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NN2SQL: Let SQL Think for Neural Networks

Maximilian E. Schüle1, Alfons Kemper2, Thomas Neumann3

Abstract: Although database systems perform well in data access and manipulation, their relational
model hinders data scientists from formulating machine learning algorithms in SQL. Nevertheless,
we argue that modern database systems perform well for machine learning algorithms expressed in
relational algebra. To overcome the barrier of the relational model, this paper shows how to transform
data into a relational representation for training neural networks in SQL: We first describe building
blocks for data transformation in SQL. Then, we compare an implementation for model training using
array data types to the one using a relational representation in SQL-92 only. The evaluation proves
the suitability of modern database systems for matrix algebra, although specialised array data types
perform better than matrices in relational representation.
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1 Introduction

Modern database systems generate code to achieve a nearly hard-coded performance. In
pipelined processing, code-generation eliminates interpreted function calls, so that the
generated machine code processes data in-place of CPU registers. Together with modern
hardware trends leading to a performance increase of database servers, code-generation
allows database systems to take over more complex computations. One example for complex
computations is the emergence of machine learning [Bu22] to solve several tasks such
as image classification or even replacing database system’s components [He22; MD22].
These tasks rarely happen within database systems but in external tools [Re22; WP22]
requiring the data to be extracted from database systems [Na22]. Thus, current research
mostly focuses on eliminating the extraction process [Bu20; Ma15; Sc21a; SK22; WGR20]
and developing systems that combine data management and machine learning [Ra18]. In
contrast, in this paper, we argue that code generation allows database systems to perform
well for machine learning when training neural networks [WH21] based on matrix algebra
in SQL only [MAF21; OVZ22; Sa22; Sc19; Sc21d].

In a previous study, we stated that training neural networks in SQL is possible as long as the
database system provides an array data type and recursive tables for gradient descent [Sc21c].
However, the use of an array as a nested data type interferes with the first normal form
(referring to the definition of arrays as a non-atomic data type) and requires copying the data
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Fig. 1: Tabular and relational representation of matrices in database systems: the latter is used in this
study for representing the weights and training neural networks.

between operations. Instead, to process data in-place of CPU registers, we suggested an array
backend for code-generating database systems [Sc21b], which stores matrices in a relational
representation (cf. Figure 1). This representation stores arrays in normal formwith the indices
and the elements as table attributes [Sc22]. In a vision paper, Blacher et al. [Bl22] combined
our both approaches to show that recursive CTEs (common table expressions) [DMG22]
can deal with matrices in relational representation as input. Nevertheless, their study was
limited to logistic regression using matrix algebra and no study has benchmarked training
neural networks in SQL without further extensions such as arrays before.

In this paper, we even argue that the relational representation allows database systems
to efficiently process the computations along with neural networks. Therefore, this paper
uses the relational representation of matrices to train neural networks. We first describe
the mathematical background for reverse mode automatic differentiation that is needed to
understand the individual matrix operations. We then discuss the intuitive implementation
in Python and deduce an implementation in SQL using the relational representation. This
includes building blocks for data transformation using one-hot-encoding, matrix/Hadamard
product and recursive tables to imitate procedural loops. The evaluation compares the
relational representation to the use of array data types within the Umbra database system.
An implementation in Python provides the baseline, whose runtime is compared with regard
to the batch size and the size of the hidden layer. We conclude with an outlook on optimising
recursive tables for this context and on automatically generating the proposed queries.

2 Machine Learning in SQL

This section first describes the theoretical background for training neural networks and
names the variables, which are later used to name the CTEs. Each variable represents one
cached expression computed in the forward pass on function evaluation or in the backward
pass on deriving the weight matrices. To discuss the derivation rules, we exemplary choose
a neural network with one hidden layer. Although this limits the number of hidden layers,
the derivation rules can be applied similarly to deep neural networks with further weight
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Algorithm 1 Automatic Differentiation (Matrices)
1: function derive(𝑍, 𝑠𝑒𝑒𝑑)
2: if 𝑍 = 𝑋 + 𝑌 then derive(𝑋 ,𝑠𝑒𝑒𝑑); derive(𝑌 ,𝑠𝑒𝑒𝑑)
3: else if 𝑍 = 𝑋 ◦ 𝑌 then derive(𝑋 ,𝑠𝑒𝑒𝑑 ◦ 𝑌 ); derive(𝑌 ,𝑠𝑒𝑒𝑑 ◦ 𝑋)
4: else if 𝑍 = 𝑋 · 𝑌 then derive(𝑋 ,𝑠𝑒𝑒𝑑 · 𝑌𝑇 ); derive(𝑌 ,𝑠𝑒𝑒𝑑𝑇 · 𝑋)
5: else if 𝑍 = 𝑓 (𝑋) then derive(𝑋 ,𝑠𝑒𝑒𝑑 ◦ 𝑓 ′(𝑋))
6: else 𝜕

