The seBERT model we pre-trained for this work, as well as all code to reproduce our
experiments, is available online.4

Literatur

[VTH22] Von der Mosel, J.; Trautsch, A.; Herbold, S.: On the validity of pre-trained
transformers for natural language processing in the software engineering domain.
IEEE Transactions on Software Engineering/, S. 1–1, 2022.

4 https://github.com/smartshark/seBERT

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 95

Evaluation of Usability Criteria Addressed by Static Analysis
Tools on a Large Scale

Marcus Nachtigall1, Michael Schlichtig2, Eric Bodden3

Abstract: Static analysis tools support developers in detecting potential coding issues, such as bugs
or vulnerabilities. Research emphasizes technical challenges of such tools but also mentions severe
usability shortcomings. These shortcomings hinder the adoption of static analysis tools, and user
dissatisfaction may even lead to tool abandonment. To comprehensively assess the state of the art, we
present the first systematic usability evaluation of a wide range of static analysis tools. We derived a
set of 36 relevant criteria from the literature and used them to evaluate a total of 46 static analysis tools
complying with our inclusion and exclusion criteria - a representative set of mainly non-proprietary
tools. The evaluation against the usability criteria in a multiple-raters approach shows that two thirds
of the considered tools offer poor warning messages, while about three-quarters provide hardly any fix
support. Furthermore, the integration of user knowledge is strongly neglected, which could be used
for instance, to improve handling of false positives. Finally, issues regarding workflow integration and
specialized user interfaces are revealed. These findings should prove useful in guiding and focusing
further research and development in user experience for static code analyses.

Keywords: Automated static analysis; Software usability

1 Large Scale Usability Criteria Evaluation of Static Analysis Tools

Static analysis tools allow the analysis of program code without execution. Their results can
help developers identify code issues. However, research has shown that static analysis tools
often provide weak usability, which leads to dissatisfaction among developers [CB16, Jo13],
e.g., insufficient explanations can lead to misjudgment of reports as false positives, too many
false positives can cause distrust in a tool overall, and workflow integration is often lacking.

To comprehensively assess the state of the art of static analysis tools with respect to usability,
we performed a large-scale empirical study where we compiled a list of 243 recommended
static analysis tools [NSB22]. We derived the usability evaluation criteria starting with
the collection of Nachtigall et al. [NDB19] and extended the collection with an additional
literature review. Nachtigall et al. have grouped recurrent usability issues into six categories,
which are connected to understandable warning messages, fix support, false positives,
integration of user feedback, workflow integration, and a specialized user interface. We
1 Heinz Nixdorf Institute, Paderborn University, Germany marcus.nachtigall@uni-paderborn.de
2 Heinz Nixdorf Institute, Paderborn University, Germany michael.schlichtig@uni-paderborn.de
3 Heinz Nixdorf Institute, Paderborn University & Fraunhofer IEM Paderborn, Germany eric.bodden@uni-
paderborn.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:marcus.nachtigall@uni-paderborn.de
mailto:michael.schlichtig@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de

96 Marcus Nachtigall, Michael Schlichtig, Eric Bodden

defined the evaluation criteria, evaluation protocol employing a multiple-raters approach,
and inclusion/exclusion criteria. In total, 46 static analysis tools were evaluated [NSB22].

Tab. 1: Overview of tools considered, excluded, and included

C/C++ Java Python C# JavaScript Multi-Lang. Total

All considered tools 69 52 28 18 23 53 243
Excl.: Proprietary 29 19 0 4 3 26 81
Excl.: Not maintained 15 8 2 4 7 5 41
Excl.: Unable to install 8 4 2 0 3 3 20
Excl.: Other reasons 12 8 7 4 5 19 55
Included 5 13 17 6 5 0 46

Table 1 shows the number of collected, excluded, and included tools. What is striking is that
about 25% could not be installed or were not maintained anymore. Full information on each
considered tool is provided in our artifact (cf. Section 2).

2 Data Availability

All raw data is available at: https://sites.google.com/view/datatoolsurvey/. The
artifact contains all collected tools (with reasoning), the list of evaluation criteria, data on
tool evaluation per programming language and a table with all evaluated tools [NSB22].

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297

Bibliography
[CB16] Christakis, Maria; Bird, Christian:What DevelopersWant and Need from ProgramAnalysis:

An Empirical Study. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ASE 2016, Association for Computing Machinery, New
York, NY, USA, p. 332–343, 2016.

[Jo13] Johnson, B.; Song, Y.; Murphy-Hill, E.; Bowdidge, R.: Why don’t software developers
use static analysis tools to find bugs? In: 2013 35th International Conference on Software
Engineering (ICSE). pp. 672–681, 2013.

[NDB19] Nachtigall, Marcus; Do, Lisa Nguyen Quang; Bodden, Eric: Explaining Static Analysis-A
Perspective. In: 2019 34th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW). IEEE, pp. 29–32, 2019.

[NSB22] Nachtigall, Marcus; Schlichtig, Michael; Bodden, Eric: A Large-Scale Study of Usability
Criteria Addressed by Static Analysis Tools. In: Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2022, Association for
Computing Machinery, New York, NY, USA, p. 532–543, 2022.

https://sites.google.com/view/datatoolsurvey/

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 97

BeDivFuzz: Integrating Behavioral Diversity into
Generator-based Fuzzing — Summary

Hoang Lam Nguyen1, Lars Grunske1

Abstract: This paper summarizes our work ”BeDivFuzz: Integrating Behavioral Diversity into
Generator-based Fuzzing” [NG22], presented at the 44th International Conference on Software
Engineering (ICSE 2022).

Keywords: Structure-aware fuzzing; behavioral diversity; random testing

1 Summary

Recent advances in structure-aware fuzzing (e.g., [Pa19, Ng21, SP21]) have been focusing on
testing the actual core functionality of the software under test (SUT), going beyond the early input
processing stages. Effectively testing programs that expect complex structured inputs (e.g., compilers)
is challenging, mainly because the test inputs must (i) be syntactically valid to be successfully parsed,
(ii) satisfy any additional semantic validity constraints to actually reach the SUT’s core functionality,
and (iii) exhibit some sort of diversity to trigger a variety of different program behavior.

When it comes to diversely testing the SUT, simply covering new program behaviors is not sufficient,
since faults may only be revealed by specific inputs. Additionally, a fuzzer may be biased towards
exploring particular behaviors, due to the structure of the SUT and random nature of input mutations.
As a result, we argue that behavioral diversity of a fuzz campaign is only given if the fuzzer not only
covers many different branches (i.e., high richness), but also diversely tests many of these behaviors
(i.e., high evenness w.r.t. branch execution distribution).

BeDivFuzz aims to diversely test the SUT by leveraging a particular way to generate structured
test inputs: imperative generators, which depend on a sequence of choices to produce concrete
inputs [Pa19]. Our key insight is that by analyzing the internal structure of these generators, we can
classify these choices into structural and value choices. As a result, by controlling either type of
choices only, we can perform more fine-grained and controlled mutations in the space of syntactically
valid inputs. For instance, by mutating the structural choices only, we can perform structure-changing
mutations in the input (e.g., changing the shape of an XML-tree). On the other hand, by controlling
only the value choices, we can perform structure-preservingmutations (e.g., changing attribute values).
We leverage these two types of mutations in the following way:

1. We search for interesting input structures in the space of valid inputs through structure-changing
mutations.

2. We produce different variants of the same input structure by applying structure-preserving
mutations with the goal of exploring diverse execution traces.

1 Humboldt-Universität zu Berlin, Department of Computer Science, Unter den Linden 6, 10099 Berlin, Germany
{nguyehoa,grunske}@informatik.hu-berlin.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{nguyehoa, grunske}@informatik.hu-berlin.de

98 Hoang Lam Nguyen, Lars Grunske

BeDivFuzz integrates this idea in a feedback-guided fuzzing loop to produce test inputs that not
only increase code coverage, but also improve the diversity of the executed behaviors. In particular,
our approach retains interesting input structures for further mutation, and uses an n-greedy approach
to bias the mutation strategy towards diverse execution traces.

To evaluate our approach, we use Hill numbers [Hi73], an established biodiversity index from the
field of ecology. Inspired by the STADS (Software Testing and Analysis as Discovery of Species)
framework introduced by Böhme [Bö18], we consider branches as species and compute the Hill
Numbers of orders @ = 0, 1, 2 over the distribution of unique branch execution counts. We call this
metric behavioral diversity of a fuzzing campaign. An interesting property of this metric is that it
can be mapped to other well-known measures of diversity, like species richness (which in our case
corresponds to branch coverage), Shannon entropy, and the Simpson index [Hi73]. Our experimental
evaluation indicates that BeDivFuzz significantly improves behavioral diversity compared to the
baselines.

2 Data Availability
We have published a replication package on Zenodo 2, which includes the experimental data and
instructions to reproduce the results. In addition, the most recent version of the tool is currently
maintained on GitHub 3.

Literaturverzeichnis
[Bö18] Böhme, Marcel: STADS: Software Testing as Species Discovery. ACM Transactions on

Software Engineering and Methodology (TOSEM), 27(2):1–52, 2018.

[Hi73] Hill, Mark O: Diversity and evenness: a unifying notation and its consequences. Ecology,
54(2):427–432, 1973.

[Ng21] Nguyen, Hoang Lam; Nassar, Nebras; Kehrer, Timo; Grunske, Lars: MoFuzz: A Fuzzer
Suite for Testing Model-Driven Software Engineering Tools. In: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering. ASE ’20,
Association for Computing Machinery, New York, NY, USA, S. 1103–1115, 2021.

[NG22] Nguyen, Hoang Lam; Grunske, Lars: BeDivFuzz: Integrating Behavioral Diversity into
Generator-Based Fuzzing. In: Proceedings of the 44th International Conference on Software
Engineering. ICSE ’22, Association for Computing Machinery, New York, NY, USA, S.
249–261, 2022.

[Pa19] Padhye, Rohan; Lemieux, Caroline; Sen, Koushik; Papadakis,Mike; Le Traon, Yves: Semantic
Fuzzing with Zest. In: Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis. ISSTA 2019, Association for Computing Machinery, New
York, NY, USA, S. 329–340, 2019.

[SP21] Srivastava, Prashast; Payer, Mathias: Gramatron: Effective Grammar-Aware Fuzzing. In:
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2021, Association for Computing Machinery, New York, NY, USA, S.
244–256, 2021.

2 https://zenodo.org/record/6320055

3 https://github.com/hub-se/BeDivFuzz

https://zenodo.org/record/6320055
https://github.com/hub-se/BeDivFuzz

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 99

A Summary of ReVision:
History-based Model Repair Recommendations

Manuel Ohrndorf1, Christopher Pietsch2, Udo Kelter3, Lars Grunske4, Timo Kehrer5

Abstract: This work reports recent research results on history-based model repair recommendations
in Model-Driven Engineering (MDE), originally published in Reference [Oh21]. Models in MDE
are primary development artifacts that are heavily edited in all software development stages and
can become temporarily inconsistent during editing. Model repair tools can support developers by
proposing a list of the most promising repairs. Such repair recommendations will only be accepted
in practice if the generated proposals are plausible and understandable and the set as a whole is
manageable.

Our interactive repair tool ReVision [Oh18], aims at generating repair proposals for inconsistencies
introduced by past incomplete edit steps. Such an incomplete edit step is either undone or extended to
the full execution of a consistency-preserving edit operation. We evaluate our approach using histories
of real-world models from popular open-source modeling projects. Our experimental results confirm
our hypothesis that most of the inconsistencies can be resolved by complementing incomplete edits.
In fact, 92.2% of the proposed complementations could be observed in the model history.

Keywords: model-driven software engineering; model repair; consistency; recommendations; history
analysis

1 Summary

Model-Driven Engineering (MDE) raises the level of abstraction in software engineering by
using models as primary artifacts. Thus, models in MDE are subject to continuous evolution
and heavily edited during all stages of development and maintenance. As a consequence,
models may get inconsistent for various reasons, e.g., due to misunderstandings when being
edited collaboratively in teams. Technically, one main reason for consistency violations is
the isolated editing of interrelated views or model fragments.

Inconsistencies are detected as violations of consistency rules defined for a specific modeling
language. Violations of these rules can be automatically obtained using inconsistency
detection techniques. While these techniques are widely established in practice, how to
optimally support developers in resolving inconsistencies is still being actively discussed.
1 Universität Bern, Switzerland manuel.ohrndorf@unibe.ch
2 University Siegen, Germany cpietsch@informatik.uni-siegen.de
3 University Siegen, Germany kelter@informatik.uni-siegen.de
4 Humboldt-Universität zu Berlin, Germany grunske@informatik.hu-berlin.de
5 Universität Bern, Switzerland timo.kehrer@unibe.ch

https://creativecommons.org/licenses/by-sa/4.0/
mailto:manuel.ohrndorf@unibe.ch
mailto:cpietsch@informatik.uni-siegen.de
mailto:kelter@informatik.uni-siegen.de
mailto:grunske@informatik.hu-berlin.de
mailto:timo.kehrer@unibe.ch

100 Manuel Ohrndorf et al.

Repairing all inconsistencies in a single step often leads to solutions whose rationale is hard
to grasp for developers. Following the generally accepted debugging strategy of fixing a
single defect at a time, we iteratively repair each single violation of a consistency rule.

