
Advanced Network Simulation under User-Mode Linux

Andreas Steffen1, Eric Marchionni2, Patrik Rayo2

1 Institut für Internet-Technologien und -Anwendungen
Hochschule für Technik Rapperswil

Oberseestrasse 10, CH-8640 Rapperswil
andreas.steffen@hsr.ch

2 Zürcher Hochschule Winterthur
CH-8401 Winterthur

Abstract: The debugging of data communications software in an active networking
environment can be a tricky and quite tiresome affair, often so because intermit-
tent disturbances occurring in productive systems cannot be reproduced reliably and
consistently or cannot be traced thoroughly enough. Thus for any Linux-based net-
working appliances like routers, firewalls, intrusion detection systems, VPNs, VoIP
gear, etc., the User-Mode-Linux (UML) framework presented in this paper might be
the optimum solution for running and testing these systems in a virtual networking
environment under near real-time conditions. E. g. when a user of the OpenSource
Linux strongSwan VPN software reported an IPsec re-keying error occurring in con-
junction with a NAT router, this rare problem could be reproduced in a virtual UML
test setup within two hours of simulation and a bug fix was found, tested and released
on the same day. UML-based networks are also a powerful didactic tool in education
where students can gain practical experience with complex network setups without
the need of heavy investments in hardware equipment. This paper shows how a UML
network can be set up with relative ease either for interactive explorative use or for
automated regression testing.

1 Introduction - A Typical Networking Scenario

Figure 1 shows a typical VPN scenario where a site-to-site IPsec tunnel between the two
security gateways moon and sun connects the two corporate subnets 10.1.0.0/16 and
10.2.0.0/16 over the “insecure” network 192.168.0.0/24. These two protected subnets are
represented by the clients alice and venus on one side and the host bob on the other
side. In addition to that, the gateway moon offers IPsec-based remote access services to
the “road warriors” carol and dave. If we assume that the authentication of the VPN
peers is based on X.509 certificates, then a HTTP server winnetou is required for the
distribution of the certificate revocation list (CRL).

Just in order to enact such a relatively simple networking scenario a minimum of eight
hardware platforms would be required. The User-Mode-Linux approach presented in this
paper will allow us to simulate the whole environment under near real-time conditions by
means of eight virtual Linux hosts running on a single hardware box. The only prerequisite
is that the services under test are able to run under a Linux operating system.



322 Andreas Steffen, Eric Marchionni, Patrik Rayo

Client
alice

eth0
10.1.0.10

Gateway
moon

eth1
10.1.0.1

eth0
192.168.0.1

Gateway
sun

eth0
192.168.0.2

eth1
10.2.0.1

Client
bob

eth0
10.2.0.10

Roadwarrior
dave

eth0
192.168.0.200

Webserver
winnetou

Roadwarrior
carol

eth0
192.168.0.100

umlswitch0umlswitch1 umlswitch2

Client
venus

eth0
10.1.0.20

eth0
192.168.0.150

Site-to-site VPNSite-to-site VPN

Remote AccessRemote Access

CRL

Figure 1: A typical VPN scenario comprising a site-to-site tunnel and remote access clients.

2 User-Mode-Linux

2.1 User-Mode-Linux Architecture

Figure 2 depicts the architecture of the User-Mode-Linux (UML) scheme. A Linux kernel
consists of a large generic part that is hardware-independent, plus certain components
that are matched towards a specific processor architecture, e. g. the Intel i386 hardware
platform. The GNU C compiler gcc is then used to compile the source code into object
code executable on the target processor. Device drivers are either compiled into the kernel
code or are loaded as separate object modules during run time.

Applications run as user processes on top of the kernel. A virtual host running with a
User-Mode-Linux kernel is just another user process according to figure 2, so that even
if the virtual machine crashes, the kernel of the host system is not affected. Because the
UML kernel does not run on the hardware itself but is layered on top of the host kernel,
its architecture-specific part is hardware-independent, i.e. the target architecture chosen
for UML kernel compilation is ARCH=um where um stands for user-mode.