𝜕𝑍
← 𝜕

𝜕𝑍
+ 𝑠𝑒𝑒𝑑

7: end if
8: end function

matrices in-between. Thus, the limitation keeps the example short enough to present the
implementations in SQL.

2.1 Theoretical Background

Neural networks consist of subsequently applied matrix multiplications each followed by
an activation function. They transform an input vector 𝑥 with 𝑚 attributes into a vector
of probabilities for 𝑙 categories. With one hidden layer of size ℎ, we gain two weights
matrices 𝑤𝑥ℎ ∈ R𝑚×ℎ and 𝑤ℎ𝑜 ∈ Rℎ×𝑙 . The first one computes the vector 𝑎𝑥ℎ ∈ Rℎ for the
hidden layer, the second one the result vector 𝑎ℎ𝑜 ∈ R𝑙 . Each activation function returns a
normalised value (e.g. 𝑠𝑖𝑔(𝑥) ∈ [0, 1], Equation 1) that is interpreted as the probability per
category. The result vector is compared to the one-hot-encoded categorical label (𝑦𝑜𝑛𝑒𝑠).
The difference is elementwisely taken to the power of two (�◦2), which is called mean
squared error, a common loss function (Equation 3).

𝑠𝑖𝑔(𝑥) = (1 + 𝑒−𝑥)−1, (1)

𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) = 𝑠𝑖𝑔(

𝑎𝑥ℎ︷         ︸︸         ︷
𝑠𝑖𝑔(𝑥 · 𝑤𝑥ℎ) ·𝑤ℎ𝑜)︸                       ︷︷                       ︸

𝑎ℎ𝑜

, (2)

𝑙 (𝑥, 𝑦𝑜𝑛𝑒𝑠) = (𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) − 𝑦𝑜𝑛𝑒𝑠)◦2. (3)

After computing the loss, reverse mode automatic differentiation computes the derivatives
per weight matrix in one pass. This mode derives a function 𝑓 (𝑔(𝑙)) by decomposing and
partially deriving its parts in top-down order: 𝜕 𝑓 (𝑔 (𝑙))

𝜕𝑙
=

𝜕 𝑓

𝜕𝑔
· 𝜕𝑔

𝜕𝑙
. Alg. 1 shows reverse

mode automatic differentiation for matrices [Mu17]: The function DERIVE takes as input an
arithmetic expression 𝑍 and a seed value 𝑠𝑒𝑒𝑑 (the parent partial derivation). The algorithm
follows pattern matching on the arithmetic expression 𝑍 to compute and further propagate
the partial derivatives until arriving at a leaf node.

By step-wise applying the derivation rules, we obtain the expression tree shown in Fig-
ure 2. The derivative of mean squared error calculates the difference between propagated
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probabilities and the one-hot-encoded labels (Equation 4). This value gets propagated as
initial seed value. Each seed value is elementwise multiplied to each partial derivation, so
either the derivation of each activation function (Equation 5, 7) or the matrix multiplication
(Equation 6). Finally, the derivation of each weight matrix times the learning rate 𝛾 is
subtracted from the weight matrix to form the updated weights (Equation 8, 9).