We assume that inconsistencies are introduced by past, incomplete editing processes that
require additional changes to achieve a new consistent state. In general, there are many
alternatives to resolve such inconsistencies. In such cases, recommender systems can
generate a ranked list of suitable repair proposals from which a developer can choose.

Our repair recommendation tool ReVision requires specifying the transitions between
consistent states by formal consistency-preserving edit operations (CPEOs). The main
idea of our approach is to consider CPEOs as ideal edit operations and to recommend
the “gap” between ideal edits and the edits which have caused an inconsistency as model
repairs [Oh18, Oh21]. Therefore, incomplete edit steps are detected in the model history
and can be either undone or extended to the full execution of a CPEO.

A systematic process supports the specification of CPEOs capturing typical complex
edit steps, which are likely to be applied only partially, leading to model inconsistencies.
Specifically, we follow an example-driven approach to manually specify sets of minimal yet
valid example model fragments, which are then automatically composed into CPEOs.

We evaluate our approach using histories of real-world models obtained from popular open-
source modeling projects. Our empirical study shows that, in most observable inconsistency
repair cases, it is more likely that a developer wants to catch up on missing changes. In fact,
92.2% (510 complementations, 43 undos) of our repair proposals that could equally be
observed (44 not observable) in the original modeling history are complementations.

In general, approaches that are not aware of the change history of a model are likely to
propose repairs that just undo former changes that caused an inconsistency. Thus, a developer
should be enabled to make an informed decision whether to undo former work or, if this
work was just incomplete, retain and complete it.

1.1 Data Availability

ReVision and the evaluation data can be found at https://repairvision.github.io/.

Bibliography
[Oh18] Ohrndorf, Manuel; Pietsch, Christopher; Kelter, Udo; Kehrer, Timo: ReVision: a tool for

history-based model repair recommendations. In: Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. ACM, pp. 105–108, 2018.

[Oh21] Ohrndorf, Manuel; Pietsch, Christopher; Kelter, Udo; Grunske, Lars; Kehrer, Timo: History-
based model repair recommendations. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(2):1–46, 2021.

https://repairvision.github.io/

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 101

Jicer: Slicing Android Apps for Cooperative Analysis

Felix Pauck1, Heike Wehrheim2

Abstract: Slicing allows to identify which program parts influence or are influenced by a certain
statement of a program. Hence, if we know which statement is potentially causing an issue we can
slice accordingly to only inspect the slice while debugging. With Jicer, we proposed a slicer that can
be used in a different context, namely cooperative Android app analysis. In combination with taint
analysis tools, we employed Jicer to get more accurate results.

Keywords: Cooperative Analysis; Android; Taint Analysis; Static Slicing

1 Cooperative Analysis with Jicer

Android has become the most-used operating system, consequently it has also be-
come a compelling target for attackers who, for example, try to steal users’ pri-
vate data. One instrument to detect privacy leaks before they are exploited is
taint analysis. Fortunately, there exist many Android (taint) analysis tools that fo-
cus on different aspects related to the Android framework or an app’s program-
ming language. Even more luckily, there nowadays exist cooperative analysis frame-
works that allow to compose (and evaluate) analysis combinations [PW19, PBW18].

Phase II: Slicing

Phase I: Graph Generation

Create
PDGs

Merge
PDGs

Enhance
SDG

Prepare
Slicing

Slice
ADG

Comple-
tion

PDGs
(,)

SDG
()

ADG
(,)

[field-labels])
From To

Sliced
ADG

ADG
(,)

App/Class

Sliced
App/Class

2

11 2 3

46 5

1 StubDroid Summaries

2 List of Callback Classes

Control Data

Field-Data

Call

Callback

From-target

To-target

From

To

Legend

Fig. 1: Overview of the approach

With Jicer [PW21] (Jimple
Slicer) we proposed a static
Android app slicer which is
usable in cooperative analysis
context. It allows slicing an
app such that it can still be
analyzed thereafter — a fea-
ture that distinguishes Jicer
form related Android slicing
approaches. In the following
the approach behind Jicer is
explained in more detail.

Jicer implements a six-step
workflow that can be divided into two phases: graph generation and slicing (see Figure 1).
1 Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany fpauck@mail.uni-paderborn.de
2 University of Oldenburg, Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany heike.wehrheim@uol.
de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:fpauck@mail.uni-paderborn.de
mailto:heike.wehrheim@uol.de
mailto:heike.wehrheim@uol.de

102 Felix Pauck, Heike Wehrheim

Once an Android app (.apk file) is provided as input, a program dependence graph (PDG),
modeling control and data dependencies, is computed for all methods contained in this
app (➊). The second step (➋) merges these PDGs into a single system dependence graph
(SDG) as proposed by Horwitz et al. back in 1990 [HRB90]. This SDG is then enhanced
with edges that model callbacks (with respect to e.g. life-cycles or GUI elements) and
data dependencies related to fields. The output of this enhancement step (➌) is called app
dependence graph (ADG). With the generation of the ADG the graph generation phase ends.

To start the slicing phase, the slicing criteria provided by the user are identified first (➍). They
define from where and to where to slice. Note that Jicer allows to provide a to-criterion, a
from-criterion or both. Depending on the criteria given, a backward slice (to), a forward slice
(from) or a chop (from-to) is computed. Figuratively speaking, a chop can be understood as
the intersection of a backward and a forward slice. Once the ADG is sliced (➎), finishing
touches are performed during Step ➏. Statements that are mandatory for analyses but not
included in the slice are added to the slice. For example, setContentView statements link a
layout to an Android activity, hence, many analyses require such statements to be available
to know which layout must be taken into account. At the end, the sliced Android package
(.apk file) is output. Jicer also supports other output formats but .apk files are the preferred
choice in cooperative analysis context, because most analysis tools require .apk files as
input. Accordingly, all these tools can be used to analyze slices produced by Jicer.

The evaluation presented in the proposing paper [PW21] shows that Jicer is able to slice
real-world apps thereby reducing app size about ∼55 to ∼96%. Most importantly, in a
cooperative analysis Jicer can increase the overall precision (eliminating up to 82% of
false positives that have been found without slicing).

2 Data Availability

An artifact submitted along with the Jicer study, that has successfully undergone an artifact
evaluation, is available at Zenodo (https://doi.org/10.5281/zenodo.5462859). It contains
all tools and results determined in the original study. Furthermore, the up-to-date version of
Jicer can be found at Github (https://FoelliX.github.io/Jicer).

Bibliography
[HRB90] Horwitz, Susan; Reps, Thomas W.; Binkley, David W.: Interprocedural Slicing Using

Dependence Graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[PBW18] Pauck, Felix; Bodden, Eric; Wehrheim, Heike: Do Android taint analysis tools keep their
promises? In: Proceedings of the 26th ESEC/FSE, 2018. ACM, 2018.

[PW19] Pauck, Felix; Wehrheim, Heike: Together strong: cooperative Android app analysis. In:
Proceedings of ESEC/FSE, 2019. ACM, 2019.

[PW21] Pauck, Felix; Wehrheim, Heike: Jicer: Simplifying Cooperative Android App Analysis
Tasks. In: Proceedings of the 21st SCAM, 2021. IEEE, 2021.

https://doi.org/10.5281/zenodo.5462859
https://FoelliX.github.io/Jicer

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 103

Variable Misuse Detection: Software Developers versus
Neural Bug Detectors

Cedric Richter1, Jan Haltermann2, Marie-Christine Jakobs3, Felix Pauck4, Stefan Schott5,
Heike Wehrheim6

Abstract: Finding and fixing software bugs is a central part of software development. Developers are
therefore often confronted with the task of identifying whether a code snippet contains a bug and
where it is located. Recently, data-driven approaches have been employed to automate this process.
These so called neural bug detectors are trained on millions of buggy and correct code snippets to learn
the task of bug detection. This raises the question how the performance of neural bug detectors and
software developers compare. As a first step, we study this question in the context of variable misuse
bugs. To this end, we performed a study with over 100 software developers and two state-of-the-art
approaches for neural bug detection. Our study shows that software developers are on average slightly
better than neural bug detectors – even though the bug detectors are trained specifically for this task.
In addition, we identified several bottlenecks in existing neural bug detectors which could be mitigated
in the future to improve their bug detection performance.

Keywords: Bug detection; variable misuse bugs; empirical study

A Study of Developers and Neural Bug Detectors

Data-driven methods like neural bug detectors are becoming increasingly effective at the
task of bug detection [He20]. Existing bug detectors often focus on frequent bug types such
as variable misuses (a variable name is used although another was meant) or binary operator
bugs (the wrong binary operator is used). While we can evaluate the bug detectors easily,
e.g. on bugs mined from public repositories [KS20], it is unclear how human software
developers would perform on these bug detection tasks and how they compare to existing
neural bug detectors. To be able to compare software developers and neural bug detectors,
we conducted a study with over 100 developers and evaluated them on the task of detecting
variable misuse bugs in Java.

Our study was conducted in the form of a web survey, for which we developed a customized
web interface. The interface is shown in Figure 1a. Here, the participant is shown a random
1 University of Oldenburg, Oldenburg, Germany cedric.richter@uol.de
2 University of Oldenburg, Oldenburg, Germany jan.haltermann@uol.de
3 Technical University of Darmstadt, Darmstadt, Germany jakobs@cs.tu-darmstadt.de
4 Paderborn University, Paderborn, Germany fpauck@mail.upb.de
5 Paderborn University, Paderborn, Germany stefan.schott@upb.de
6 University of Oldenburg, Oldenburg, Germany heike.wehrheim@uol.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:cedric.richter@uol.de
mailto:jan.haltermann@uol.de
mailto:jakobs@cs.tu-darmstadt.de
mailto:fpauck@mail.upb.de
mailto:stefan.schott@upb.de
mailto:heike.wehrheim@uol.de

104 Cedric Richter et al.

(a) User interface of the developer study

15
11

5

6

6
9

23

Developer GNN

Transformer
Unlocated

42
No majority

16

Bug localizations (133 buggy tasks)

(b) Overlap of localized bugs

code snippet written in Java and must decide whether (1) the code snippet contains a
variable misuse bug and (2) on which line the bug is located (if any). In total, participants
are confronted with up to eight code snippets that were drawn randomly from a manually
curated set of 310 possible code snippets and either contain a variable misuse bug or not. In
the end, 304 snippets were solved by at least two participants. For each of these snippets, we
computed the average developer performance (by aggregating all answers of this snippet)
which we use to compare developers and bug detectors.

We compared the average developer performance with the performance of two state-of-the-
art neural bug detectors on the same set of code snippets. Our results show that there is a
significant overlap of bugs that can be detected by developers and bug detectors (e.g. as
shown in Figure 1b). Still, we found that developers are generally better in avoiding false
positives while maintaining a high bug detection rate. This observation has also led us to
the discovery of several limitations of existing neural bug detectors such as (1) a misleading
training distribution, (2) a missing robustness towards code length and (3) a lack of code
context. A detailed evaluation and discussion of our results is available in [Ri22].

Data Availability

All our study results and an explorable version of the web survey are archived and available
at Zenodo7. Our replication package also include participant answers (in an anonymous
form).

Bibliography
[He20] Hellendoorn, Vincent J.; Sutton, Charles; Singh, Rishabh; Maniatis, Petros; Bieber, David:

Global Relational Models of Source Code. In: ICLR. OpenReview.net, 2020.

[KS20] Karampatsis, Rafael-Michael; Sutton, Charles: How Often Do Single-Statement Bugs Occur?:
The ManySStuBs4J Dataset. In: MSR. ACM, pp. 573–577, 2020.

[Ri22] Richter, Cedric; Haltermann, Jan; Marie-Christine, Jakobs; Felix, Pauck; Stefan, Schott;
Wehrheim, Heike: Are Neural Bug Detectors Comparable to Software Developers on Variable
Misuse bugs? In: ASE. 2022.

7 https://doi.org/10.5281/zenodo.6958242

https://doi.org/10.5281/zenodo.6958242

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 105

Introducing FUM: A Framework for API Usage Constraint
and Misuse Classification

Michael Schlichtig1, Steffen Sassalla2, Krishna Narasimhan3, Eric Bodden4

Abstract: Application Programming Interfaces (APIs) are the primary mechanism developers use to
obtain access to third-party algorithms and services. Unfortunately, APIs can be misused, which can
have catastrophic consequences, especially if the APIs provide security-critical functionalities like
cryptography. Understanding what API misuses are, and how they are caused, is important to prevent
them, e.g., with API misuse detectors. However, definitions for API misuses and related terms in
literature vary. This paper presents a systematic literature review to clarify these terms and introduces
FUM, a novel Framework for API Usage constraint and Misuse classification. The literature review
revealed that API misuses are violations of API usage constraints. To address this, we provide unified
definitions and use them to derive FUM. To assess the extent to which FUM aids in determining and
guiding the improvement of an API misuses detector’s capabilities, we performed a case study on
the state-of the-art misuse detection tool CogniCrypt. The study showed that FUM can be used to
properly assess CogniCrypt’s capabilities, identify weaknesses and assist in deriving mitigations and
improvements.

Keywords: API misuses; API usage constraints; classification framework; API misuse detection;
static analysis

1 Classification of API Usage Constraints and Misuses with FUM

Reuse of functionalities and algorithms is key to software development and is enabled
by APIs. However, misusing an API can cause serious consequences, such as program
crashes or data leakage. We performed a systematic literature review on API misuses
from November 2020 to February 2021 to improve our understanding of API misuses. We
considered 69 publications to derive definitions and our classification Framework for API
Usage constraints andMisuses (FUM) [Sc22].