The most challenging areas in the design of the UML kernel are the interception of system
calls and the integration of drivers for virtual devices that might actually be mapped onto
physical devices of the underlying host system. We will treat UML network devices and
the UML root file system in more detail in sections 2.3 and 2.4, respectively. Additional
information on the UML project as well as some UML tools can be found on the home
page hosted at http://user-mode-linux.sourceforge.net.

The versions of the UML kernel and the host kernel do not have to be the same. Thus it is
possible to run a Linux-2.6-based UML kernel on top of a Linux-2.4 host kernel or vice
versa. Each virtual host instance can run even with its individual UML kernel version.

2.2 SKAS Mode – Separate Kernel Address Space

Traditionally User-Mode-Linux has had the design that each UML process was run as
a visible process on the host alongside the UML kernel itself. Thus the UML kernel was



Advanced Network Simulation under User-Mode Linux 323

Hardware (e.g. i386)

i386-specific Architecture Drivers

Generic Linux Kernel

Process
#1

Process
#2 UML Kernel

Process
#1

Process
#2

User-Mode
Architecture

Emulated
Drivers

Generic Linux Kernel

Hardware (e.g. i386)

i386-specific Architecture Drivers

Generic Linux Kernel

Process
#1

Process
#2 UML Kernel

Process
#1

Process
#2

User-Mode
Architecture

Emulated
Drivers

Generic Linux Kernel

User-Mode
Architecture

Emulated
Drivers

Generic Linux Kernel

Figure 2: User-Mode-Linux Architecture.

present in the address space of each of its processes, and, by default, was writeable. This is
obviously a security problem, since, with write access to kernel data, a process can break
out to the host. UML’s “jail” mode fixes this problem by making UML data read-only
while a process is running, but this imposes a huge performance penalty. Also, the kernel
is still there, and can be read, so this isn’t acceptable for honey pots, since a bad guy can
easily tell that the system is a UML.

Through the introduction of the Separate Kernel Address Space (SKAS) mode, the UML
kernel now runs in an entirely different host address space from its processes.This solves
the security and honey pot fingerprinting problems by making the UML kernel totally
inaccessible to UML processes. Their address spaces are identical to what they would be
on the host. This also provides a noticeable speedup by eliminating the signal delivery that
used to happen for every UML system call. The effect of the SKAS patch is visible on
the host in the way that not dozens of UML processes will appear in the process status
(ps) but only the following four:

• The UML kernel thread, which runs in the separate kernel address space, executes
kernel code, and does system call interception on UML processes.

• The UML userspace thread, which runs all UML process code and switches between
host address spaces on each UML context switch.

• The ubd driver asynchrounous IO thread.
• The write SIGIO emulation thread.

SKAS mode requires that a patch must be applied to the host kernel. This patch imple-
ments the address space support needed by SKAS mode. The patch is available from
www.user-mode-linux.org/~blaisorblade/patches/.

On the UML instance the message

Checking for the skas3 patch in the host...found
Checking for /proc/mm...found

is going to appear during the booting process if the SKAS mode functionality has been
successfully detected in the host kernel.



324 Andreas Steffen, Eric Marchionni, Patrik Rayo

2.3 UML Network Devices

UML #2UML #2

uml_switchuml_switch

eth0

UML #1UML #1 eth0

tap0 eth0Routing
NAT

Routing
NAT

Host

InternetInternet

Figure 3: Use of the tun/tap network device and of a uml_switch.

Each UML instance can have an arbitrary number of virtual Ethernet interfaces. We will
use this important feature to simulate complex network scenarios. As figure 3 shows, the
UML instances can be connected via their network interfaces to virtual subnets by means
of a virtual UML switch. This switch has exactly the same functionality as a real layer
2 switch and can optionally be configured to act as a passive hub. A UML switch is set
up on the host system with the following command:

uml_switch -tap tap0 -unix /tmp/umlswitch0 &
ifconfig tap0 192.168.0.254 netmask 255.255.255.0

UML instances can be accessed from the host system via tun/tap network devices. In the
example of figure 3 the host’s tap0 device is connected to the UML switch so that both
instances #1 and #2 can be reached. Another method is to bind the virtual eth0 interface
directly to a tun/tap device on the host. Using IP forwarding in the case of routable IP
addresses or Network Address Translation (NAT) if private network addresses are used in
the virtual networks, the virtual hosts become visible in the Internet. UML-based virtual
host services are already being offered by several ISPs.