𝑙ℎ𝑜 = 2 · (𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) − 𝑦𝑜𝑛𝑒𝑠), (4)

𝛿ℎ𝑜 = 𝑙ℎ𝑜 ◦ 𝑠𝑖𝑔′(𝑎ℎ𝑜) = 𝑙ℎ𝑜 ◦ 𝑎ℎ𝑜 ◦ (1 − 𝑎ℎ𝑜), (5)

𝑙𝑥ℎ = 𝛿ℎ𝑜 · 𝑤𝑇
ℎ𝑜, (6)

𝛿𝑥ℎ = 𝑙𝑥ℎ ◦ 𝑠𝑖𝑔′(𝑎𝑥ℎ) = 𝑙𝑥ℎ ◦ 𝑎𝑥ℎ ◦ (1 − 𝑎𝑥ℎ), (7)

𝑤′ℎ𝑜 = 𝑤ℎ𝑜 − 𝛾 · 𝑎𝑇𝑥ℎ · 𝛿ℎ𝑜, (8)

𝑤′𝑥ℎ = 𝑤𝑥ℎ − 𝛾 · 𝑥𝑇 · 𝛿𝑥ℎ . (9)

(𝑠𝑖𝑔(𝑠𝑖𝑔(𝑥 · 𝑤𝑥ℎ) · 𝑤ℎ𝑜) − 𝑦𝑜𝑛𝑒𝑠)◦2

�◦�

− 2

𝑠𝑖𝑔 𝑦𝑜𝑛𝑒𝑠

·

𝑤ℎ𝑜𝑠𝑖𝑔

·
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Fig. 2: Automatic differentiation for (𝑚𝑤𝑥ℎ ,𝑤ℎ𝑜
(𝑥) − 𝑦𝑜𝑛𝑒𝑠)◦2.

2.2 Implementation in Python and SQL-92

Having defined the equations for training a neural network, we can deduce a Python
implementation (List. 1) that uses NumPy for data loading (line 3), transformation (lines 4-8)
and generating randomised weights (lines 10-12). Afterwards, a procedural loop (line 14)
performs gradient descent that updates the weights according to the derivation rules in each
iteration (lines 15-24). So each variable represents one equation needed to backpropagate
the loss.

In order to update the weight matrices of neural networks in SQL, we need to map
matrix multiplication (𝑋 · 𝑌 ), function application ( 𝑓 (𝑋)) and elementwise operations
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(addition: 𝑋 + 𝑌 , Hadamard multiplication 𝑋 ◦ 𝑌 ) to the relational representation in SQL.
For binary elementwise operations such as Hadamard multiplication or addition/subtraction,
a join on the indices combines both tables so that the arithmetic operation is part of the
select-clause. Multiplication of two matrices 𝑚 ∈ R𝑚×𝑜 and 𝑛 ∈ R𝑜×𝑛 with equal inner
dimensions is defined as the sum of the product over 𝑜 row/column elements for each
entry (𝑚 · 𝑛)𝑖 𝑗 =

∑𝑜
𝑘=1 𝑚𝑖𝑘𝑛𝑘 𝑗 . In relational algebra, this means a join on the inner index,

followed by a summation: 𝛾𝑚.𝑖,𝑛. 𝑗,𝑠𝑢𝑚(𝑚.𝑣 ·𝑛.𝑣) (𝑚 ⊲⊳𝑚. 𝑗=𝑛.𝑖 𝑛). To transpose a matrix in
relational representation, only the indices have to be renamed. The corresponding SQL
building blocks are shown in List. 3 with their NumPy counterparts in List. 2.
1 import numpy as np

2 # load data

3 arr = np.loadtxt("iris.csv", delimiter=",", dtype=float,skiprows=1)
4 X = arr[:,0:4]/10

5 y = arr[:,4].astype(int)
6 # one-hot-encode y

7 y_oh = np.zeros((y.size, y.max()+1))
8 y_oh[np.arange(y.size),y] = 1 # one-hot-encode: set one

9 # initialise weights

10 np.random.seed(1)

11 w_xh = 2*np.random.random((X[0].size,20)) - 1 # size: 4*20

12 w_ho = 2*np.random.random((20,3)) - 1 # size: 20*3

13 # train

14 for j in range(10):
15 print("Iteration: " + str(j))
16 a_xh = 1/(1+np.exp(-np.dot(X,w_xh))) # sigmoid(x*w_xh)

17 a_ho = 1/(1+np.exp(-np.dot(a_xh,w_ho))) # sigmoid(a_xh*w_ho)

18 l_ho = 2*(a_ho - y_oh)

19 print("Loss: " + str(np.mean(np.abs(l_ho))))
20 d_ho = l_ho * a_ho * (1-a_ho)

21 l_xh = d_ho.dot(w_ho.T)

22 d_xh = l_xh * a_xh * (1-a_xh)

23 w_ho -= 0.01 * a_xh.T.dot(d_ho)

24 w_xh -= 0.01 * X.T.dot(d_xh)

List. 1: Training a neural network with NumPy.