FUM is mainly based on the works of Monperrus et al. [Mo12], Amann et al. [Am19] and
Li’s refinement [Li20] on the work of Amann et al. [Am19]. API misuses are caused by the
violation of an API usage constraint which is a restriction imposed by the API designer or
expert to the API but cannot be checked by the programming language’s compiler. Therefore,
1 Heinz Nixdorf Institute, Paderborn University, Germany michael.schlichtig@uni-paderborn.de
2 Hasso Plattner Institute, University of Potsdam, Germany steffen.sassalla@student.hpi.de
3 Technische Universität Darmstadt, Germany kri.nara@cs.tu-darmstadt.de
4 Heinz Nixdorf Institute, Paderborn University & Fraunhofer IEM Paderborn, Germany eric.bodden@uni-
paderborn.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:michael.schlichtig@uni-paderborn.de
mailto:steffen.sassalla@student.hpi.de
mailto:kri.nara@cs.tu-darmstadt.de
mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de

106 Michael Schlichtig, Steffen Sassalla, Krishna Narasimhan, Eric Bodden

FUM defines API usage constraint types and localizes them with the related part(s) of an
API method call, e.g., a Post-Call is located at the return value (cf. Figure 1).

return value (API object/class)= method(. argument(s))

Post-Call(s)
Post-Null-Check*

Method Call Sequence
Controlling Method Call*
Forbidden Method Call

Argument State*
- String Format
- Number Range

Argument Type
Argument Correlation
Pre-Null-Check*

Exception Handling

Context
- Synchronization
- Threading*

H
ig

h-
Le

ve
l C

on
st

ra
in

ts
*

Fig. 1: FUM [Sc22] - Overview of API usage constraint types associated with parts of an API method
call. Types marked with an asterisk are additions to the work of Monperrus et al. [Mo12]. Dashed
colored boxes are specific to one single API method call part. Uncolored dashed boxes are API usage
constraint types spanning multiple parts of an API method call.

2 Data Availability - Case Study

FUM was tested in a case study to evaluate a state-of-the-art cryptographic API misuse
detector [Kr20] . The data of the case study is available at https://doi.org/10.6084/m9.
figshare.16832749 and contains the evaluation protocols of each API misuse sample and
detailed theoretical explanations of suggested improvements.

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297

Bibliography
[Am19] Amann, S.; Nguyen, H. A.; Nadi, S.; Nguyen, T. N.; Mezini, M.: A Systematic Evaluation of

Static API-Misuse Detectors. IEEE Transactions on Software Engineering, 45(12):1170–
1188, 2019.

[Kr20] Krüger, Stefan : CogniCrypt - The Secure Integration of Cryptographic Software. Ph.D.
thesis, University Paderborn, October 2020.

[Li20] Li, Xia: An Integrated Approach for Automated Software Debugging via Machine Learning
and Big Code Mining. Ph.D. thesis, The University of Texas at Dellas, 2020.

[Mo12] Monperrus, Martin; Eichberg, Michael; Tekes, Elif; Mezini, Mira: What should developers
be aware of? An empirical study on the directives of API documentation. Empirical Software
Engineering, 17(6):703–737, Dec 2012.

[Sc22] Schlichtig, Michael; Sassalla, Steffen; Narasimhan, Krishna; Bodden, Eric: FUM - A
Framework for API Usage constraint and Misuse Classification. In: 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). pp. 673–684,
2022.

https://doi.org/10.6084/m9.figshare.16832749
https://doi.org/10.6084/m9.figshare.16832749

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 107

GenBenchDroid: Fuzzing Android Taint Analysis
Benchmarks

Stefan Schott1, Felix Pauck2

Abstract: The conventional approach of assessing the performance of Android taint analysis tools
consists of applying the tool to already existing benchmarks and calculating its performance on
the contained benchmark cases. Creating and maintaining a benchmark requires a lot of effort,
since it needs to comprise various analysis challenges, and since each benchmark case needs a well
documented ground-truth — otherwise one cannot know whether a tool’s analysis is accurate. This
effort is further increased by the frequently changing Android API. All these factors lead to the same,
usually manually created, benchmarks being reused over and over again. In consequence analysis tools
are often over-adapted to these benchmarks.

To overcome these issues we propose the concept of benchmark fuzzing, which allows the generation
of previously unknown and unique benchmarks, alongside their ground-truths, at evaluation time. We
implement this approach in our tool GenBenchDroid and additionally show that we are able to find
analysis faults that remain uncovered when solely relying on the conventional benchmarking approach.

Keywords: Fuzzing; Benchmarks; Android Taint Analysis

1 Fuzzing Benchmarks with GenBenchDroid

Taint flows typically consist of a source, which introduces sensitive data to the app, a
sink, which leaks sensitive data to the outside world and some intermediate data flow that
connects source and sink. This data flow often comprises various programming aspects,
like different data structures or multi-threading. The more complex the data flow is, the
harder it is for analysis tools to uncover the taint flow. Thus, a proper benchmark needs
to comprise benchmark cases with various degrees of complexity and analysis challenges
(aspects). To be able to generate such Android apps, that can be used as benchmark cases,
we split aspects that may possibly be contained inside taint flows into a set of modules.
GenBenchDroid [SP22] interweaves these modules by inserting them into a template,
which denotes the starting structure of an Android app. This allows GenBenchDroid to
generate Android apps that comprise taint flows of various complexities.

Figure 1 shows an overview of GenBenchDroid’s architecture. The Fuzzer component
uses a grammar that knows about the aforementioned templates and modules (build-
ing blocks). This grammar is used to generate a Benchmark Case Blueprint (BCB),
1 Paderborn University, Germany, Warburger Str. 100, 33098 Paderborn, Germany, stefan.schott@upb.de
2 Paderborn University, Germany, Warburger Str. 100, 33098 Paderborn, Germany, fpauck@mail.upb.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:stefan.schott@upb.de
mailto:fpauck@mail.upb.de

108 Stefan Schott, Felix Pauck

which specifies building blocks and their desired insertion order. The Benchmark Case
Generator (BCG) component interweaves the building blocks that are specified in
the BCB and generates an Android app, as well as the corresponding ground-truth.

ModulesTemplates

Fuzzer

Grammar

BCG

Android
Application

Ground-Truth
GenBenchDroid

1 n

Configurable

BCB

Building Blocks

Fuzzing Generation Outputs
Legend

Fig. 1: Overview of GenBenchDroid

This ground-truth is determined by
generating a graph that represents
the used building blocks and by
finding paths in this graph that
connect source and sink modules.

Benchmark Fuzzing offers many
advantages that can improve and
complement conventional bench-
marking approaches. By design,
benchmark fuzzing decreases the
likelihood of over-adaptation, as
benchmark cases are not known
before evaluation time. Furthermore, our experiments on state-of-the-art taint analysis tools
(FlowDroid [Ar14] and Amandroid [WRO18]) uncovered previously unknown analysis
defects. We were able to uncover a scalability issue in Amandroid by generating benchmark
cases of various sizes. Additionally, we uncovered analysis defects in FlowDroid and
Amandroid that would only show up, if aspects appear in combination inside a single taint
flow. These defects can hardly be uncovered by only relying on conventional benchmarks,
as it is impossible to manually create arbitrary aspect combinations and since these aspects
used in isolation are analyzed correctly by both tools.

2 Data Availability

GenBenchDroid and its source code, as well as all data that is related to our performed
experiments is available at https://doi.org/10.5281/zenodo.7023084. An up-to-date
version of GenBenchDroid can be found on Github (https://github.com/stschott/
GenBenchDroid).

Bibliography
[Ar14] Arzt, Steven; Rasthofer, Siegfried; Fritz, Christian; Bodden, Eric; Bartel, Alexandre;

Klein, Jacques; Le Traon, Yves; Octeau, Damien; McDaniel, Patrick: Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps.
Acm Sigplan Notices, 49(6):259–269, 2014.

[SP22] Schott, Stefan; Pauck, Felix: Benchmark Fuzzing for Android Taint Analyses. In: 22nd
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2022, Limassol, Cyprus, October 3-4, 2022. IEEE, 2022. To appear.

[WRO18] Wei, Fengguo; Roy, Sankardas; Ou, Xinming: Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps. ACM
Transactions on Privacy and Security (TOPS), 21(3):1–32, 2018.

https://doi.org/10.5281/zenodo.7023084
https://github.com/stschott/GenBenchDroid
https://github.com/stschott/GenBenchDroid

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 109

Quantifying the Potential to Automate the Synchronization of
Variants in Clone-and-Own – Summary

Alexander Schultheiß1, Paul Maximilian Bittner2, Thomas Thüm3, Timo Kehrer4

Abstract: We report about a recent empirical study on variant synchronization in clone-and-own,
originally published at the 38th IEEE International Conference on Software Maintenance and Evolution
(ICSME) 2022 [Sc22]. In clone-and-own, a new variant of a software system is created by copying
and adapting an existing one. While it is flexible, clone-and-own causes high maintenance effort
in the long run as cloned variants evolve in parallel; certain changes, such as bug fixes, need to be
propagated between variants. A recent line of research proposes to automate such synchronization
tasks when migration to a software product line is not feasible. However, it is yet unclear how far
this synchronization can actually be pushed. We present an empirical study in which we quantify
the potential to automate the synchronization of variants in clone-and-own. We simulate automated
variant synchronization using the history of BusyBox, a real-world multi-variant software system.
Our results indicate that existing patching techniques propagate changes with an accuracy of up to
85%, if applied consistently from the start of a project. This can be even further improved to 93% by
exploiting lightweight domain knowledge about which features are affected by a change, and which
variants implement affected features.

Keywords: clone-and-own, variant synchronization, version control, software product lines

Summary

Today’s software is often released in multiple variants to meet varying requirements. While
there are systematic approaches to managing variability, such as software product lines
where all variants are managed using an integrated platform, these approaches are not
feasible for all projects. Instead, developers fall back to using clone-and-own, creating a
new variant of a software system by copying and adapting an existing one (e. g., using
branching/forking capabilities of a version control system). This way, new variants are
created ad-hoc and without requiring upfront investments or knowledge about future variants.
In the long term, however, clone-and-own projects suffer from ever-increasing maintenance
costs. For example, if a bug is discovered and fixed in one variant, it is often unclear which
other variants are affected by the same bug and how it should be fixed in these variants.

Researchers started to explore the continuum between ad-hoc clone-and-own and software
product lines to reduce the burden on developers. In our project VariantSync [Ke21], we
1 Humboldt-Universität zu Berlin, Germany, alexander.schultheiss@informatik.hu-berlin.de
2 University of Ulm, Germany, paul.bittner@uni-ulm.de
3 University of Ulm, Germany, thomas.thuem@uni-ulm.de
4 University of Bern, Switzerland, timo.kehrer@inf.unibe.ch

https://creativecommons.org/licenses/by-sa/4.0/
mailto:alexander.schultheiss@informatik.hu-berlin.de
mailto:paul.bittner@uni-ulm.de
mailto:thomas.thuem@uni-ulm.de
mailto:timo.kehrer@inf.unibe.ch

110 Schultheiß et al.

propose to manage the development and maintenance of cloned variants by propagating
changes of interest between them, thereby keeping cloned variants synchronized. To this end,
we advocate to collect additional (lightweight) domain knowledge on cloned variants and
software changes, which might be leveraged by change propagation techniques. However, it
is yet unclear how far this synchronization can actually be pushed.

In this work [Sc22], we quantify the potential to automate the synchronization of variants in
clone-and-own through an empirical study. Our study covers three aspects of patch-based
variant synchronization. First, to gain insight on the difficulties of automated change
propagation, we investigate how often propagating a change via patching succeeds or fails,
depending on different levels of patch granularity (i. e., commit-, file-, and line-level patches).
Second, we examine the correctness of automated patching by analyzing the outcome of
each synchronization scenario. Third, we investigate the potential to improve the correctness
of automated synchronization when developers document lightweight domain knowledge.
Specifically, we employ lightweight domain knowledge about which features are affected
by a change and which variants implement affected features – knowledge that is generally
assumed to be available but typically undocumented in clone-and-own.

We inspect almost half a billion patch scenarios derived from a large-scale real-world system
(BusyBox). We find that the majority of patches is applicable automatically, even when
propagating changes blindly across variants. Blind patching produces correct results in the
majority of cases with an accuracy of 85% and precision of 92%. This shows that the very
applicability of patches is a useful indicator for determining if a target variant should actually
receive a patch or not. Furthermore, we confirm the hypothesis that gathering lightweight
domain knowledge might prove useful for automated synchronization. If automated patching
with lightweight domain knowledge is applied from the start of a project, variants can be
synchronized with high accuracy (93%) and almost perfect precision (97%).

Data Availability

The publication will be accessible under the DOI 10.1109/ICSME55016.2022.00032. A
preprint can be found on our website (https://seg.inf.unibe.ch/papers/SBTK_ICSME22.
pdf). Our artifact is available on Github (https://github.com/VariantSync/SyncStudy)
and Zenodo (DOI: 10.5281/zenodo.7025599).

Bibliography
[Ke21] Kehrer, Timo; Thüm, Thomas; Schultheiß, Alexander; Bittner, Paul Maximilian: Bridging the

Gap Between Clone-and-Own and Software Product Lines. In: Proc. Int’l Conf. on Software
Engineering (ICSE). IEEE, pp. 21–25, 2021.

