
Software Architecture Best Practices for Enterprise Artificial
Intelligence

Yannick Martel1, Arne Roßmann2, Eldar Sultanow«, Oliver Weiß», Matthias Wissel5, Frank
Pelzel6, Matthias Seßler7

Abstract: AI systems are increasingly evolving from laboratory experiments in data analysis to
increments of productive software products. A professional AI platform must therefore not only
function as a laboratory environment but must be designed and procured as a workbench for the
development, productive implementation, operation and maintenance of ML models. Subsequently, it
needs to integrate within a global software engineering approach. This way, Enterprise Architecture
Management (EAM) must implement efficient governance of the development cycle, to enable
organization-wide collaboration, to accelerate the go-live and to standardize operations. In this paper
we highlight obstacles and show best practices on how architects can integrate data science and AI in
their environment. Additionally, we suggest an integrated approach adapting the best practices from
both the data science and DevOps.

Keywords: Software Architecture; Enterprise Architecture; Machine Learning; Artificial Intelligence;

MLOps

1 Introduction

Despite gaining more and more popularity (and hype), AI technology is still in an infancy
stage and may be intimidating to companies with no AI know-how and experienced
personnel. AI use cases involve many challenges and often fail to scale and translate into
productive solutions [Wh19]. In addition, specifically data science projects are very deep and
challenging in terms of content. Their level of industrialization is not comparable to what we
have reached for other business applications. While being at the core, the machine learning
part used in the enterprise environment represents only a fraction of the overall system,
but machine learning still put some strong constraints on the overall architecture. This can

1 Capgemini, 1»7 Quai du Président Roosevelt, 921«0 Issy les Moulineaux, France, yannick.martel@capgemini.
com

2 Capgemini, Bahnhofstraße «0, 90»02 Nuremberg, Germany, arne.rossmann@capgemini.com
« Capgemini, Bahnhofstraße «0, 90»02 Nuremberg, Germany, arne.rossmann@capgemini.com
» Capgemini, Mainzer Landstraße 180, 60«27 Frankfurt, Germany, oliver.weiss@capgemini.com
5 Capgemini, Olof-Palme-Straße 1», 81829 Munich, Germany, matthias.wissel@capgemini.com
6 IT Dept. of Germany’s Federal Employment Agency, Südwestpark 26, 90»»9 Nuremberg, Germany, frank.

pelzel@arbeitsagentur.de
7 IT Dept. of Germany’s Federal Employment Agency, Tafelhofstraße », 90»»« Nuremberg, Germany, matthias.

sessler@arbeitsagentur.de

cba doiȷ10.18»20/inf2020_16

R. Reussner, A. Koziolek, R. Heinrich (Hrsg.)ȷ INFORMATIK 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 165

mailto:yannick.martel@capgemini.com
mailto:yannick.martel@capgemini.com
mailto:arne.rossmann@capgemini.com
mailto:arne.rossmann@capgemini.com
mailto:oliver.weiss@capgemini.com
mailto:matthias.wissel@capgemini.com
mailto:frank.pelzel@arbeitsagentur.de
mailto:frank.pelzel@arbeitsagentur.de
mailto:matthias.sessler@arbeitsagentur.de
mailto:matthias.sessler@arbeitsagentur.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2020_16


result in problems such as technical debts that prevent further development, modification or
even operations of the system [Sc15].

Project participants and customers therefore face difficulties that they are not familiar
with, for example, from “traditional” enterprise information system projects. These new
challenges includeȷ

(1) Model rules and logic exist outside the well-known code base. This makes it difficult
to encapsulate and control the behavior of the whole system. In addition to code
dependencies, dependency on data is also introduced when using Machine Learning
Models.

(2) The model changes its behavior over time. This is referred to as model drift and can
lead to a decrease of quality for predictions by a model that indeed is successfully
deployed in production but is decaying in its abilities.

(«) A mix of frameworks, different programming concepts and languages is involved. The
detection of semantic errors is much more difficult in such an environment, where
each component has been selected as optimal for one function but might not fit well
in the overall architecture.

Integrating AI into existing systems is a process that is complicated not only due to technical
intricacies but also due to the organizational aspects. The data science team primarily aims
at accelerating and simplifying experimentation and innovation based on machine learning
and data analytics. They commonly work in a fast-paced prototyping and rapidly iterate,
test new approaches and explore new areas. The focus of enterprise software development
team, on the other hand lies on stable and reproducible software releases. Both disciplines
follow different workflows and incorporate different tools.