1 m.dot(n) # matrix multiplication

2 m * n # hadamard multiplication

3 1/(1+np.exp(-m)) # sigmoid function

4 m.T # transpose

List. 2: Building blocks for matrices in NumPy.

1 -- create two matrices m and n

2 create table m (i int, j int, v float); create table n (i int, j int, v float);
3 insert into m ...

4 -- matrix multiplication

5 select m.i, n.j, SUM(m.v*n.v)) from m inner join n on m.j=n.i group by m.i, n.j

6 -- hadamard multiplication

7 select m.i, m.j, m.v*n.v from m inner join n on m.i=n.i and m.j=n.j

8 -- sigmoid function

9 select i, j, 1/(1+exp(-v)) from m;

10 -- transpose

11 select i as j, j as i, v from m;

List. 3: Building blocks for matrices in SQL-92.

NN2SQL: Let SQL Think for Neural Networks 187
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Fig. 3: Transformation of the original data set into the relational representation.

To train the neural network in SQL, we first have to convert the data into the relational
representation (List. 4). Therefore, we create a table of two indices and a value corresponding
to the two-dimensional feature matrix (img: {[𝑖, 𝑗 , 𝑣]}, line 3). We assign a column index 𝑗

to each attribute of the original input table (lines 5-8) and use the row number as index 𝑖.
Afterwards, we one-hot-encode the label: We generate a sparse matrix containing only the
one values (line 11) and a matrix shape—defined by all indices within the dimensions—out
of null values (lines 12-14). Then, an outer join (lines 11/15) combines both tables and
assigns zero to missing values (coalesce: line 10).
1 create table if not exists iris (id serial, sepal_length float, sepal_width float, petal_length float,

petal_width float, species int);
2 copy iris from './iris.csv' delimiter ',' HEADER CSV;

3 create table if not exists img (i int, j int, v float);
4 create table if not exists one_hot(i int, j int, v int);
5 insert into img (select id,1,sepal_length/10 from iris);

6 insert into img (select id,2,sepal_width/10 from iris);

7 insert into img (select id,3,petal_length/10 from iris);

8 insert into img (select id,4,petal_width/10 from iris);

9 insert into one_hot(

10 select n.i, n.j, coalesce(i.v,0), i.v

11 from (select id,species+1 as species,1 as v from iris) i right outer join
12 (select a.a as i, b.b as j from
13 (select generate_series as a from generate_series(1,select count(*) from iris)) a,

14 (select generate_series as b from generate_series(1,4)) b

15 ) n on n.i=i.id and n.j=i.species order by i,j);

List. 4: Data transformation: Feature matrix img and one-hot-encoded label one_hot.

After having transformed the data, we can create and initialise the weights again in relational
representation. Using generate_series according to the matrix dimensions together with
random, we initialise all required weights matrices.
1 create table if not exists w_xh (i int, j int, v float);
2 create table if not exists w_ho (i int, j int, v float);
3 insert into w_xh (select i.*,j.*,random()*2-1 from generate_series(1,4) i, generate_series(1,20) j);

4 insert into w_ho (select i.*,j.*,random()*2-1 from generate_series(1,20) i, generate_series(1,3) j);

List. 5: Create and initialise weights in SQL-92.

The feature matrix in relational representation forms the input for training the neural
network within a recursive CTE (List. 6) that computes the weights per iteration of gradient
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descent. As we need to compute all weights within the recursive CTE, a unique number (id)
identifies each weight matrix. Thus a union of all weight matrices forms the base case for
the recursion. Within the recursive step, nested CTEs help to evaluate the model (lines 6-15),
to backpropagate the loss (lines 16-29) and to compute the derivative per weight matrix
(lines 30-37). The first CTE w_now—just referring to the original weights—is necessary, as
PostgreSQL only allows one reference to the recursive table. Each following CTE computes
one matrix operation, so either a matrix or a Hadamard multiplication, whose CTE name
refers to the variable name (cf. Section 2.1). Finally, the weights were updated by subtracting
their derivatives (lines 39-41).
1 with recursive w (iter,id,i,j,v) as (

2 (select 0,0,* from w_xh union select 0,1,* from w_ho)