[Sc22] Schultheiß, Alexander; Bittner, Paul Maximilian; Thüm, Thomas; Kehrer, Timo: Quantifying
the Potential to Automate the Synchronization of Variants in Clone-and-Own. In: Proc. Int’l
Conf. on Software Maintenance and Evolution (ICSME). IEEE, 2022. To appear.

https://doi.org/10.1109/ICSME55016.2022.00032
https://seg.inf.unibe.ch/papers/SBTK_ICSME22.pdf
https://seg.inf.unibe.ch/papers/SBTK_ICSME22.pdf
https://github.com/VariantSync/SyncStudy
https://doi.org/10.5281/zenodo.7025599

cba

Gregor Engels. Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 111

Property-Driven Black-Box Testing of Numeric Functions

Arnab Sharma1, Vitalik Melnikov2, Eyke Hüllermeier3, Heike Wehrheim4

Abstract:

In this work, we propose a property-driven testing mechanism to perform unit testing of functions
performing numerical computations. Our approach, similar to the property-based testing technique,
allows the tester to specify the requirements to check. Unlike property-based testing, the specification
is then used to generate test cases in a targeted manner. Moreover, our approach works as a black-box
testing tool, i.e. it does not require knowledge about the internals of the function under test. Therefore,
besides on programmed numeric functions, we also apply our technique to machine-learned regression
models. The experimental evaluation on a number of case studies shows the effectiveness of our
testing approach.

Keywords: Property-based testing; Regression; Testing machine-learning models

1 Property-Driven Testing

Our testing approach is a form of learning-based testing (LBT) [Me], where – given a
black-box system under test (SUT) – a model of the SUT is learned, and thereafter test
cases are generated on the model. We in particular employ LBT for learning models of
machine-learned functions. Based on this, we develop an approach which in addition to
LBT allows for property specification and systematically generates test cases based on the
property. Our approach consists of the following steps.

Property specification. We aim to generate test cases based on a requirement specification
given by the user. In this, we follow the style used by property-based testing which takes
the following form: Assume ⇒ Assert, where the Assume specifies a pre-condition on
the input, and Assert specifies a post-condition on the output of the SUT. These logical
conditions involve standard predicate logic using integers or real numbers and basic
arithmetic and Boolean operators.

Test data generation. Once we have the property specification and the SUT, the next step is
to use the property to generate test cases on the SUT. To this end, we first of all, learn a
model using standard machine learning techniques. Since we consider numerical functions
here, we learn regression models, to be precise either decision trees or neural networks.
Next, the learned model as well as the negation of the property are translated into logical
formulas. The conjunction of these two formulae is then given to an SMT solver. If the solver
finds a (logically) satisfiable model to the formula as a counterexample to the property,

1 Universität Paderborn, arnab.sharma@upb.de, 2 Universität Paderborn, melnikov@mail.upb.de, 3 LMU München,
eyke@ifi.lmu.de, 4 Universität Oldenburg, heike.wehrheim@uol.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:arnab.sharma@upb.de
mailto:melnikov@mail.upb.de
mailto:eyke@ifi.lmu.de
mailto:heike.wehrheim@uol.de

112 Arnab Sharma et al.

Tab. 1: Results of detected violations (✓ = violation detected, ✗ = no violation detected)

Property
SUT L-OWA

MLC/PT
L-Uni

MLC/PT
LAF

MLC/PT
DeepSet
MLC/PT

Total
MLC/PT

infimum ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
supremum ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
monotonicity ✓/✓ ✓/✗ ✓/✓ ✓/✓ 4/3
Lipschitz ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
symmetry ✗/✗ ✗/✗ ✗/✗ ✗/✗ 0/0
idempotency ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
conjunction ✓/✓ ✗/✗ ✓/✓ ✓/✓ 3/3
disjunction ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
internality ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
invariance ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
additivity ✓/✓ ✗/✗ ✓/✗ ✓/✗ 3/1
total 5/5 6/2 10/9 9/6 30/22

we cross-check it on the SUT. This is necessary since we calculated the logical formula
from the model approximating the SUT. If the counterexample is also valid for the SUT
itself, we are done with testing and return the counterexample as a violation of the property.
Otherwise, we use the counterexample to retrain the model.

We have implemented our approach as part of our existing tool MLcheck and have
evaluated it on a number of predefined (i.e., implemented) and machine-learned numeric
functions [Sh]. Table 1 shows some experimental results for 4 machine-learned SUTs testing
for 11 properties (all common to aggregation functions). The table also gives a comparison
of our approach (MLC) with property-based testing (PT)5. The blue-shaded cells are cases
where the property holds for the SUT.

Data Availability

Our artifact can be found at https://github.com/arnabsharma91/MLCHECK-formalise.

Bibliography

[Me] Meinke, Karl: Learning-Based Testing: Recent Progress and Future Prospects. In: Machine
Learning for Dynamic Software Analysis: Potentials and Limits - International Dagstuhl
Seminar 16172, Germany, 2016.

[Sh] Sharma, Arnab; Melnikov, Vitalik; Hüllermeier, Eyke; Wehrheim, Heike: Property-Driven
Testing of Black-Box Functions. In: 10th IEEE/ACM International Conference on Formal
Methods in Software Engineering, FormaliSE@ICSE 2022, Pittsburgh, PA, USA, 2022.

5 https://github.com/HypothesisWorks/hypothesis

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 113

Input Invariants

Dominic Steinhöfel1, Andreas Zeller2

Abstract: To exhaustively test a program, we need inputs that the program does not reject. Such valid
inputs must satisfy syntactic and semantic constraints of the input language. Grammar-based fuzzers
efficiently produce syntactically valid system inputs but miss context-sensitive semantic constraints.
Example semantic properties are length fields or checksums in binary inputs or definition-use constraints
for variables in programming languages. We introduce ISLa [SZ22a], a declarative specification
language for context-sensitive properties of structured system inputs. An ISLa specification, or input
invariant, consists of a context-free grammar and a potentially context-sensitive ISLa constraint.
Our ISLa fuzzer produces streams of inputs from invariants. We show that a few ISLa constraints
suffice to generate diverse and 100% semantically valid inputs. Additionally, the fuzzer can repair
and—preserving semantics—mutate inputs. Provided sample inputs, a program property, or both,
our ISLearn prototype mines precise invariants. In follow-up work, we used ISLearn for diagnosing
failures: “The heartbleed vulnerability is triggered if length exceeds the length of payload.”

Keywords: fuzzing; specification language; grammars; constraint mining

1 Introduction

To improve a faulty program, one needs to (1) test the program to discover—and reproduce—
a bug, (2) debug it to isolate the problem, and (3) repair the fault. The outcomes of step (1)
is a bug-triggering input. Step (2) provides a sound hypothesis; and step (3) a validated fix.
All these steps require understanding the language of program inputs and, ideally, its outputs.
This understanding enables us to exhaustively test a program, evolve a failure hypothesis as
a property of program inputs, and thoroughly validate a fix.

Our ISLa specification language can be used to describe a theory of system inputs. This
theory facilitates automating the steps outlined above. ISLa constraints are declarative,
human-readable, and can be used for testing, program understanding, and failure diagnosis.

2 Specifying Input Invariants with ISLa

An ISLa specification consists of a grammar and constraints. For example, the grammar for
the TLS heartbeat extension allows us to decompose a heartbeat request into the sequence
“0x1 <length> <payload> <padding>.” Using an ISLa constraint, we can specify that
1 CISPA Helmholtz Center for Information Security, Saarbrücken dominic.steinhoefel@cispa.de
2 CISPA Helmholtz Center for Information Security, Saarbrücken zeller@cispa.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:dominic.steinhoefel@cispa.de
mailto:zeller@cispa.de

114 Dominic Steinhöfel, Andreas Zeller

<length> determines the length of <payload>: “uint16(<length>) = len(<payload>).”
When specifying constraints in ISLa, one can use all function symbols in the SMT-LIB
theory catalog, in particular from the theory of strings. In addition, ISLa supports structural
relations (e.g., “before,” “inside”) and can be extended with domain-specific semantic
predicates. Two types of quantifiers enable the precise selection of input elements. All these
constituents result in an expressive yet tractable, grammar-aware string constraint language.

Our ISLa fuzzer generates system inputs by heuristically exploring the input language space,
using modern SMT solvers (e.g., Z3) and custom strategies (e.g., for quantifiers) to solve
constraints. Our evaluation, based on input languages ranging from C over XML to TAR,
demonstrates that the fuzzer efficiently generates 100% precise inputs from a few lines of
ISLa specs while exercising more language features than a coverage-based grammar fuzzer.

3 Learning Input Specifications

Writing good specifications takes time, although the effort is well invested: Code changes
frequently, but system input specs (e.g., of protocols or file formats) stay stable for decades.
Luckily, tools like Mimid [GMZ20] mine grammars from parsers. Our ISLearn tool learns
semantic constraints from sample inputs, a program property, or both. It instantiates patterns
obtained from our ISLa case studies and enriched by simple string properties to find input
invariants. It derived semantic properties for Graphviz DOT, ICMP Echo, and Racket
with an accuracy of 78% to 97%, demonstrating that our patterns apply to new scenarios.
In follow-up work, we extended this approach to find diagnoses of program failures for
debugging. We integrated machine learning to restrict the search to relevant language
features, tremendously improving performance; furthermore, an automated feedback loop
refines candidate hypotheses. Our experimental results on real bug reports show that the
generated diagnoses are close to those provided by human developers and that the enhanced
tool outperforms both ISLearn and a previously proposed automated debugging tool.

Data Availability

Our ISLa and ISLearn artifacts are publicly available [SZ22b]. The current versions of the
prototypes can be downloaded from https://github.com/rindPHI/{isla|islearn}.

References

[GMZ20] Gopinath, R.; Mathis, B.; Zeller, A.: Mining Input Grammars from Dynamic
Control Flow. In: ESEC/FSE 2020. ACM, 2020.

[SZ22a] Steinhöfel, D.; Zeller, A.: Input Invariants. In: ESEC/FSE 2022. ACM, 2022.
[SZ22b] Steinhöfel, D.; Zeller, A.: Replication Package for “Input Invariants”, https:

//doi.org/10.1145/3554336, ACM, 2022.

https://doi.org/10.1145/3554336
https://doi.org/10.1145/3554336

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 115

Automatisierte Identifikation von sicherheitsrelevanten
Konfigurationseinstellungen mittels NLP

Patrick Stöckle1, Theresa Wasserer1, Bernd Grobauer2, Alexander Pretschner1

Abstract: Dieser Vortrag wurde auf der 37. IEEE/ACM International Conference on Automated
Software Engineering (ASE) präsentiert [St22]. Um Computerinfrastrukturen zu sichern, müssen
die verantwortlichen Administratoren alle sicherheitsrelevanten Einstellungen konfigurieren und
sichere Werte einsetzen. Hierbei stützen sie sich auf Sicherheitsexperten, die die sicherheitsrelevanten
Einstellungen identifizieren und in Sicherheitskonfigurationsrichtlinien dokumentieren. Das Identifi-
zieren der sicherheitsrelevanten Einstellungen ist allerdings zeitaufwändig und teuer, weshalb ihm oft
keine Priorität beigemessen wird. Um dieses Problem zu lösen, nutzen wir aktuelle Verfahren der
Computerlinguistik, um Einstellungen auf der Grundlage ihrer Beschreibung in natürlicher Sprache
als sicherheitsrelevant zu klassifizieren. Allerdings zeigt unsere Evaluation, dass die trainierten
Klassifikatoren nicht gut genug sind, um die menschlichen Sicherheitsexperten vollständig zu ersetzen
sondern höchstens bei der Klassifizierung der Einstellungen helfen können. Durch die Veröffentlichung
unserer gelabelten Datensätze und all unserer Modelle wollen wir Sicherheitsexperten bei der Analyse
von Konfigurationseinstellungen unterstützen und weitere Forschung in diesem Bereich ermöglichen.

Keywords: Systemhärtung; Sicherheitskonfiguration; Computerlinguistik

Ein kritischer Teil der IT-Sicherheit in einer Organisation wie Siemens ist die sichere
Konfiguration aller verwendeten Software. Hierfür müssen wir wissen, welche Konfigura-
tionseinstellungen einer Software sicherheitsrelevant (sr) oder nicht-sicherheitsrelevant
(nsr) sind. Wenn wir alle möglichen Einstellungen einer Software durchgehen, um alle sr
Einstellungen zu finden, ist dies eine langwierige und zeitraubende Aufgabe. Daher lagern
wir diesen Prozess an Organisationen wie das Center for Internet Security (CIS) aus. Das
CIS bietet Sicherheitskonfigurationsrichtlinien für verschiedene Softwaresysteme, und wir
können die CIS-Richtlinien verwenden, um unsere Software zu härten.