It seems difficult to incorporate the dynamic nature of ML model development and training
into an end-to-end software development cycle in a reproducible fashion. We commonly
see a lack of expertise in software engineering in data science teams and experience
for corresponding software architectures. On the other hand, IT departments struggle to
understand the specificities of machine learning based software systems, and to integrate
the exploratory and empirical approaches favored in data science. Some approach is needed
to incorporate the two corpuses of knowledge and practices and to apply it to our new
AI-based systems.

In our paper we first summarize related work examining the integration of ML components
into large enterprise software systems in section 2. Section « then presents the basic
methodology of comparing case studies which we will use to sharpen the problem domain,
followed by a detailed analysis of several case studies in section ». In section 5 we show
a best practices approach for enterprise software development incorporating ML parts by
discussing suitable processes, team lineup and eventually presenting our Machine Learning
Reference Architecture. Finally, section 6 presents conclusions, limitations and future

166 Yannick Martel et al.



research by comparing the discussed approach with other solutions such as commercial
platforms.

2 Related Work

The problem of moving machine learning into production has been mostly faced by the large
web players of the AI generation, whose business model is built on large-scale automation
and massive use of machine learning. Typically, Google, Amazon, LinkedIn, Facebook,
Lyft and their colleagues have developed and approached software to face the challenges
they encountered. Some have published their learnings, like Google in [Sc15], Facebook in
[Ha18] or Uber in [HD17]. Most of the work is on large to very large-scale infrastructure,
adapted to the volume of data and size of teams of these players.

MLOps is now one of the 5 Hands-on Skills Every Data Scientist Needs in 20208, and is part
of ML modernization movement. Many vendors such as DataRobot, Dataiku, SAS, SAP,
ParalellM, and of course the cloud platform vendors such as AWS, Google Cloud Platform
and Microsoft Azure have viewpoints, recommendations and reference architectures.

3 Methodology

We chose an exploratory approach and used a case study analysis to identify and categorize
architectural shortcomings and problems which occurred in real practice of AI projects.
These practical cases includeȷ

• Federal Employment Agency (FEA)ȷ An operational analytics tool visualizes and
predicts cpu and memory utilizations including peak and idle times [Ch19].

• BSH Hausgerčte GmbHȷ A novel approach for predicting and visualizing distributed
product information queues at BSH Hausgerčte GmbH [Ch20].

• Federal Employment Agency (FEA)ȷ The use of Natural Language Processing (NLP)
to classify documents. In the case, student certificates are evaluated by our machine
learning models and the results are made available to the processor.

• Premium automotive OEMȷ Anomaly detection in a car fleet.

• Factoring branch of a French bankȷ Integration of scoring algorithms into productive
environment

• A fraud detection startup in need of running machine learning models in a real time
streaming environment.

8 https://www.kdnuggets.com/2020/01/odsc-5-skills-every-data-scientist-needs.html

Software Architecture Best Practices for Enterprise AI 167

https://www.kdnuggets.com/2020/01/odsc-5-skills-every-data-scientist-needs.html


• Aircraft maintenance and material support analyticsȷ Building a robust and stable
data pipeline for many different data sources

To resolve this, we interviewed experts involved in these projects and based on their feedback
identified and worked out the problem core in order to cluster problem domains which can
be subsequently addressed through our solution approach.

4 Case Study Analysis

4.1 Federal Employment Agency (FEA): Operational Analytics

This case develops a novel tool for data center management that incorporates data visualiza-
tion and machine learning capabilities for a large government agency in Germany, which
hosts three highly available data centers containing more than 10,000 servers [Ch19]. The
solution comprises a web-based «D prototype running on Node.js. The tool provides a
significantly better option and enabled visualization of historical data for all server instances
at the same time, as well as real-time charts. It also uses the full potential of machine
learning for time series forecasting.

There were quite a few challenges faced during implementing the ML-based tool. Setting up
the Python environment including all needed dependencies was time intensive. Development
of new functions which required new dependencies (which in worst case conflict with
existing ones) would block other developers to restart the system after an update. Anaconda
was not required at the beginning but later became essentially the only solution to get the
system running. At the end containerization simplified a lot, as it allowed easy encapsulation
of the dependencies and smooth installation.