2.4 UML Root File System

Each UML instance uses a root file system of its own that resides as a single large file
on the hard disk of the host system. The complete Linux file system contains all required
system commands and application programs as well as a sufficient amount of free space to
store user data. In principle, a root file system could be shared by several UML instances
by using a Copy-On-Write (COW) mechanism where the original files exist only once and
just individual modifications and additions are stored separately for each instance at the
time they actually occur.

For our network simulation purposes we decided to create a 500 MB root file system
for each of the eight virtual instances of the default network topology shown in figure 4.
The total disk space requirement on the host system thus amounts to 4 GB. The generic
root file system was derived from a standard Gentoo Linux distribution (www.gentoo.org),



Advanced Network Simulation under User-Mode Linux 325

including among other tools a C compiler (gcc), a debugger (gdb), a network analyzer
(tcpdump), a firewall (iptables), secure shell support (ssh, scp) and a web server
(apache2). This basic set of system commands and command line tools takes up about
350 MB of the 500 MB root file system, leaving 150 MB for user data.

Since a UML instance runs as a normal user process that can potentially crash and is often
terminated improperly e. g. by using the uml_mconsole halt command that just kills
the UML process, the use of a robust journaling file system such as reiserfs or ext3 is
strongly recommended. Also for reasons of robustness we resigned from using the COW
mechanism, giving each instance a root file system copy of its own, instead.

2.5 Starting up a UML instance

In the preceding paragraphs we have described all components that are required to launch
a UML instance. The following practical example shall demonstrate how a virtual host
is actually started up with a single command line command:

linux-uml-2.6.11 umid=moon \
ubd0=gentoo-rootfs-moon \
eth0=daemon,,unix,/tmp/umlswitch0 \
mem=64M

The executable UML kernel, compiled from the standard Linux 2.6.11 sources with
ARCH=um and named linux-uml-2.6.11 is the actual user process that will be
started. The UML instance will be named moon, the Gentoo root file system stored in
the single large file gentoo-rootfs-moon will be mounted, an eth0 network inter-
face connected to umlswitch0 will be created and 64 MB of RAM will be allocated to
the instance.

3 strongSwan UML Testing Environment

3.1 Overview

The UML testing environment going to be presented in this chapter was initially created
by Eric Marchionni and Patrik Rayo (both recent graduates from the Zürcher Hochschule
Winterthur, Switzerland) for the strongSwan OpenSource VPN solution and now makes up
the testing part of the software distribution available from www.strongswan.org. Details on
their original implementation can be found in the diploma thesis [MR04]. In the following
paragraphs the default network topology, the interactive UML simulation mode, as well
as the fully automated software regression test mode will be discussed.

3.2 Default UML Network Topology

Figure 4 shows the default UML network topology created for the strongSwan testing
environment. It consists of the eight virtual hosts alice, venus, moon, carol, win-
netou, dave, sun, and bob, populating the three separate subnets of the VPN scenario
already presented in figure 1, plus three tun/tap devices that connect the host with each



326 Andreas Steffen, Eric Marchionni, Patrik Rayo

Figure 4: Default UML network topology with 3 networks and 8 UML instances.

of the UML instances via the UML switches sitting at the center of the corresponding
sub-networks.

If not all of the eight hosts are needed for a given simulation scenario then the desired
instances can be started by enumerating them on the command line, e. g.

start-testing alice moon carol winnetou

Additional hosts can be added with relative ease either by configuring and starting them
manually or by extending the startup-scripts accordingly.

3.3 Interactive Mode

The most flexible way to use the strongSwan UML environment is the interactive mode
shown in figure 5. On a graphical desktop either a KDE konsole or an xterm is opened for
each started instance. It is also possible to open a terminal console on the host system via
remote access and switch between the various UML instances using the screen command.