Es gibt jedoch Situationen, in denen dies nicht möglich ist: Erstens, wenn es keine CIS-
Richtlinie für eine Software gibt, oder zweitens, wenn es ein neues Update der Software
gibt und die CIS ihre Empfehlungen für das Update noch nicht veröffentlicht hat. Drittens,
wenn wir in unserer Umgebung höhere Sicherheitsanforderungen haben und zusätzliche
Regeln benötigen. Bei Siemens ist der dritte Anwendungsfall der wichtigste. In allen drei
Fällen müssen die Sicherheitsexperten alle sr Einstellungen finden. Um das Auffinden
der sr Einstellungen zu unterstützen und sicherzustellen, dass wir alle sr Einstellungen
finden, wäre eine automatische Klassifizierung wünschenswert. Hierbei sind falsch-negative
Ergebnisse (die Einstellung ist sr, aber wir klassifizieren sie als nsr) schwerwiegender
1 Technische Universität München, Lehrstuhl für Software und Systems Engineering, Boltzmannstr. 3, 85748

Garching b. München, Deutschland vorname.nachname@tum.de
2 Siemens AG, München, Deutschland bernd.grobauer@tum.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:vorname.nachname@tum.de
mailto:bernd.grobauer@tum.de

116 Patrick Stöckle et al.

als falsch-positive Ergebnisse. Ein Angreifer könnte eine falsch-negative, nicht gehärtete
Einstellung ausnutzen, um das System anzugreifen. Ziel ist es also, dass Klassifikatoren
falsch-negative Ergebnisse vermeiden, ohne jedoch jede Einstellung als sr zu kennzeichnen.

Unser laufendes Beispiel ist die automatische Härtung des Betriebssystems Win-
dows 10 [SGP21] mit über 4500 Einstellungen. Außerdem gibt es eine CIS Windows 10-
Richtlinie mit über 500 Regeln. Jede Regel bezieht sich dabei auf jeweils eine Einstellung.
Im Mai 2021 veröffentlichte Microsoft das Update 21H1 für Windows 10 mit über 300
neuen Einstellungen. Daher mussten die Sicherheitsexperten bei Siemens nun die neuen sr
Einstellungen identifizieren. Da das Durchsuchen nach sr Einstellungen langwierig und
mühsam ist, forderten die Experten dafür automatisierte Unterstützung.

In diesem Artikel stellen wir unseren Vorschlag für diese Unterstützung vor. Wir verwenden
verschiedene moderne Verfahren der Computerlinguistik (engl. natural language processing
(NLP)), um automatisch zu klassifizieren, ob eine Einstellung sr ist. Um sr Begriffe
zu identifizieren, verwenden wir bestehende Leitfäden. Anschließend nutzen wir die
Beschreibungen der Einstellungen als Eingabe für die Klassifizierung.

Unser Forschungsbeitrag besteht aus drei Teilen: Erstens stellen wir den ersten Ansatz vor, der
NLP-Techniken zur Identifizierung von sr Einstellungen verwendet. Zweitens ermöglichen
wir durch die Veröffentlichung unserer gelabelten Datensätze, dass andere Forscher ihre
Modelle ebenfalls auf ihnen trainieren können, um die beschriebene Problematik zu lösen.
Drittens teilen wir den Code unserer Modelle, damit Sicherheitsexperten letztere bei der
Richtlinienerstellung verwenden können.

Data Availability

Unser Datensatz ist öffentlich auf GitHub verfügbar.3 Außerdem haben wir den Python-Code
all unserer Modelle als Jupyter Notebooks auf Kaggle veröffentlicht.4

Literatur

[SGP21] Stöckle, P.; Grobauer, B.; Pretschner, A.: Automated Implementation of Windows-Related Security-Configuration
Guides. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. ASE
’20, Association for Computing Machinery, Virtual Event, Australia, 2021, url: https://doi.org/10.1145/3324884.
3416540.

[St22] Stöckle, P.; Wasserer, T.; Grobauer, B.; Pretschner, A.: Automated Identification of Security-Relevant Configuration
Settings Using NLP. In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. ASE ’22, IEEE/ACM, Association for Computing Machinery, Rochester, MI, USA, 2022, url:
https://doi.org/10.1145/3551349.3559499.

3 github/tum-i4/Automated-Identification-of-Security-Relevant-Configuration-Settings-Using-NLP
4 Modell 1: kaggle/tumin4/sentiment-analysis, Modell 2: kaggle/tumin4/topic-modeling-and-latent-dirichlet-

allocation, Modell 3: kaggle/tumin4/transformer-based-machine-learning

https://doi.org/10.1145/3324884.3416540
https://doi.org/10.1145/3324884.3416540
https://doi.org/10.1145/3551349.3559499
https://github.com/tum-i4/Automated-Identification-of-Security-Relevant-Configuration-Settings-Using-NLP
https://www.kaggle.com/tumin4/sentiment-analysis
https://www.kaggle.com/tumin4/topic-modeling-and-latent-dirichlet-allocation
https://www.kaggle.com/tumin4/topic-modeling-and-latent-dirichlet-allocation
https://www.kaggle.com/tumin4/transformer-based-machine-learning

cbe

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 117

Generating Review Models to Validate Safety Requirements

Bastian Tenbergen1, Thorsten Weyer2

Abstract: This talk discusses our approach for automatically generating review models for safety-
critical systems presented in the paper [TW21] published in the Feb. ’21 issue of the Journal of
Software and Systems Modeling. We present a semi-automated formal approach and tool support
to generate Hazard Relation Diagrams. Enabled by mitigation tables, the approach consists of two
transformation steps using OMG’s QVTo language [OMG16].

Keywords: Safety requirements; Hazards; Validation; Adequacy; Modeling relation diagrams

1 Introduction

Developing safety-critical systems includes identifying hazards and defining corresponding
mitigations at the earliest possible stage of development. The thusly identified hazard-
mitigating requirements (HMRs) must be valid with regard to the intended functionality
and render the system sufficiently safe during operation. Yet, validating HMRs is burdened
by the fact that hazards and their HMRs are a work product of safety assessment and
requirements engineering, respectively. These work products are poorly integrated such
that during validation, the information needed to determine the adequacy of HMRs is not
available to stakeholders, potentially leading to lingering covert safety hazards. To aid in the
validation of HRMs, we have proposed, improved, and evaluated [TWP18] a novel diagram
type called “Hazard Relation Diagrams” (HRDs) which represent requirements, hazards,
and their mitigation together in a single review model.

2 Generating Hazard Relation Diagrams

HRDs are generated from UML activity diagrams containing hazard-inducing requirements
(HIRs) and tables containing the results of functional hazard analysis (FHA). HRDs
contain one hazard per mitigation, however may contain multiple mitigation partitions
for HMRs in geometrically distant areas in the activity diagram. HRDs are generated by
first specifying HMRs using a mitigation template containing deletions, additions, and
substitutions of activity diagram model elements documenting the HIRs. One mitigation
1 State University of New York at Oswego, Dept. of Computer Science, NY, USA bastian.tenbergen@oswego.edu
2 Technische Hochschule Mittelhessen, Gießen, Germany thorsten.weyer@mni.thm.de

https://creativecommons.org/licenses/by-nc/3.0/
bastian.tenbergen@oswego.edu
thorsten.weyer@mni.thm.de

118 Bastian Tenbergen, Thorsten Weyer

template corresponds to one mitigation partition in the diagram that highlights the changes
from HIRs to HMRs. Afterwards, the hazard, trigger conditions, and the safety goal from
the FHA are appended into the activity diagram with HMRs, thus completing the HRD.

Fig. 1: Structure and Technical Interplay of the Tool Prototype Components.

Based on a canonical artifact formalization, transformation scripts have been implemented
using OMG’s Query/View/Transformation Operational Mappings language [OMG16] to
implement the generation process. The metamodel of the tool prototype is shown in Fig. 1.

3 Data Availability

QVTo scripts, proof-of-concept implementation, and empirical data on the effectiveness of
HRDs are available at https://github.com/tenbergen/hazardrelationdiagrams.

References
[OMG16] Object Management Group: Query/View/Transformation (QVT) Specification. OMG

Document Number formal/2016-06-03., 2016. Version 1.3.

[TW21] Tenbergen, Bastian; Weyer, Thorsten: Generation of hazard relation diagrams: formalization
and tool support. Software and Systems Modeling, 20(1):175–210, Feb 2021.

[TWP18] Tenbergen, Bastian; Weyer, Thorsten; Pohl, Klaus: Hazard Relation Diagrams: a dia-
grammatic representation to increase validation objectivity of requirements-based hazard
mitigations. Requirements Engineering, 23(2):291–329, Jun 2018.

https://github.com/tenbergen/hazardrelationdiagrams

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 119

Exploring the relationship between performance metrics and
cost saving potential of defect prediction models

Steffen Tunkel1, Steffen Herbold2

Abstract: We summarize the article Exploring the relationship between performance metrics and
cost saving potential of defect prediction models [TH22], which was published in Empirical Software
Engineering in 2022.

Keywords: Defect prediction; Performance metrics; Cost saving potential; Exploratory research

1 Overview

The article “Exploring the relationship between performance metrics and cost saving
potential of defect prediction models” was published in Empirical Software Engineering in
2022. Performance metrics are a core component of the evaluation of any machine learning
model and used to compare models and estimate their usefulness. Recent work started to
question the validity of many performance metrics for this purpose in the context of software
defect prediction. Within this study, we explore the relationship between performance metrics
and the cost saving potential of defect prediction models. We study whether performance
metrics are suitable proxies to evaluate the cost saving capabilities and derive a theory
for the relationship between performance metrics and cost saving potential. We measure
performance metrics and cost saving potential in defect prediction experiments. We use a
multinomial logit model, decision, and random forest to model the relationship between the
metrics and the cost savings.

2 Results

We could not find a stable relationship between cost savings and performance metrics. We
attribute the lack of the relationship to the inability of performance metrics to account for
the property that a small proportion of very large software artifacts are the main driver
of the costs. Any defect prediction study interested in finding the best prediction model,
must consider cost savings directly, because no reasonable claims regarding the economic
benefits of defect prediction can be made otherwise.
1 Universität Göttingen, Deutschland
2 Universität Passau, Fakultät für Informatik und Mathematik, Dr.-Hans-Kapfinger-Straße 30, 94032 Passau,

Deutschland steffen.herbold@uni-passau.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:steffen.herbold@uni-passau.de

120 Steffen Tunkel, Steffen Herbold

3 Data Availability

The data and all analysis scripts are available online [He22].

Literatur

[He22] Herbold, S.: sherbold/replication-kit-defect-prediction- metrics: v1.0, Versi-
on v1,0, Aug. 2022, url: https://doi.org/10.5281/zenodo.6992179.

[TH22] Tunkel, S.; Herbold, S.: Exploring the relationship between performance metrics
and cost saving potential of defect prediction models. Empirical Software Engi-
neering 27/7, Sep. 2022, url: https://doi.org/10.1007/s10664-022-10224-4.

https://doi.org/10.5281/zenodo.6992179
https://doi.org/10.1007/s10664-022-10224-4

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 121

A comprehensive empirical evaluation of generating test
suites for mobile applications with diversity – Summary

Thomas Vogel1, Chinh Tran1, Lars Grunske1

Abstract: In this extended abstract, we summarize our work on analyzing the fitness landscape
of the search-based app testing problem and building on that, improving and evaluating a specific
solution for this problem. This work has been published under the title of “A comprehensive empirical
evaluation of generating test suites for mobile applications with diversity” in the journal Information
and Software Technology (IST) in 2021 [VTG21].

Keywords: Mobile apps; Search-based testing; Fitness landscape analysis

Context. In search-based software testing, we often use popular heuristics with default or
best-practice configurations to automatically generate tests. Such an out-of-the-box use
typically leads to suboptimal results, for instance, in terms of achieved coverage of the
software under test. To yield better results, costly trial-and-error experiments are performed
to find suitable configurations of a heuristic for a given search problem [AF13]. One example
in this context is Sapienz [MHJ16] that uses a default NSGA-II heuristic to generate test
suites for mobile applications (apps) without adapting this heurisitc to this specific testing
problem. Consequently, a promising way to improve the effectiveness of Sapienz could be
the identification and use of suitable configurations of NSGA-II for this specific problem.

Objective. Focusing on app testing, our objective was to improve the effectivenss of Sapienz
while avoiding costly trial-and-error experiments to identify suitable configurations of the
used NSGA-II. Particularly, we wanted to analytically understand the search problem of
Sapienz and use this understanding to identify suitable configurations in an informed way. To
achieve this objective, we performed a fitness landscape analysis [PA12, ME13] of Sapienz
and used the obtained results to sytematically adapt the NSGA-II heuristic of Sapienz.
While the analysis of Sapienz has been conducted earlier [VTG19], a comprehensive
evaluation of our adaptation of Sapienz has been presented more recently [VTG21]. In the
context of search-based testing, our work is novel as it targets the testing of mobile apps while
others have analyzed the fitness landscape for the problem of unit testing (e.g., [AMG17]).

Method. Our fitness landscape analysis focused on the genotypic diversity and evolvability,
that is, how the evolved test suites are spread in the search space and evolve over time
regarding their fitness (achieved coverage, detected faults, and length of the test cases).
We particularly selected diversity as a major aspect for our analysis since it is considered
1 Humboldt-Universität zu Berlin, Software Engineering Group, Unter den Linden 6, 10099 Berlin, Germany.
{thomas.vogel, grunske}@informatik.hu-berlin.de

https://creativecommons.org/licenses/by-sa/4.0/

122 Thomas Vogel, Chinh Tran, Lars Grunske

important for the performance of evolutionary algorithms, while the performance is analyzed
by the evolvability. To perform the fitness landscape analysis, we implemented 11 metrics
from the literature to characterize the search space of Sapienz regarding diversity and
evolvability throughout the search process. Executing Sapienz with these metrics on five
selected apps, we obtained data that we analyzed regarding diversity and evolvability.