4.2 BSH Hausgeräte GmbH: Predicting and visualizing distributed product infor-
mation queues

The objective of the project was to present processing state and queues in a more un-
derstandable and predictable way and to visualize them in order to enable improved
decision-making.

When implementing the solution, many challenges came upȷ there existed many versions of
Python scripts, notebooks etc. Defining interfaces was not that easy as we know this in the
JEE world. The production environment consisted of a complex infrastructure and many
pieces had to be put together before having a running system. Sometimes a small change
led to issues where other developers were unable to run the system (as it ran one day before)
as they needed to adjust parameters and paths manually etc. The overall build process was
not easy and transparent, for details see [Ch20].

168 Yannick Martel et al.



4.3 Federal Employment Agency (FEA): Natural Language Processing (NLP) for
Confirmation of Studies

There are vast amounts of text documents in public administration, which opens great
potentials for the use of ML-algorithms. In our case, certificates, which are uploaded to
claim child benefits, are now evaluated by machine learning models. Especially classification
and automatic information retrieval foster a simpler, faster and more beneficial way of
processing these data.

As this had been the first use case at FEA which had been deployed to production, there
were some initial efforts needed. E.g. once we had to recode from Python to Java to hand
over the model. Today, we develop and deploy in Python. Other efforts are organizing and
implementing a monitoring and feedback loop for the first time, especially if this causes
some modifications to operating applications. A further, at first glance trivial aspect, is the
organisation of the collaboration of the numerous stakeholders for the first time - i.e. to
enable IT-Experts, Business Analysts, Product Owners, Data Scientists etc. to work together
with different access, views etc. and within the data science team with script and model
management, versioning etc. Due to performance and scalability issues in other use cases,
the need for upgrading the laboratory to a ML-factory by an on-premise stack become
inevitably. The requirements to take a platform decision are listed in chapter 5.5

4.4 Premium Automotive OEM

Anomaly detection systemȷ All vehicles during the ride are regularly sending data to the
endpoint in the cloud. However, often due to technical problems, some data is lost or delayed.
The customer wants to be informed as soon as possible about problems with collecting the
data.

The solution consists of three models underneath, each one specialized in detecting different
kind of anomaliesȷ Linear Learner is an AWS SageMaker built-in model which was used for
making prediction for next 2» hours, and each hour a check whether incoming data is within
confidence interval of prediction was made. Autoencoder is a neural network, which finds
the function would follow the general pattern and would be insensitive to sudden deviations.
Then the difference between incoming data and denoised function is assessed using Local
Outlier Factor to decide whether observation is anomaly. For retraining purposes, scripts for
data preprocessing and training, which must be run by user, were prepared. In the future,
there will be a module for automatic retraining.

4.5 Factoring branch of a French Bank

In this case the factoring branch of a French bank required a quick integration of two
ML algorithms giving scorings used by a digital platform into productionȷ One for fraud

Software Architecture Best Practices for Enterprise AI 169



probability (using graph analysis; for instance if the bank client is linked to many known
fraudsters, it may be a fraudster) and another about default of payment probability (if the
amount of transaction of the client is very different of the usual amounts seen for this client,
the score is higher).

Using a DevOps pipeline, each algorithm has been delivered on production four months after
the delivery by the data scientist. The software engineering team decided not to reimplement
all the preparation procedure but to reuse the SQL scripts already done and to optimize only
the scripts that needed to. This way the work was easier because data scientists and software
engineers used the same language. The result of the preparation process was exposed in a
NoSQL Database to be used by a microservice with low latency. The prediction was done
by a Java microservice merging the data from the NoSQL database with the arguments sent
in a SOAP query to call a Python script giving the score as result. This mixed architecture
introduced many difficulties due to the closely coupled Python-integration with Java. As key
learning we would recommend exposing Python scorings using Python (micro-) services
with frameworks like Django9 for example. We also had difficulties to manage Python
packages environments and we started to implement a dependency management automation
process to avoid this issue on a follow-up project.

All logs (during the preparation process or during the microservice call) were sent to an
ELK cluster and visualized via technical and business dashboards to follow the algorithm
usage. A difficulty concerning this kind of monitoring was to train the hosting team to
manage all the parts of the project. The team’s background was mainly the management
of batch loadings for BI and so we chose to hide the technical complexity of Big Data
technologies using a framework. In addition, we created trainings for the ops team with
reference to BI to give them some examples they already knew.