The interactive mode is ideally suited for the debugging of networked applications because
all communication signals exchanged between the hosts as well as all log files and debug
information on the hosts are fully available in a controlled environment. By including
gcc or any other compiler in the UML root file system, applications can be modified,
recompiled and tested on the fly right on the UML instances.



Advanced Network Simulation under User-Mode Linux 327

Figure 5: UML network in interactive mode with eight UML consoles and a host window.

3.4 Automated Software Regression Tests

For software regression tests that are run prior to each new official software release in
order to verify the compliance with the specifications and also to detect bugs in an early
stadium, the UML interactive mode is too error prone and too tedious because of the
manual configuration steps involved. Therefore as part of [MR04], an automated testing
framework was created for the strongSwan IPsec software development environment. This
framework can at least in principle be adapted to any software project that requires a
networking test bed.

During the creation of the root file systems for the UML instances, the generic Linux base
file system (e. g. based on Gentoo or Debian) is supplemented by specific default config-
urations that are needed by the individual hosts in order to fulfil their particular roles as
firewall, router, security gateway, web server, etc. Since most configuration files reside in
the /etc/ subtree of a Linux file system and specific services and applications are started
via the /etc/init.d/ runlevel mechanism, the current strongSwan framework auto-
matically copies extensions and modifications to the /etc/ subtree on a per-host-basis
during the creation of the corresponding UML root file system. The directory structure
storing the data used by the configuration scripts is shown in figure 6.



328 Andreas Steffen, Eric Marchionni, Patrik Rayo

testingtesting

teststests

nat-one-rwnat-one-rw hostshosts

moonmoon etcetc

Specific configurations for test „nat-one-rw“

teststests

nat-one-rwnat-one-rw hostshosts

moonmoon etcetc

Specific configurations for test „nat-one-rw“

hostshosts

defaultdefault etcetc

moonmoon etcetc

Default configuration for all test cases

Configurations common to all hosts

Specific configurations for host „moon“

hostshosts

defaultdefault etcetc

moonmoon etcetc

Default configuration for all test cases

Configurations common to all hosts

Specific configurations for host „moon“

Figure 6: Configuration files for the UML instances.

The default configurations that are put into place by the configuration scripts are also very
helpful in the interactive mode, because the applications particular to a given instance can
be immediately started and put to use.

A regression test suite consists of a large number of scenarios that should be preferably
executed automatically and the test results analyzed without manual intervention. The
strongSwan testing framework creates a subdirectory for each scenario as the example in
figure 7 demonstrates.

nat-one-rwnat-one-rw

evaltest.datevaltest.dat
sun::ipsec auto --status::\

nat-t.*STATE_QUICK_R2.*IPsec SA established::YES
alice::ping -c 1 PH_IP_BOB::\

64 bytes from PH_IP_BOB: icmp_seq=1::YES
moon::tcpdump::IP sun.strongswan.org.4500 > \

moon.strongswan.org.*: UDP::YES

evaltest.datevaltest.dat
sun::ipsec auto --status::\

nat-t.*STATE_QUICK_R2.*IPsec SA established::YES
alice::ping -c 1 PH_IP_BOB::\

64 bytes from PH_IP_BOB: icmp_seq=1::YES
moon::tcpdump::IP sun.strongswan.org.4500 > \

moon.strongswan.org.*: UDP::YES

posttest.datposttest.dat
sun::ipsec setup stop
alice::ipsec setup stop
moon::iptables -t nat -F

posttest.datposttest.dat
sun::ipsec setup stop
alice::ipsec setup stop
moon::iptables -t nat -F

pretest.datpretest.dat
moon::iptables -t nat -A POSTROUTING -o eth0 \

-s 10.1.0.0/16 -j SNAT -–to-source PH_IP_MOON
alice::ipsec setup start
sun::ipsec setup start
alice::sleep 5
alice::ipsec auto --up nat-t

pretest.datpretest.dat
moon::iptables -t nat -A POSTROUTING -o eth0 \

-s 10.1.0.0/16 -j SNAT -–to-source PH_IP_MOON
alice::ipsec setup start
sun::ipsec setup start
alice::sleep 5
alice::ipsec auto --up nat-t

description.txtdescription.txt
The roadwarrior alice sitting behind the NAT router 
moon sets up a tunnel to gateway sun. UDP encapsu-
lation is used to traverse the NAT router. The NAT-
ed host alice pings client bob behind gateway sun.

description.txtdescription.txt
The roadwarrior alice sitting behind the NAT router 
moon sets up a tunnel to gateway sun. UDP encapsu-
lation is used to traverse the NAT router. The NAT-
ed host alice pings client bob behind gateway sun.