Results. Our analsis indicated that the diversity of the evolved test suites decreases during
the first 25 generations of search to a low level. At the same time, Sapienz loses its
ability to produce better test suites (evolvability)—the search stagnates after 25 generations.
Given these results, we adapted the heurisitc of Sapienz to preserve the diversity of the
test suites during the search by four techniques: initializing the search with diverse test
suites, dynamically controlling the diversity during search, eliminating duplicate test suites,
and incorporating diversity into the selection. We evaluate the resulting Sapienzdiv in a
head-to-head comparison with Sapienz on 34 apps. Sapienzdiv significantly outperformed
Sapienz for coverage on 9/34 and for fault revelation on 20/34 apps while performing
similarly on the remaining apps and tending to produce longer test cases than Sapienz.

Conclusion. Our work has shown that the understanding of the search problem obtained by
the fitness landscape analysis helped us to find a more suitable configuration of Sapienz
without the need of trial-and-error experiments.

Data Availability. Sapienzdiv is available on GitHub: https://github.com/thomas-
vogel/sapienzdiv-ssbse19

Bibliography
[AF13] Arcuri, Andrea; Fraser, Gordon: Parameter tuning or default values? An empirical

investigation in search-based software engineering. Empirical Software Engineering,
18(3):594–623, 2013.

[AMG17] Aleti, Aldeida; Moser, I.; Grunske, Lars: Analysing the Fitness Landscape of Search-Based
Software Testing Problems. Automated Software Engg., 24(3):603–621, 2017.

[ME13] Malan, Katherine M.; Engelbrecht, Andries P.: A survey of techniques for characterising
fitness landscapes and some possible ways forward. Information Sciences, 241(Supplement
C):148–163, 2013.

[MHJ16] Mao, Ke; Harman, Mark; Jia, Yue: Sapienz: Multi-objective Automated Testing for
Android Applications. In: ISSTA’16. ACM, pp. 94–105, 2016.

[PA12] Pitzer, Erik; Affenzeller, Michael: A Comprehensive Survey on Fitness Landscape Analysis.
In: Recent Advances in Intelligent Engineering Systems. Springer, pp. 161–191, 2012.

[VTG19] Vogel, Thomas; Tran, Chinh; Grunske, Lars: Does Diversity Improve the Test Suite
Generation for Mobile Applications? In: SSBSE ’19. Springer, pp. 58–74, 2019.

[VTG21] Vogel, Thomas; Tran, Chinh; Grunske, Lars: A comprehensive empirical evaluation of
generating test suites for mobile applications with diversity. Information and Software
Technology, 130:106436, 2021.

https://github.com/thomas-vogel/sapienzdiv-ssbse19
https://github.com/thomas-vogel/sapienzdiv-ssbse19

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 123

Identifizierung von Vertraulichkeitsproblemen mithilfe von
Angriffsausbreitung auf Architektur1

Maximilian Walter2, Robert Heinrich3, Ralf Reussner4

Keywords: Angreiferpropagation, Software-Architektur, Sicherheit

1 Einleitung und Übersicht

Wir sind dabei immer mehr verschiedene Bereiche unseres täglichen Lebens zu digitalisieren.
Diese Systeme haben gemeinsam, dass sie häufig dynamische Zugangskontrollsysteme
zusammen mit einer Vielzahl verschiedener verbundener Elemente, wie Komponenten oder
Geräte, verwenden. Jedoch sind diese Systeme häufig verwundbar. Angreifer können die
einzelnen verwundbaren Elemente zusammen mit legitimen Zugriffsberechtigungen nutzen,
um einen verketten Angriffspfad durch die Architektur zu bilden. Daher ist es sinnvoll,
diese Abhängigkeit zwischen Zugangskontrollrichtlinien und Schwachstellen zu analysieren.
Zwar gibt es bereits Ansätze für die automatische Generierung von Angriffspfaden auf der
Grundlage von Schwachstellen und Zugriffskontrolle, wie z.B. Bloodhound5 bei Active
Directory, doch sind Ansätze sehr auf einen Anwendungsbereich bezogen oder setzen häufig
ein lauffähiges System voraus und können nicht während der Entwurfszeit oder der Wartung
des Systems verwendet werden. Daher haben wir eine architekturgetriebene Angreifer-
propagationsanalyse [Wa22] entwickelt, welche mögliche Ausbreitungen von Angreifern
berechnen kann. Dabei haben wir die existierende Architekturbeschreibungssprache das
Palladio-Komponentenmodell (PCM) [Re16] mit einer Zugriffskontrollmodellierung und
einer Verwundbarkeitsmodellierung erweitert. Dies wird in unserer Analyse genutzt, um
von einem möglichen Startpunk alle erreichbaren Architekturelemente zu identifizieren.
Wir haben den Ansatz anhand verschiedener Fallstudien evaluiert und erhielten eine hohe
Genauigkeit.
1 Diese Arbeit wurde duch die DFG mit der Projektnummer 432576552, HE8596/1-1 (FluidTrust) und dem

Forschungsbereich Engineering Secure Systems (46.23.03) der Helmholtz Gemeinschaft (HGF) durch KASTEL
Security Research Labs unterstützt.

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, maximilian.walter@kit.edu
3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, robert.heinrich@kit.edu
4 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, ralf.reussner@kit.edu
5 https://bloodhoundenterprise.io/

https://creativecommons.org/licenses/by-sa/4.0/
mailto:maximilian.walter@kit.edu
mailto:robert.heinrich@kit.edu
mailto:ralf.reussner@kit.edu
https://bloodhoundenterprise.io/

124 Maximilian Walter, Robert Heinrich, Ralf Reussner

2 Modellierung und Analyse

Die Verwundbarkeitsmodellierung passiert auf gängige Standards wie z.B. CVSS6 und die
Zugriffskontrollmodellierung folgt dem Konzept der Attributbasierten-Zugriffskontrolle
[Hu15]. Wir haben diese Konzepte in das PCM übertragen. Dies ermöglicht Software-
Architekt:innen Verwundbarkeiten und Zugriffsrichtlinien direkt in der Software-Architektur
zu spezifizieren. Die Wiederverwendung von bereits gängigen Konzepten unterstützt auch
die Möglichkeit existierendes Wissen über die Klassifizierung von Schwachstellen und die
Modellierung von Sicherheitseigenschaften wiederzuverwenden.

Die Analyse basiert auf dem KAMP-Ansatz [Ro]. Dieser wurde um neue Ausbreitungsregeln
für Angreifer und Änderungen erweitert. Die Analyse berechnet iterativ von einem Startpunkt
alle Nachbarelemente und überprüft, ob sie diese kompromittieren kann. Dies ist möglich,
wenn es entweder eine Schwachstelle gibt, die die Analyse ausnutzen kann oder die Analyse
die passende Zugriffsberechtigung hat. Dabei prüft die Analyse für jede Schwachstelle,
ob sie die passenden Fähigkeiten hat. In jedem Iterationsschritt kann zudem die Analyse
neue Zugriffsberechtigungen durch das Ausnutzen von Schwachstellen oder gespeicherten
Passwörtern sammeln. Am Ende wird eine Liste mit allen potenziell betroffen Elementen
zurückgegeben. Diese können Architekt:innen nutzen, um Stellen für Schutzmaßnahmen in
die Software-Architektur zu identifizieren, damit diese Angriffspfade brechen können.

3 Data Availability

Wir stellen die Evaluationsdaten öffentlich zur Verfügung [Wa]. Dies umfasst die Modelle,
die erwarteten Modelle sowie den Quellcode der Analyse inklusive einer virtuellen Maschine
zum Ausführen der Analyse.

Literatur

[Hu15] Hu, V. et al.: Attribute-Based Access Control. Computer 48/2, S. 85–88, Feb.
2015, issn: 0018-9162.

[Re16] Reussner, R. et al.: Modeling and Simulating Software Architectures – The
Palladio Approach. MIT Press, Cambridge, MA, 2016.

[Ro] Rostami, K. et al.: Architecture-Based Change Impact Analysis in Information
Systems and Business Processes. In: ICSA’17. S. 179–188.

[Wa] Walter, M. et al.: Dataset - Architectural Attack Propagation Analysis for Identify-
ing Confidentiality Issues, url: https://doi.org/10.5445/IR/1000141655.

[Wa22] Walter, M. et al.: Architectural Attack Propagation Analysis for Identifying
Confidentiality Issues. In: ICSA’22. IEEE, S. 1–12, 2022.

6 https://www.first.org/cvss/

https://doi.org/10.5445/IR/1000141655

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 125

Vudenc: Vulnerability Detection with Deep Learning on a
Natural Codebase for Python – Summary

Laura Wartschinski1, Yannic Noller1, Thomas Vogel1 ,2, Timo Kehrer1 ,3, Lars Grunske1

Abstract: In this extended abstract, we summarize our work on Vudenc published in the journal
Information and Software Technology (IST) in 2022 [Wa22]. Vudenc uses deep learning to learn
features of vulnerable code from a real-world Python codebase and a network of long-short-term
memory cells (LSTM) is then used to detect vulnerabilities in code at a fine-grained level.

Keywords: Vulnerability detection; Python; Deep learning

Context. Developing secure software system is important to mitigate vulnerabilities that
otherwise could be exploited and have severe consequences such as loss, disclosure, or
manipulation of data, or system failures. To avoid or at least reduce code flaws causing
vulnerabilities, constructive engineering approaches can be used but need to be comple-
mented by analyatical techniques to detect vulnerabilities. However, a manual detection of
vulnerabilities requires expert knowledge and is time-consuming, and must therefore be
supported by automated techniques.

Objective. We aim for an automated vulnerability detection technique that should achieve a
high accuracy, point developers directly to vulnerable code fragments, scale to real-world
software, generalize across the boundaries of a specific software project, and require no or
only a moderate manual effort for the setup or configuration. We decided to focus on Python
software, which has not been addressed yet by vulnerability detection with deep learning.

Method. To achieve these objectives, we developed Vudenc (Vulnerability Detection with
Deep Learning on a Natural Codebase). It leverages deep learning to detect vulnerabilities in
Python software. For this purpose, it automatically learns features of vulnerable code directly
from a large and real-world Python codebase that we mined from GitHub and comprises
(before filtering) 25,040 vulnerability-fixing commits in 14,686 different repositories.
This dataset was labeled automatically according to the commit context and covers seven
vulnerability types: SQL injection, Cross-site scripting (XSS), Command injection, Cross-
site request forgery (XSRF), Remote Code Execution, Path disclosure, and Open Redirect.
Accordingly, Vudenc can learn features for these types and detect vulnerabilities of these
types. Using this dataset for training, Vudenc applies a word2vec model to identify
semantically similar code tokens and provide a vector representation for deep learning.
1 Humboldt-Universität zu Berlin, Department of Computer Science, Unter den Linden 6, 10099 Berlin, Germany.
{wartschinski, noller, thomas.vogel, kehrer, grunske}@informatik.hu-berlin.de

2 University of Paderborn, Department of Computer Science, Warburger Straße 100, 33098 Paderborn, Germany.
3 University of Bern, Department of Computer Science, Hochschulstrasse 6, 3012 Bern, Switzerland.

https://creativecommons.org/licenses/by-sa/4.0/

126 Laura Wartschinski, Yannic Noller, Thomas Vogel, Timo Kehrer, Lars Grunske

Particularly, a network of long-short-term memory cells (LSTM) is used to classify
vulnerable code token sequences at a fine-grained level, highlight the specific areas in the
source code that are likely to contain vulnerabilities, and provide confidence levels for its
predictions.

Results. After determining suitable hyperparameters for the word2vec model and the LSTM
model, we experimentally evaluated Vudenc on a test dataset of 1,009 vulnerability-fixing
commits from different GitHub repositories and with different vulnerability types. Vudenc
achieves a precision (i.e., the fraction of true positives in all positive predictions) of
82%-96%, indicating a very low false positive rate. The achieved recall (i.e., the rate of
positives that were correctly identified in comparison to the total number of actual positives)
of 78%–87% means that just 13%-22% of the samples labeled as vulnerable were missed.
The overall F1 score (i.e., the harmonic mean of precision and recall) ranges from 80%-90%,
which we see as a very satisfying result especially when considering related work and their
effectiveness.

Conclusions. Our experimental results suggest that Vudenc is capable of outperforming
most of its competitors in terms of vulnerably detection capabilities on real-world software.
A comparable accuracy was only achieved on synthetic benchmarks, within single projects,
or on a much coarser level of granularity such as entire source code files. In contrast,
Vudenc uses a real-word dataset across multiple projects and detects vulnerabilities at the
level of code fragments.

Data Availability. We provide a replication package covering the implementation and
documentation of Vudenc on GitHub4 and the following datasets on Zenode: the plain and
embedded datasets for the seven types of vulnerabilities5, the dataset of commits including
their diff files mined from Github6, and the Python corpus for training the word2vec model
as well as one trained model7.

Bibliography
[Wa22] Wartschinski, Laura; Noller, Yannic; Vogel, Thomas; Kehrer, Timo; Grunske, Lars: VUDENC:

Vulnerability Detection with Deep Learning on a Natural Codebase for Python. Information
and Software Technology, 144:106809, 2022.