4.6 Fraud detection at Fintech startup

This case is an example of moving machine learning from the lab to a production environment.
This young fintech has developed a machine learning model for detecting payment fraud in
real time, based on behavior fingerprints of clients, accounts, banks and payments. This
model has been proven in the lab on historical data, with big data tools and a mix of Python
and Scala scripts.

Then the model had to be introduced in a real-time process, together with data preparation
and feature engineering. Therefore, the fintech has developed a real-time streaming engine
supported by a Kafka unified log, with the following stepsȷ

1.) Collection and conversion of transactions and auxiliary data onto a common data model;
2.) Enrichment of transactions with auxiliary data – for instance addition of client profile
and bank profile to the transaction; «.) Calculation of features for the machine learning

9 https://www.djangoproject.com

170 Yannick Martel et al.

https://www.djangoproject.com


model – including short-term (1 minute, 1 hour, 1 day) and longer term (1 year, 1 month...)
aggregates based on different keys (account, client, country...) and selection criteria (failed
transactions, instant payment...). These behavioral features require the maintenance of
pre-features in an in-memory database. This move from a batch lab environment to real-time
has required redesign and redevelopment of all the algorithms; ».) Application of machine
learning models, using the same library as during the lab, but with its Scala bindings; 5.)
Application of configurable business rules, to assess the risk and make a final decision.

This effort has been done in a separate environment, with independent technologies, and
with a pure DevOps / Agile development methodology and tools. The data science team can
now develop new models and integrate them in the developed framework.

4.7 Aircraft maintenance and material support analytics

This case is an example for reproducible analytics insights and constantly growing data
pipelines to enable end users making data driven decisions in different areas surrounding
the operation of military aircrafts. The focus is the aircraft maintenance, where the provided
dashboard help support engineers perform root cause analysis of errors and part failures.
Another area is material services where the tracking of parts within the repair or maintenance
cycle is enabled by dashboards.

Starting with the many source systems on end customer side as well as in house, the
data needs to be ingested and further processed on a single platform to leverage the full
potential of the collected information. Due to the iterative process and increasing number of
included source systems, the challenge of delivering reproducible and consistent results in
the required dashboards for the different user groups is a constant challenge. Particularly
due to the use of the Hadoop stack, which comes with great processing frameworks like
Apache Spark but also the Hadoop Distributed File System (HDFS) which prevents the use
of common already established data versioning tools. Other challenges to build a robust
and stable data pipeline stem from the different frequencies and volatile quality of the data
deliveries from the source systems.

To overcome these issues, a data versioning system was established that connects the version
of the code for the processing logic with the used data delivery. Also, a monitoring system
for the data quality and consistency of the derived insights was established to be able to
spot data issues as soon as possible and provide initial clues for further investigation.

5 Developing Best Practices for a Data Science Architecture

In the following, we distil the best practices from the case studies. This extraction of best
practices forms the actual outcome of the performed case study analysis. It is precisely a
responsibility of Enterprise Architecture Management to detect these pitfalls and recipes

Software Architecture Best Practices for Enterprise AI 171



for success and to anchor them in the organizational memory. We map above mentioned
pitfalls into following categoriesȷ

• Organizationalȷ New professions from the field of big data seem to be taking a firm
place in organizations, but their tasks in projects or enterprise programs, and at the
intersections to other departments, have yet to be sharpened.

• Proceduralȷ New tools and ways to create solutions in the data science environment
also bring new problems that hinder agility, high level of data quality and integration
into the solution building processes at enterprise level.

• Architecturalȷ Well working solutions in lab environments often fail to scale and
deliver sufficient performance in real world scenarios or an explosion of technical
complexity prevents an integration into manageable products.

5.1 Requirements

First and foremost, governance and leadership are needed which will be considered as
critical to move machine learning to production and the introduction of data science into
operational processes. This innovation requires the transformation and adaptation of software
development processes and thus the leadership and vision to support that. Subsequently, we
must integrate data science experiment-oriented activity within the software engineering
activities, oriented towards developing industrial-grade software systems. This is a clash of
cultures, as well as skills and practices. Finally, we need architectures, technical tools and
environments to support an end to end processes, encompassing exploration, prototyping,
model development and training, then allowing easy transition into industrial software.

The tooling must allow for automation and repeatability. We also need to support serving
and monitoring of machine learning models, both from a technical and business standpoint.
The architecture patterns must cover different types of machine learning models in different
contexts, varying with the business, the deployment constraints, the temporality (real-time
vs slow processing) and the volume of data to process.