Figure 7: Scripts for automated software regression testing.

The file description.txt gives a concise summary of the scenario. The next file pretest.dat
contains a list of commands that are executed sequentially on the various UML instances



Advanced Network Simulation under User-Mode Linux 329

used by the given scenario. In our example a NAT rule is inserted on the router moon.
Next the ipsec daemon is started on the VPN end points alice and sun. A sleep
command of 5 seconds makes sure that both daemons will be up before the last command
is executed which builds up the NAT-ed IPsec connection using the Internet Key Exchange
protocol (IKE).

In a second phase the commands of the file evaltest.dat are executed which by applying
pattern matching rules evaluate if the desired test results have been achieved. In our exam-
ple it is first checked if the IKE negotiation has been successful both on sun and alice.
Next a ping from alice to bob executed on alice checks the connectivity through the
NAT-ed IPsec tunnel. The last check on router moon verifies if the standardized UDP port
4500 has been used for the NAT traversal.

In the third and last phase the commands in posttest.dat reset all UML instances involved
in the scenario to the idle state at the outset of the test. This is achieved by stopping the
ipsec daemon on the VPN peers and by flushing the router’s NAT rule.

The three phases pretest, evaltest and posttest are controlled by a script running on the
host system. The commands are executed on the various UML hosts using the secure shell
(ssh), e. g.

ssh root@alice ipsec setup start

At the end of each test a selection of log and status files is copied from the UML instances
back to the host system using ssh and scp (secure copy).

3.5 Display of Test Results

For each test scenario a HTML page is automatically created and copied together with the
most relevant configuration, log and status data to the UML web server winnetou that
has by default the IP address 192.168.0.l50.

As the sample screen shot in figure 8 shows, all relevant information pertinent to a given
test scenario can be conveniently accessed and examined using a standard web browser,
without the need to configure a web server on the host system itself. Just do not forget
to include winnetou in the list of started UML instances!

The next web page depicted in figure 9 is located one hierarchy level higher and aggregates
the results from the individual tests. Currently 35 tests covering various strongSwan fea-
tures have been defined. Depending on the hardware of the underlying host system a full
automated test run takes between 30-60 minutes. With one glance it can then be verified
if a software release has passed all regression tests. A click on a Failed test result will
show the console.log that will hopefully give a first hint towards the possible reason of the
failure. A click on the test name itself will open up the view from figure 8 that gives the
detailed log and status information. If the error cause still cannot be established then a
change to the interactive mode will offer the chance to explore the problem even more in
depth by activating higher debug levels or by setting break points with the help of the code
debugger gdb.



330 Andreas Steffen, Eric Marchionni, Patrik Rayo

Figure 8: Test results for IPsec NAT-T scenario published on UML instance winnetou.

4 Practical Use of UML Networks

4.1 Exploring, Testing and Debugging Network Applications

The example of the strongSwan testing environment presented in the previous chapter
clearly shows the manifold advantages of a UML-based test bed. In this section we want
to give an overview on several other network applications that would profit significantly
from a virtual environment.

VPN Scenarios

• NAT-Traversal (RFC 3947)

• L2TP-over-IPsec (RFC 3193)

• Dead Peer Detection (DPD, RFC 3706)



Advanced Network Simulation under User-Mode Linux 331

Figure 9: Completed regression tests for the Linux strongSwan IPsec stack.

• HTTP or LDAP-based retrieval of Certificate Revocation Lists (CRLs)
• Online Certificate Status Protocol (OCSP, RFC 2560)
• Simple Certificate Enrolment Protocol (SCEP).