4 https://github.com/LauraWartschinski/VulnerabilityDetection

5 https://doi.org/10.5281/zenodo.3559841

6 https://doi.org/10.5281/zenodo.3559203

7 https://doi.org/10.5281/zenodo.3559480

https://github.com/LauraWartschinski/VulnerabilityDetection
https://doi.org/10.5281/zenodo.3559841
https://doi.org/10.5281/zenodo.3559203
https://doi.org/10.5281/zenodo.3559480

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 127

Preventing technical debt with the TAP framework
for Technical Debt Aware Management

Marion Wiese1, Paula Rachow2, Matthias Riebisch3, Julian Schwarze4

Abstract:

The talk is based on an article published in the Information and Software Technology journal in
2022 [Wi22].

Technical Debt (TD) is a metaphor for technical problems that are not visible to users and customers
but hinder developers in their work, making future changes more difficult. TD is often incurred due
to tight project deadlines. Furthermore, project management usually focuses on customer benefits
and pays less attention to their IT systems’ internal quality. We present a framework focusing on TD
prevention and repayment in agile-managed projects. The framework was developed and applied
in an IT unit of a publishing house. It includes a feasible method for TD prevention despite tight
timelines by making TD repayment part of project management. We evaluated this framework in a
comparative case study based on ticket statistics and two structured surveys targeting team members
and IT managers. In the observed IT unit, the TAP framework raises awareness for the incurrence of
TD. Decisions to incur TD are intentional, and TD is repaid timelier. Unintentional TD incurred by
unconscious decisions is prevented. Furthermore, better communication and better planning of the
project pipeline can be observed.

Keywords: Technical Debt; Project Management; Technical Debt Awareness; Technical Debt
Repayment; Technical Debt Prevention; Technical Debt Backlog

1 Summary

Technical Debt (TD) is “a collection of design or implementation constructs that are
expedient in the short term, but set up a technical context that can make future changes
more costly or impossible” [Av16]. In a technical metaphor for financial debt, a sub-optimal
implementation or design is interpreted as debt. The initially named cause for TD incurrence
is tight project deadlines, as described in the paper of Cunningham [Cu92]. TD is a serious
problem in practice, often caused by tight deadlines due to fast-changing requirements in
the age of digitalization.

TD prevention is stated as the preferable option for TD management by many practitioners.
In frequent situations, however, a sub-optimal solution that can be implemented more
1 Universität Hamburg, FB Informatik, Vogt-Kölln-Str. 30, 22527 Hamburg, marion.wiese@uni-hamburg.de
2 Universität Hamburg, FB Informatik, Vogt-Kölln-Str. 30, 22527 Hamburg, paula.rachow@uni-hamburg.de
3 Universität Hamburg, FB Informatik, Vogt-Kölln-Str. 30, 22527 Hamburg, matthias.riebisch@uni-hamburg.de
4 Gruner+Jahr GmbH, Media Sales Services, Baumwall 11, 20459 Hamburg, schwarze.julian@guj.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:marion.wiese@uni-hamburg.de
mailto:paula.rachow@uni-hamburg.de
mailto:matthias.riebisch@uni-hamburg.de
mailto:schwarze.julian@guj.de

128 Marion Wiese, Paula Rachow, Matthias Riebisch, Julian Schwarze

quickly must be chosen. To avoid unnecessary TD, a developing team should consciously
and intentionally choose the optimal or sub-optimal solution.

In our paper, we present and evaluate the TAP framework for Technical debt Aware Project
management, which was developed by an IT unit of a German publishing company. The
TAP framework divides all tasks that are not visible to the customer into four categories:
maintenance tasks, maintenance projects, deconstruction, and technical debt. The developers
create corresponding backlog tickets. Particularly the TD tickets are a novel approach. TD
tickets comprise only intentional TD, the incurrence of which is discussed and consciously
accepted during an estimation meeting. TD tickets are associated with the project they were
incurred in and must be repaid as part of the project after meeting the set deadline. This
makes the project managers and their team responsible for the TD accumulated during their
project, which should decrease their willingness to incur TD.

To evaluate the success of this approach, we analyzed ticket statistics and conducted two
surveys addressing team members and IT managers, respectively. To enhance the validity of
the results, the surveys were filled out by the observed team and a comparison team that did
not use the framework. The research questions targeted the practicality of the framework’s
application and the TAP framework’s perceived effects, benefits, and drawbacks. The
evaluation shows that (1) the communication between different stakeholders is optimized,
(2) the overall awareness for TD is raised, (3) the decisions on TD incurrence are made
consciously and intentionally, (4) TD incurred by unintentional and unconscious decisions
can be prevented, and (5) TD incurred by intentional and conscious decisions due to tight
deadlines are repaid timely. Finally, the survey of IT managers points to optimized project
pipeline planning and improved customer communication and understanding.

2 Data Availability

The additional material is publicly available at Zenodo (https://doi.org/10.5281/zenodo.
5788222) and includes the survey results, a list of analyzed tickets, calculation details, and a
case study protocol.

References
[Av16] Avgeriou, P.; Kruchten, P.; Ozkaya, I.; Seaman, C.: Managing Technical Debt in Software

Engineering. Dagstuhl Reports 6/4, pp. 110–138, 2016, issn: 01635948.
[Cu92] Cunningham, W.: The WyCash portfolio management system. In: Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA. Vol. 2, pp. 29–30, 1992, isbn: 0897916107.

[Wi22] Wiese, M.; Rachow, P.; Riebisch, M.; Schwarze, J.: Preventing technical debt with the TAP
framework for Technical Debt Aware Management. Information and Software Technology
148/106926, 2022, issn: 0950-5849, url: https://doi.org/10.1016/j.infsof.2022.
106926.

https://doi.org/10.5281/zenodo.5788222
https://doi.org/10.5281/zenodo.5788222
https://doi.org/10.1016/j.infsof.2022.106926
https://doi.org/10.1016/j.infsof.2022.106926

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 129

Variational Satisfiability Solving: Efficiently Solving Lots of
Related SAT Problems – Summary

Jeffrey M. Young1, Paul Maximilian Bittner2, Eric Walkingshaw3, Thomas Thüm4

Abstract: We report about recent research on satisfiability solving for variational domains, originally
published in 2022 in the Empirical Software Engineering Journal (EMSE) within the special issue on
configurable systems [Yo22]. Incremental SAT solving is an extension of classic SAT solving that
enables solving a set of related SAT problems by identifying and exploiting shared terms. However,
using incremental solvers effectively is hard since performance is sensitive to the input order of
subterms and results must be tracked manually. This paper translates the ordering problem to an
encoding problem and automates the use of incremental solving. We introduce variational SAT
solving, which differs from incremental solving by accepting all related problems as a single variational
input and returning all results as a single variational output. Variational SAT solving automates the
interaction with the incremental solver and enables a method to automatically optimize sharing in the
input. We formalize a variational SAT algorithm, construct a prototype variational solver, and perform
an empirical analysis on two real-world datasets that applied incremental solvers to software evolution
scenarios. We show that the prototype solver scales better for these problems than four off-the-shelf
incremental solvers while also automatically tracking individual results.

Keywords: satisfiability solving, variation, choice calculus, software product lines

Summary

Satisfiability (SAT) solving is a ubiquitous technology in software product lines for a
diverse set of analyses ranging from anomaly detection, dead code analysis, sampling, and
automated analysis of feature models. The general pattern is to represent parts of the system
or feature model as a propositional formula, and reduce the analysis to a SAT problem.
However, modern software is constantly evolving and thus the translation step to a single
SAT problem quickly becomes a translation to a set of SAT problems.

Incremental SAT solvers allows the user to hand-write a program to optimize for sharing
of equal subterms in a set of related SAT problems to solve. Theoretically, this is more
efficient because it reuses knowledge of shared terms. However, using an incremental solver
in this way requires substantial manual effort and domain knowledge, produces a specific
solution to a specific analysis, and it requires extra infrastructure to manage results.
1 IOHK, Longmont, Colorado, jeffrey.young@iohk.io
2 University of Ulm, Germany, paul.bittner@uni-ulm.de
3 Unaffiliated, Corvallis, OR, USA, ewalkingshaw@acm.org
4 University of Ulm, Germany, thomas.thuem@uni-ulm.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:jeffrey.young@iohk.io
mailto:paul.bittner@uni-ulm.de
mailto:ewalkingshaw@acm.org
mailto:thomas.thuem@uni-ulm.de

130 Young, Bittner, Walkingshaw, Thüm

In this paper, we show that the performance benefit of using an incremental solver to
solve a large number of related SAT problems can be achieved while mitigating the main
drawbacks of incremental solvers, that is, high manual effort and deep integration with the
application. Our solution is to formalize a method of variational SAT solving that makes use
of known commonalities among propositional formulas and automates the interaction with
an incremental solver. Variational SAT solving takes as input a single variational formula,
which encodes a set of related SAT problems to solve. It then compiles this variational
formula into an efficient program to run on an incremental solver. Finally, it collects the
results from the incremental solver into a single result that captures the solutions to all of
the SAT problems described by the input variational formula.

Our approach has several benefits: (1) End-users are only required to provide a single
variational formula, which represents a set of related propositional formulas, rather than a
formula and a hand-written program to direct the solver. (2) It is general; while variational
satisfiability solving is applied to feature model analyses in this work, it can be used for
any analysis that can be encoded as a variational formula, which can be constructed from
any set of related SAT problems. (3) With a variational formula, new kinds of syntactic
manipulations and optimizations, such as factoring out shared terms, become possible and
can be automated. (4) A variational model may be produced that encapsulates a set of
satisfying assignments for all variants of the variational formula, alleviating the need to
track the incremental solver’s results when satisfying assigments are needed.

Data Availability

The original publication is accepted for submission and our camera-ready copy is cur-
rently processed by the publisher. A preprint is available online at https://github.
com/SoftVarE-Group/Papers/raw/main/2022/2022-EMSE-Young.pdf. Our artifact is avail-
able on Github (https://github.com/doyougnu/VSat/tree/EMSE-revision-1) and Zen-
odo (DOI: 10.5281/zenodo.5543884). Our evaluation data is available on Zenodo (DOI:
0.5281/zenodo.5546009).

Bibliography
[Yo22] Young, Jeffrey M.; Bittner, Paul Maximilian; Walkingshaw, Eric; Thüm, Thomas: Variational

Satisfiability Solving: Efficiently Solving Lots of Related SAT Problems. Empirical Software
Engineering (EMSE), 28, November 2022.

https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-EMSE-Young.pdf
https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-EMSE-Young.pdf
https://github.com/doyougnu/VSat/tree/EMSE-revision-1
https://doi.org/10.5281/zenodo.5543884
https://zenodo.org/record/5546009

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 131

DeepHyperion: Exploring the Feature Space of Deep
Learning-based Systems through Illumination Search

Tahereh Zohdinasab1, Vincenzo Riccio2, Alessio Gambi3, Paolo Tonella4

Abstract: In this extended abstract, we summarize our contributions to automated testing of Deep
Learning-based systems published at the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA) in 2021 [Zo21a] and just accepted by the ACMTransactions on Software
Engineering and Methodology (TOSEM) in 2022 [Zo22].

Deep Learning-based systems (DL Systems) find applications in safety-critical application domains
and thus must be thoroughly tested. Existing DL system testing approaches can generate complex and
fault-finding inputs but do not characterize them in a way that enables human interpretation and do
not always consider test diversity. Our work addresses these challenges and can find effective and
diverse test cases.

Keywords: Software testing; deep learning; search-based software engineering; self-driving cars

1 Methodology

Automatically and effectively testing DL systems, like self-driving cars, requires efficiently
generating complex inputs, such as driving scenarios, and a strategy to balance exploration
to discover untested behaviors and exploitation to identify highly effective test cases.
Additionally, testing should produce results that developers can easily interpret and use
to improve their design, for instance, by identifying features that are under-represented in
training sets. We address the above challenges through DeepHyperion that leverages (1)
model-based input representation for generating complex inputs, (2) Illumination Search
to generate effective test cases while exploring the test space at large, and (3) metrics to
quantify test input as well as DL systems under test’s behavior features.

We proposed a two-step methodology that developers can follow to identify representative,
discriminative, and quantifiable features that characterize the tests in an intuitive way. Our
methodology consists of (i) Open Coding for selecting the independent variables describing
the tests and (ii) Metric Identification for devising automatic procedures to quantify them.
Having a way to quantify relevant test features, DeepHyperion implements the Multi-
dimensional Archive of Phenotypic Elites (MAP-Elites), the Illumination Search algorithm
1 Università della Svizzera Italiana, Switzerland, tahereh.zohdinasab@usi.ch
2 Università della Svizzera Italiana, Switzerland, vincenzo.riccio@usi.ch
3 IMC University of Applied Sciences Krems, Austria, alessio.gambi@fh-krems.ac.at
4 Universita della Svizzera Italiana, Switzerland, paolo.tonella@usi.ch

https://creativecommons.org/licenses/by-sa/4.0/
mailto:tahereh.zohdinasab@usi.ch
mailto:vincenzo.riccio@usi.ch
mailto:alessio.gambi@fh-krems.ac.at
mailto:paolo.tonella@usi.ch

132 Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella

proposed by Mouret and Clune [MC15], to mutate a population of tests, called seeds.
DeepHyperion aims to generate tests that maximize the likelihood of observing misbehaviors
for each feature combination and produces N-dimensional maps that visualize the distribution
of the fittest tests across the feature space. Those maps, in turn, enable developers to identify
clusters of fault-revealing tests with similar features. Since DeepHyperion selects the
individuals to mutate randomly, which is unbiased but ineffective, we extended it with a
ranked selection scheme based on Contribution Score (CS), a novel metric that promotes
individuals that contributed more to exploring the feature space.