In order to cover existing and future requirements of developments in the field of Advanced
Analytics and Machine Learning, there is also a need to upgrade and expand the analytics
platform. It requires an integrated system of coordinated hard- and software in the local
data center. The hardware must be designed to meet the data science specific requirements
This results in particular

• due to increasing amounts of data as well as significantly increased demand for
computing capacity because of the growing complexity of the methods and algorithms
used.

172 Yannick Martel et al.



• from the increased demands in the development of analytical models with regard to
data protection and security, data ethical principles and legal framework conditions
(GDPR, EU Whitepaper on AI).

• from the constantly increasing amount of machine learning increments used in
productive operation, requiring larger and more flexible functionalities in terms of
data and workflow management, interfaces and monitoring of data and models.

Finally, machine learning requires a high degree of connectivity within the organisation.
This places completely new demands, but also opportunities on IT security, see [Be19]. A
framework that allows flexibility in tooling and methodology while maintaining the integrity
of sensitive data within the organization.

5.2 Defining a MLOps process

In order to overcome the above-mentioned problems and satisfy the requirements, we
propose viewing developing ML applications as a software engineering activity, thus in
need of a software engineering process. We adapt best practices from the Agile as well as
the DevOps movement. Main characteristics areȷ

• Release early, release often

• Short adaption cycles, small safe increments

• Strong version control

• Testing in every stage and automatically

• Automated integration and deployment (CI / CD)

• Reproducible processes and reliable software releases

• End to end responsibility of teams from Dev to Ops

Fig. 1 shows a typical DevOps process which is basis for continuous integration (CI) and
continuous delivery (CD), see also [SWW19].

DevOps

Build Deploy Run

Fig. 1ȷ Typical DevOps process

Software Architecture Best Practices for Enterprise AI 17«



For ML applications the process for continuous development and deployment gets more
complex, because of additional types of artifacts which are subject to changeȷ

(1) Dataȷ A model is chosen, trained and operated upon data, whereas changes in schemes
or attribution can occur any time.

(2) Modelȷ Algorithms, parameters and hyperparameters representing the model behavior
as outcome from experiments and training over time

(«) Codeȷ Primary artifact in classic software engineering including all kinds of source
code, scripts, tests

The idea of Continuous Delivery must adopt these dimensions in order to create a repeatable
and reliable software release process including Machine Learning artifacts. We refer to this
extension of DevOps as MLOps.

Fig. 2 shows the proposed Software Engineering process which is extended by the steps
“Define” and “Train” to deal with above mentioned additional dimensions of data and model.
This way we add following feedback loops to the process in order to integrate central ML
lifecycle stepsȷ

• Define and build a suitable model and adapt based on demo feedback through
experiments

• Include training the model and adapt based on observed model performance

• Retrain an operational model based on new real-life data and performance

• Adapt result of the whole process based on live feedback, preventing model drift

Define Build Train Deploy Run

Adapt based on demo feedback

Adapt based on model performance

Retrain based on new data / data drift / real-life

performance

Adapt based on live feedback

MLOps

Fig. 2ȷ Extension of the DevOps process to proposed MLOps

The resulting process allows reproducible small increments for reliably releasing machine
learning applications in short adaption cycles. This enables managing the additional
dependencies on changing model behavior and data (see problems mentioned in chapter 1)
allowing continuous model training und monitoring model performance in production. In our
opinion, this is crucial for preventing model drifts by iteratively checking for performance
degradation with the ability to re-train the productive model or implement a new one based
on new key assumptions.

17» Yannick Martel et al.



Build Train Deploy Run

Data

Model

Code

Development

sample quality

Training data

quality
Coherence with

dev sample

Data types

Concept drift vs training
data

Predictive

performance and
Bias, Local / global

explanation

Reliability

Predictive

performance
Bias, Local / global

explanations

Anti-spoofing

Predictive

performance and
Bias on validation

sample

Prediction / Explanation

distribution, Bias
monitoring, Model age,

Prediction vs trivial

model

Conform to specs

Performance

Infrastructure test

Conform to specs
Performance

Reliability

Performance and usage

monitoring
Security monitoring

Testing

D
e
v
O

p
s

M
L
O

p
s

Fig. «ȷ Tests in every phase of proposed MLOps process

A specific mention concerns testing, as it is not a step somewhere in the process but is
to be considered as integral part of the engineering procedure. As so, testing should be
carried out in every step on every involved artifact, especially on the model and the data.
Our proposed extension of testing in DevOps is shown in Fig. «ȷ In addition to tests on the
code, there are test targets also for data and the model.