Authentication, Authorization and Accounting (AAA)

• Kerberos
• RADIUS
• IEEE 802.1x port-based network access control
• Identity Management scenarios involving LDAP repositories

Firewall Rules and Intrusion Detection

• Firewall rules and NAT based on iptables
• Port scans using nmap
• Network attacks exploiting various vulnerabilities in application programs



332 Andreas Steffen, Eric Marchionni, Patrik Rayo

• Intrusion Detection and Prevention Systems (IDS/IDP, e. g. using snort)
• Honey pots

Anonymizing Networks

• Pseudo-anonymous remailers
• High Latency Anonymizers (Mixmaster, etc.)
• Low Latency Onion Router networks (Tor available from http://tor.eff.org)

Dynamic Routing Protocols 1

• RIP, OSPF, etc

IPv6 Test Beds 2

• Mobility for IPv6 (roaming, binding updates, home agents, etc)

4.2 Education and Training

UML-based networks open up fascinating new opportunities for education and training in
the field of IP-based communications technology. Since modern communication protocols
have grown quite complex, especially if security aspects are involved and the theory itself
is often quite dry, it is of utmost importance that students and trainees can get practical
hands-on experience in the communications lab. In a university course the typical size
of a lab group is between 16-24 students. Due to the enormous amount of the hardware
that would be required to equip all students in a group, it has been difficult and often
impossible to set up and test complex networking scenarios during a standard lab session
of 2-4 lessons. Also if communications hardware is shared among groups as a cost-saving
alternative, many experiments do not scale well with an increasing number of participants.
E. g. when experimenting with ARP spoofing attacks, a single group usually succeeds in
poisoning the cache of a victim whereas ten concurrent groups just create an abominable
chaos.

UML networks running on personal computers do away with the need for a lot of network-
ing hardware and eliminate the traditional stability problems related to equipment being
shared by concurrent student groups. The students are given the possibility to explore the
given network scenario at their own chosen pace in a confined environment. On the other
hand it is possible to connect the virtual setups of each group over the physical lab network
thus simulating the establishment of WAN connections.

Starting with the summer term 2005, UML networks have been successfully used in the
Internet Security Lab at the Hochschule für Technik Rapperswil (HSR) for setting up and
exploring various simple and complex VPN scenarios [Ste03] and also for teaching basic
firewall rules working with iptables. The feedback from the students has been very
encouraging and led to the decision to extend the UML-based labs to cover more topics.

1 Since routing networks must possess a certain amount of complexity in order to be non-trivial,
a sensible scenario might require an extension of the UML network topology

2 Manual configuration of IPv6 virtual interfaces is possible but UML start-up scripts would need
to be extended to support IPv6 addresses.



Advanced Network Simulation under User-Mode Linux 333

5 Conclusions

This paper was written with the intention to highlight the manifold opportunities offered by
UML-based virtual networks in a communications technology environment. Starting out
from the existing strongSwan IPsec testing framework [MR04] developed at the Zürcher
Hochschule Winterthur in Switzerland, we have shown that even most complex network-
ing scenarios can be run without any restrictions in near real-time. In our opinion the
User-Mode-Linux concept can be easily extended to cover a multitude of other interesting
communication setups.

Institutions of higher learning engaged in teaching communications technologies can es-
pecially profit both from the increased flexibility and independence that virtual network
environments offer to the students, as well as from the considerable savings in hardware
investments that can be achieved.

Future areas of work will include research into the use of the new XEN virtualization
environment [Ba03] that promises to give a more tight control on consumed resources.

References
[Ba03] Barham, P. et al.: Xen and the Art of Virtualization, SOSP’03, Bolton Landing, New York,

2003.

[MR04] Marchionni, E.; Rayo, P: User-Mode-Linux Test Suite für Linux strongSwan. Diplomar-
beit, Zürcher Hochschule Winterthur, 2004.

[Ste03] Steffen, A.: Virtual Private Networks – Coping with Complexity. In (Knop, J. v. Hrsg.):
Security, E-Learning, E-Services – 17. DFN-Arbeitstagung über Kommunikationsnetze,
Düsseldorf 2003. GI-Edition - Lecture Notes in Informatics (LNI), P-44, Bonner Köllen
Verlag, 2003, S. 289-302.