2 Results

We evaluated DeepHyperion’s effectiveness and efficiency in two application domains:
recognition of hand-written digits, which is a classification problem, and steering angle
prediction for self-driving cars in driving simulations, which is a regression problem. Our
empirical results show that DeepHyperion over-performed existing approaches in both
application domains by exposing more unique misbehaviors and exploring larger portions
of the feature space. Additionally, our experiments confirmed that selecting individuals
according to their Contribution Scores significantly improves DeepHyperion’s efficiency.
Regarding the usefulness of the N-dimensional feature maps generated by DeepHyperion,
our evaluation shows how thosemaps help DL system developers in identifying shortcomings
of training datasets and providing new data to expand them.

3 Data Availability

Our replication package [Zo21b] includes the original code we used for running the
experiments and the data we collected during the evaluation of DeepHyperion. The latest
version of the code, instead, is available on GitHub at:

https://github.com/testingautomated-usi/DeepHyperion

Bibliography
[MC15] Mouret, Jean-Baptiste; Clune, Jeff: Illuminating search spaces by mapping elites. CoRR,

abs/1504.04909, 2015.

[Zo21a] Zohdinasab, Tahereh; Riccio, Vincenzo; Gambi, Alessio; Tonella, Paolo: DeepHyperion:
exploring the feature space of deep learning-based systems through illumination search. In:
Proc. of the Intl. Symposium on Software Testing and Analysis. ACM, pp. 79–90, 2021.

[Zo21b] Zohdinasab, Tahereh; Riccio, Vincenzo; Gambi, Alessio; Tonella, Paolo: , DeepHyperion
Replication Package. URL: https://doi.org/10.5281/zenodo.4742119, May 2021.

[Zo22] Zohdinasab, Tahereh; Riccio, Vincenzo; Gambi, Alessio; Tonella, Paolo: Efficient and
Effective Feature Space Exploration for Testing Deep Learning Systems. ACM Trans. Softw.
Eng. Methodol., jun 2022. Just Accepted.

https://github.com/testingautomated-usi/DeepHyperion
https://doi.org/10.5281/zenodo.4742119

Workshops

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023, 135

Anforderungsmanagement in Enterprise Systems-
Projekten

Christoph Weiss1, Johannes Keckeis2

1 Introduction

Viele Enterprise Systems-Auswahl-, Einführungs- und Weiterentwicklungsprojekte
scheitern aufgrund fehlender, falscher, mangelhafter bzw. lückenhafter Anforderungen.
Dies darum, weil es in diesen Projekten häufig falsche Erwartungshaltungen, Definitions-
und Meinungsverschiedenheiten zum Anforderungsmanagement zwischen Kunden und
Lieferanten gibt.

Neben den von Enterprise Systems getriebenen Anforderungen sehen sich Unternehmen
bei Enterprise Systems-Projekten oft mit zusätzlichen organisatorischen Anforderungen
und Herausforderungen konfrontiert wie bspw.:

• Neue oder geänderte Geschäftsprozesse
• Neue oder geänderte Unternehmensorganisation
• Bedarf, Kapazität und Verfügbarkeit der relevanten Projekt-Personals wie

bspw. Key-User
• ERP- und Prozesskompetenz der Mitarbeiter
• ERP Fähigkeit der Organisation und des Personals
• Finanzierung und Budgetierung – Operationalisierung von agilen Methoden

Diese Herausforderungen sollen bei diesem Workshop aufgezeigt, besprochen und
diskutiert werden.

1 SIS Consulting GmbH, Innsbruck, Austria, Christoph.Weiss@sis-consulting.com
2 SIS Consulting GmbH, Innsbruck, Austria, Johannes.Keckeis@sis-consulting.com

136 Christoph Weiss, Johannes Keckeis

cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 137

20th Workshop on Automotive Software Engineering
(ASE’23)

Stefan Kugele1, Lars Grunske2

Abstract: Software-based systems play an increasingly important role and enable most innovations in
modern cars. This workshop will address various topics related to automotive software development.
The participants will discuss appropriate methods, techniques, and tools needed to address the most
current challenges for researchers and practitioners.

Keywords: Automotive; Software Engineering; Workshop

The 20th Workshop on Automotive Software Engineering (ASE’23) addresses the challenges
of automotive software development and suitable methods, techniques, and tools for this area.
With the increasing number of connected vehicles, modern driver assistance systems and
the challenges of fully automated driving, automotive software is more critical today than
ever. Furthermore, the distraction-free and intuitive operation of vehicle applications via
multimodal interfaces play an increasingly important role. Again, innovative technologies
such as voice control, cloud computing or 5G connectivity have found their way into the car.
These technological advances have changed the driving experience: Soon, the most popular
communication and social media services will be integrated into the vehicle and can then
be operated by users while driving.

The workshop’s primary goal is to exchange and discuss how current challenges in automotive
software engineering can be mastered. The thematic focus offers many cross-references
to the Software Engineering (SE) conference, to which the workshop is co-located. The
workshop is aimed at researchers, developers, and users from the automotive industry, as
well as scientists from research institutes and universities who deal with automotive software
engineering. Traditionally, the focus is less on theory and more on applied research. To
ensure that only high-quality papers are selected for publication and presentation, at least
three reviewers were selected for each of the papers submitted to this year’s workshop. Many
thanks to all the reviewers who contributed with outstanding commitment to the review
process.
1 Technische Hochschule Ingolstadt, AImotion Bavaria, Esplanade 10, 85049 Ingolstadt, stefan.kugele@thi.de
2 Humboldt-Universität zu Berlin, Institut für Informatik, Rudower Chaussee 25, 12489 Berlin, grunske@

informatik.hu-berlin.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:stefan.kugele@thi.de
mailto:grunske@informatik.hu-berlin.de
mailto:grunske@informatik.hu-berlin.de

138 Stefan Kugele, Lars Grunske

Programme Committee

Dr. Christian Allmann Audi AG
Prof. Dr. Marcel Baunach Technische Universität Graz
Dr. Klaus Becker Viessmann Elektronik GmbH
Prof. Dr. Lenz Belzner Technische Hochschule Ingolstadt
Dr. Mirko Conrad samoconsult GmbH
Dr. Heiko Dörr Method Park
Dr. Kerstin Hartig Expleo Germany GmbH
Prof. Dr. Steffen Helke Fachhochschule Südwestfalen
Prof. Dr. Paula Herber Universität Münster
Prof. Dr. Thomas Kropf Robert Bosch GmbH
Apl. Prof. Dr. Wolfgang Müller Uni Paderborn
Dr. Thomas Noack Datendeuter GmbH
Prof. Dr. Ralf Reißing Hochschule Coburg
Prof. Dr. Eric Sax Karlsruher Institut für Technologie / FZI
Prof. Dr. Jörn Schneider Hochschule Trier
Prof. Dr. Ramin Tavakoli Technische Hochschule Nürnberg
Dr. Thomas Vogel Humboldt-Universität zu Berlin
Prof. Dr. Andreas Vogelsang Universität Köln

Organization

Prof. Dr. Stefan Kugele Technische Hochschule Ingolstadt
Prof. Dr. Lars Grunske Humboldt-Universität zu Berlin

For many years, this workshop has been organized by the GI interest group (Fachgruppe) on
“Automotive Software Engineering”.3 The steering committee was consequently involved in
the organization of this workshop as well.

3 https://fg-ase.gi.de

https://fg-ase.gi.de

cbe

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 139

5th Workshop on Avionics Systems and Software Engineering
(AvioSE’23)

Bjoern Annighoefer1, Andreas Schweiger2, Stéphane Poulaine3

Abstract: Systems and software engineering in aerospace is subject to special challenges. For
their resolution the AvioSE’23 workshop connects academia and industry with selected scientific
presentations of high quality, motivating keynote talks, and an interactive panel discussion.

Keywords: avionics; systems engineering; software engineering; formal method; model-based;
requirement; qualification; certification; simulation; process; tool; platform; architecture; AI

1 Scope and History

Considerable advances for aerospace applications are expected with the introduction of new
technologies. However, aerospace requirements do not allow the application of these straight
away due to regulations and certification. Technologies and methods need to be amended or
extended for meeting these. The resulting challenges are addressed in the workshop.

The AvioSE’194 edition dealt with general issues and AvioSE’205 addressed development
tools. AvioSE’216 tackled topics for the deployment of AI to avionics. AvioSE’227 handled
safe and secure avionics architectures (e.g. Integrated Modular Avionics, platforms, multi-
core, networks, clouds, middleware).
1 University of Stuttgart, Institute of Aircraft Systems (ILS), Germany, bjoern.annighoefer@ils.uni-stuttgart.de.
2 Airbus Defence and Space GmbH, Manching, Germany, andreas.schweiger@airbus.com.
3 Airbus Operations GmbH, Hamburg, Germany, stephane.poulaine@airbus.com.
4 Annighoefer et al., 1st Workshop on Avionics Systems and Software Engineering (AvioSE’19), 2019. Annighoefer

et al.; Challenges and Ways Forward for Avionics Platforms and their Development in 2019, in IEEE/AIAA 38th

Digital Avionics Systems Conference (DASC), 2019.
5 Annighoefer et al., 2nd Workshop on Avionics Systems and Software Engineering (AvioSE’20).
6 Annighoefer et al., 3rd Workshop on Avionics Systems and Software Engineering (AvioSE’21); A. Schweiger et

al., Classification for Avionics Capabilities Enabled by Artificial Intelligence, IEEE/AIAA 40th Digital Avionics
Systems Conference (DASC), 2021.

7 Annighoefer et al., 4th Workshop on Avionics Systems and Software Engineering (AvioSE’22); B. Annighoefer
et al., Domain-specific Drivers and Limits for Avionics Architectures — A Critical Review in the Context of the
Avionics Application Domains, IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), 2022.

https://creativecommons.org/licenses/by-nc/3.0/
bjoern.annighoefer@ils.uni-stuttgart.de.
andreas.schweiger@airbus.com.
stephane.poulaine@airbus.com.

140 Björn Annighöfer, Andreas Schweiger, Stéphane Poulaine

2 Workshop Objectives

The workshop accelerates the bidirectional transfer of knowledge between academia and
industry. It provides a platform for researchers to present new methods, tools, and technologies
from avionics systems and software engineering, e.g. model-based development, model-
based methods, requirements engineering, formal methods, and virtual methods. These
contributions are presented in a scientific format, but the small character of the workshop
allows in-depth discussions. This in turn increases the precision and future adjustment of the
works. Thus, the workshop provides the enabling platform for the stakeholders to discuss
technical, but also process, and educational topics. Further, the forum offers the forming
of research consortia, once specific issues have been identified, for which project partners
share their research competence.

AvioSE’23 motivates researchers through keynote talks by three invited speakers. The
keynotes highlight a dedicated topic, summarize its state-of-the-art, and emphasize urgent
challenges.

A current topic is selected and addressed interactively by inviting all participants to discuss
aspects and needs of modern avionics. We are connecting academics and professionals
in a panel discussion with invited experts from academia, industry, and authorities. The
expected outcome is the identification of current and future challenges as well as ideas on
how to address these. The panel members’ statements can be challenged by the audience.
Major conclusions of the panel discussion are made available on a virtual platform.

Acknowledgements

Many people contributed to the success of this workshop. First of all, we want to give
thanks to the authors of the accepted papers. Second, high appreciation goes to our keynote
speakers. Third, sincere thanks are directed to the panelists for sharing their knowledge and
their willingness to answer the questions. Fourth, we want to express our gratitude to the
SE 2023 organizers for supporting and hosting our workshop. Finally, we are thankful for
the contributions of the program committee’s members for soliciting papers and writing
peer reviews: Björn Annighöfer (University of Stuttgart), Jürgen Becker (KIT), Steffen
Becker (University of Stuttgart), Stefan Brunthaler (Universität der Bundeswehr München)
Umut Durak (DLR Braunschweig), Rolf Büse (Diehl Aerospace GmbH), Holger Flühr
(FH Johanneum Graz), Ralf God (Hamburg University of Technology), Lars Grunske
(Humboldt-Universität zu Berlin), Christian Heinzemann (Robert Bosch GmbH), Wolfgang
Hommel (Universität der Bundeswehr München), Eric Knauss (University of Gothenburg),
Winfried Lohmiller (Airbus Defence and Space GmbH), Christian Meißner (Volkswagen
AG), Alexander Pretschner (Munich University of Technology), Stephan Rudolph (Northrop
Grumman LITEF GmbH), Bernhard Rumpe (RWTH Aachen University), Andreas Schweiger
(Airbus Defence and Space GmbH), Steven VanderLeest (RAPITA Systems), and Sebastian
Voss (Aachen University of Applied Sciences).

	Gesellschaft für Informatik e.V. (GI)
	Series Editorial Board

	Inhaltsverzeichnis
	Keynotes
	Ina Schaefer0F
	Alexander Serebrenik0F
	Stefan Wagner0F
	Mahdi Manesh0F
	Wissenschaftliches Hauptprogramm
	Einleitung
	GRL-konforme iStar-Erweiterung
	Data Availability
	Einleitung
	Leistungsvorhersage mittels Selbsteinschätzung von Erfahrung und Konfidenz
	Data Availability
	Summary
	Data Availability
	Introduction
	Generating Hazard Relation Diagrams
	Data Availability
	Workshops
	1 Introduction
	Scope and History
	Workshop Objectives