5.3 Cross functional teams and mix of competences

From the perspective of a classic ML lifecycle, the role setting of Business Analysts
together with Data Scientists and Data Engineers is sufficient for conducting a working
ML solution which proves to deliver all required benefits in a simple lab environment. For
industrialization purposes in the context of complex enterprise products additional roles
must be considered. Again, by applying concepts from the DevOps world these roles may
includeȷ Software Developers / ML Engineers, Architects, Project Managers, Designers and
DevOps Engineers. These disciplines should form a cross-functional team and act together,
else we observe the before mentioned problems of delays and friction, as is common in
complex IT projects. This is due to the ownership of different phases of the process (see
Fig. 2) to different roles where results are just handed over. We made good experience by
creating cross functional teams that has experts from every discipline in order to cover the
whole MLOps lifecycle and aim at a common end-resultȷ an application live, serving users
and Business.

Software Architecture Best Practices for Enterprise AI 175



5.4 Reference Architecture for MLOps

In this chapter we propose a data science reference architecture that works as a blueprint
when creating ML solutions using the MLOps approach. This blueprint architecture is part
of an overall Data Analytic architecture with three large blocks, see Fig. ».

• The platform foundations form the common platform elements, providing infrastruc-
ture for the other functions; they address the raw storage, raw processing, software
engineering DevOps tooling and automation, and security;

• The AI, Analytics & BI Foundations provide tools for performing the processing and
analysis of data;

The AI, Analytics & BI Execution block host the custom-made as well as the off-the-shelf
algorithms and applications. The AI, Analytics & BI Foundations contains the MLOps
foundations, which incorporate common building blocks addressing specific dimensions
that form a holistic ML project approach in enterprises. The many commercial or Open
Source products and tools address one or more blocks. In this MLOps foundations, we
identify the following functional areasȷ

• An AI Marketplace allows to download and incorporate reusable models and AI
libraries, even reusable data sets.

• Analytics Monitoring to supervise models in development and production in order to
prevent model drifts or install a trigger on when re-training is needed.

• Analytics Orchestration provides management of data pipelines as well as mechanisms
for serving of models and testing them.

• The Data Science Workbench is the development environment for data scientists
including management of experiments

• The Model Repository enables the management of the whole lifecycle of machine
learning models and stores the various versions together with metadata

• The Data Modelling enables data preparation and features engineering

On the right side of Fig. », we located the AI, Analytics & BI Execution which describes
platforms solutions that encapsulate and hide many or all the building blocks from the
left side in order to deliver ready-to-use AI services for users who don’t want to deal with
connecting single blocks to the solution themselves. Examples are AI Platform as a Service
or API as a Service offerings by Cloud vendors. These products are often referred to as
low-code platforms. Following functional areas includeȷ

• Custom exploration providing fixed toolsets for preparation and gaining insights into
several kinds of datasets.

176 Yannick Martel et al.



AI, Analytics & BI 
Execution

AI, Analytics & BI Foundations

AI Marketplace

Analy�cs Monitoring

Data Modeling

Data Science Workbench

Model Repository

Analy�cs Orchestra�on

Prepare data for algorithm

Manage exposi�on - Load dynamic balancing

Manage performance and provide observability

Exact reproducibility - Reversibility

Reusable models & processes

AI Studio

Platform Foundation

CI/CD
Code & artefacts

repository

Microservice /

Container fram.
API frameworkEdge integra�on

Custom
applica�ons

Custom AI Services

Custom explora�on

Fig. »ȷ Reference Architecture containing MLOps-related building blocks

• Custom applications that offering predefined AI solutions for a certain scope of
business aspects

• Custom AI Services that can be called to process AI tasks as part of a broader business
solution or product.

Platform Foundation forms the bottom part of the proposed architecture defining building
blocks that relate to infrastructure and cross-functional aspectsȷ

• CI/CD platform allowing to implement the proposed MLOps process chain in order
to supply repeatable and reproducible results

• Code and artefacts repository facilitating version control of model data and code

• Edge integration enabling us to include local computing-, sensor- and other IoT-devices
in our AI solution

• Microservice / container framework as a standardized execution environment

• API framework that supports the microservice approach in encapsulating and providing
access to AI functionality

5.5 Choosing the right Architecture Approach

We discuss different scenarios on how the before mentioned Architecture can be used to
choose an approach for creating AI solutions in a concrete environment, see Fig. 5. A

Software Architecture Best Practices for Enterprise AI 177



first question addresses the ability to create IT-based solutions and understand underlying
mathematical and technical mechanisms. Organizations that have teams with such a
background can pursue the Code-first approach and take over the responsibility to create
and deliver suitable business benefits on their own. A Low-code approach on the other hand
offers products and platforms suitable for non-developers such as business-minded citizen
data scientists but come with higher vendor dependency and limited solution space.

The second dimension describes to what extent the used building blocks can be customized
and their associated flexibility and adaptability. Platform as a Service (PaaS) solutions
offer a great variety of ready-made solutions but are limited when they must be adapted
to different usage scenarios. They also lock you into a proprietary solution with more or
less proprietary interfaces. Going direct over an infrastructure, either on the cloud or on
premise provides more flexibility and offer a greater accuracy to fit to the needed solution.
Unfortunately, it comes with much higher efforts to form the appropriate product, and
require stronger expertise in architecture, development, tuning and operations.

There is no “right choice” here and we hope the simple diagram can help make the first
step for making a choice in each case – or choosing to combine approaches for an optimal
combination.

Low-code Code-first

Platform as a
Service Cloud

Infrastructure
Cloud /On premise

Highest vendor dependency
Non-tech teams – Buy off-the-shelf product

Using cloud pla�orm APIs for maximum developer 
agility – Anybody can be a coder

Low development and Data Science exper�se
High infra & ops exper�se needed– Danger zone!

Maximum flexibility, on your own – when you know
what’s best for you

Fig. 5ȷ Scenarios when adopting AI solutions

5.6 Summary of best practices

The discussed best practices from this chapter can be summarized by again using the
before mentioned problem categoriesȷ ‘Organizational’, ‘procedural’ and ‘architectural’.
Organizational best practices start with governance and leadershipȷ It is necessary to align a
cross-functional project team and establish a common vision, but also to solve differences
with respect to skills, practices, tools and environments that are used. In addition, data
protection and security, ethical principles or legal factors such as GDPR play an important
role that is often underestimated.

Second, as the process for continuous development and deployment is getting more complex
for ML applications, we advise to combine elements from both, the Agile as well as
the DevOps movement. Therefore, we proposed a process that allows reproducible small
increments for reliably releasing ML applications in short adaption cycles.

Last, a sound reference architecture as well as architectural approach complete the picture.
The building blocks for this consist of the “platform foundations” that provide the infras-

178 Yannick Martel et al.



tructure for other functions, the “AI, Analytics & BI Foundations” that provide the tools for
performing the processing and analysis of data, and the “AI, Analytics & BI Execution”
block that hosts the custom-made as well as off-the-shelf algorithms and applications.

6 Conclusions and future research

The analysis of cases presented in section » and the extraction of best practices by chapter 5
provides a consolidated set of reusable templates for approaching architectural challenges
in large AI projects as well as a general set of pitfalls that need to be considered during
realizing such projects.

Moving machine learning to production is necessary to avoid the Death Valley of technologies
which were the latest hype one day but failed to fulfill their promises. ML has high potential
and can transform an organization into a leader in its field, as it has done with Google,
Amazon, Netflix, but also Experian and Amex. These organizations did not become leaders
because they were the first or because they lacked competition – they did because at the core,
they developed the expertise of applying machine learning each to its field. As organizations
are struggling to succeed on their markets and overcome competition, machine learning has
the potential to improve their chances for success.

As we have shown through the examples, many organizations are experimenting and doing
true innovation – that is doing new things and bringing them to serve – with machine
learning in production. Tools and processes are not yet mature, but they are improving fast.
Software engineering is providing solid foundations and making the Agile organization
a reality. The case studies of this report and the experiences of the authors show that
combining practice of software engineering and machine learning can realize enterprise
grade solutions in a industrialized fashion like we are used to through DevOps.

Many of the above-mentioned case studies where in dedicated environments. You can go
a long way with Open Source, but cloud platforms and commercial products are easier
paths, especially if you are in a hurry and/or do not have the full technical competencies.
Both ways have (dis-) advantages. However, the ability to integrate new and updated Open
Source tools is a key requirement in view of the rapid development ongoing in this field.
Cloud adoption will probably hugely facilitate the move of machine learning to production
by providing easy access to supporting tools with low administration or installation effort.
Even then, the dominant factor in the maturation of machine learning in production will be
the confirmation and the democratization of best practices, dedicated tools and architecture
patterns, based on the first experiences.

In future research, our model could be extended by considering commercial cloud vendors
for AI or mixing with Open Source and other cloud vendor tools. First insights suggest that
considering wide use of Open Source may increase the control of the overall architecture (and
therefore solution fitting accuracy), while the collaborative support of large or distributed

Software Architecture Best Practices for Enterprise AI 179



teams might be easier on commercial platforms. Especially when it comes to platform
foundations and AI execution, commercial platforms seem to add significant value for
ML projects compared to a “traditional” Open Source setup, often seen in pure DevOps
solutions. Experience has yet to be gained here and should be topic for further research
activity.

References

[Be19] Ben Zid, I.; Parekh, M.; Waedt, K.; Lou, X.ȷ The application of Articial
Intelligence for Cyber Security in Industry ».0. In (Draude, C.; Lange, M.;
Sick, B., eds.)ȷ INFORMATIK 2019ȷ 50 Jahre Gesellschaft für Informatik –
Informatik für Gesellschaft (Workshop-Beitrčge). Gesellschaft für Informatik
e.V., Bonn, pp. 255–260, 2019.

[Ch19] Chircu, A.; Sultanow, E.; Baum, D.; Koch, C.; Seßler, M.ȷ Visualization and
Machine Learning for Data Center Management. In (Draude, C.; Lange, M.;
Sick, B., eds.)ȷ INFORMATIK 2019ȷ 50 Jahre Gesellschaft für Informatik –
Informatik für Gesellschaft (Workshop-Beitrčge). Gesellschaft für Informatik
e.V., Bonn, pp. 2«–«5, 2019.

[Ch20] Chircu, A.; Sultanow, E.; Hain, T.; Merscheid, T.; Özcan, O.ȷ Real-Time «D
Visualization of Queues with Embedded ML-Based Prediction of Item Pro-
cessing for a Product Information Management System. In (Zimmermann, A.;
Howlett, R. J.; Jain, L. C., eds.)ȷ Human Centred Intelligent Systems. Springer
Singapore, Singapore, pp. «»7–«58, 2020.

[Ha18] Hazelwood, K.; Bird, S.; Brooks, D.; Chintala, S.; Diril, U.; Dzhulgakov, D.;
Fawzy, M.; Jia, B.; Jia, Y.; Kalro, A.; Law, J.; Lee, K.; Lu, J.; Noordhuis, P.;
Smelyanskiy, M.; Xiong, L.; Wang, X.ȷ Applied Machine Learning at Facebookȷ
A Datacenter Infrastructure Perspective. Inȷ 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). Pp. 620–629,
2018.

[HD17] Hermann, J.; Del Balso, M.ȷ Meet Michelangeloȷ Uber’s Machine learning
platform, Sept. 5, 2017, urlȷ https://eng.uber.com/michelangelo-
machine-learning-platform/.

[Sc15] Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips, T.; Ebner, D.;
Chaudhary, V.; Young, M.; Crespo, J.-F.; Dennison, D.ȷ Hidden Technical Debt
in Machine Learning Systems. In (Cortes, C.; Lawrence, N. D.; Lee, D. D.;
Sugiyama, M.; Garnett, R., eds.)ȷ Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., pp. 250«–2511, 2015, urlȷ http:
//papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-

learning-systems.pdf.

180 Yannick Martel et al.

https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


[SWW19] Sato, D.; Wider, A.; Windheuser, C.ȷ Continuous Delivery for Machine Learn-
ing, martinFowler.com, Sept. 19, 2019, urlȷ https://martinfowler.com/
articles/cd4ml.html.

[Wh19] White, A.ȷ Our Top Data and Analytics Predicts for 2019, Gartner Blog
Network, Jan. «, 2019, urlȷ https://blogs.gartner.com/andrew_white/
2019/01/03/our-top-data-and-analytics-predicts-for-2019.

Software Architecture Best Practices for Enterprise AI 181

https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://blogs.gartner.com/andrew_white/2019/01/03/our-top-data-and-analytics-predicts-for-2019
https://blogs.gartner.com/andrew_white/2019/01/03/our-top-data-and-analytics-predicts-for-2019