3 union all
4 ( with w_now as ( -- recursive reference only allowed once in PSQL

5 select * from w

6 ), a_xh(i,j,v) as ( -- sig(img * w_xh)

7 select m.i, n.j, 1/(1+exp(-SUM (m.v*n.v)))

8 from img as m inner join w_now as n on m.j=n.i

9 where n.id=0 and n.iter=(select max(iter) from w_now) -- w_xh

10 group by m.i, n.j

11 ), a_ho(i,j,v) as ( -- sig(a_xh * w_ho)

12 select m.i, n.j, 1/(1+exp(-SUM (m.v*n.v)))

13 from a_xh as m inner join w_now as n on m.j=n.i

14 where n.id=1 and n.iter=(select max(iter) from w_now) -- w_ho

15 group by m.i, n.j

16 ), l_ho(i,j,v) as ( -- 2 * (a_ho-y_ones)

17 select m.i, m.j, 2*(m.v-n.v)

18 from a_ho as m inner join one_hot as n on m.i=n.i and m.j=n.j

19 ), d_ho(i,j,v) as ( -- l_ho ° a_ho ° (1-a_ho)

20 select m.i, m.j, m.v*n.v*(1-n.v)

21 from l_ho as m inner join a_ho as n on m.i=n.i and m.j=n.j

22 ), l_xh(i,j,v) as ( -- d_ho * w_hoˆ T

23 select m.i, n.i as j, SUM (m.v*n.v)

24 from d_ho as m inner join w_now as n on m.j=n.j

25 where n.id=1 and n.iter=(select max(iter) from w_now) -- w_ho

26 group by m.i, n.i

27 ), d_xh(i,j,v) as ( -- l_xh ° a_xh ° (1-a_ho)

28 select m.i, m.j, m.v*n.v*(1-n.v)

29 from l_xh as m inner join a_xh as n on m.i=n.i and m.j=n.j

30 ), d_w(id,i,j,v) as (

31 select 0, m.j as i, n.j, SUM (m.v*n.v)

32 from img as m inner join d_xh as n on m.i=n.i

33 group by m.j, n.j

34 union
35 select 1, m.j as i, n.j, SUM (m.v*n.v)

36 from a_xh as m inner join d_ho as n on m.i=n.i

37 group by m.j, n.j

38 )

39 select iter+1, w.id, w.i, w.j, w.v - 0.01 * d_w.v

40 from w_now as w, d_w

41 where iter < 20 and w.id=d_w.id and w.i=d_w.i and w.j=d_w.j

42 )

43 )

44 select * from w;

List. 6: Training a neural network in SQL-92.

NN2SQL: Let SQL Think for Neural Networks 189
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In order to predict the accuracy of the trained weights, an SQL query measures the number
of correctly classified labels (List. 7). Evaluating the model (lines 3-9) returns a vector of
probabilities per tuple and category. The SQL query ranks the predicted probabilities per
tuple (line 2) and the one-hot-encoded vector of the original labels (line 11) to compare
whether the index of the highest probability matches the index of the one value (line 14).
Although window functions were used for the ranking, they could be replaced by an anti-join
using not exists to conform SQL-92.
1 select iter, count(*)::float/(select count(distinct i) from one_hot)

2 from ( select *, rank() over (partition by m.i,iter order by v desc)
3 from ( select m.i, n.j, 1/(1+exp(-sum (m.v*n.v))) as v, m.iter

4 from ( select m.i, n.j, 1/(1+exp(-sum (m.v*n.v))) as v, iter

5 from img AS m inner join w as n on m.j=n.i

6 where n.id=0

7 group by m.i, n.j, iter ) AS m inner join w as n on m.j=n.i

8 where n.id=1 and n.iter=m.iter

9 group by m.i, n.j, m.iter

10 ) m ) pred,

11 (select *, rank() over (partition by m.i order by v desc) from one_hot m) test

12 where pred.i=test.i and pred.rank = 1 and test.rank=1

13 group by iter, pred.j=test.j

14 having (pred.j=test.j)=true
15 order by iter

List. 7: Prediction in SQL:2003 (with window functions).

3 Evaluation

System: Ubuntu 22.04 LTS, 20 Intel Xeon E5-2660 v2 CPU with hyper-threading, running
at 2.20 GHz with 256 GB DDR4 RAM.

We compare the performance of the relational representation for matrices (SQL-92, List. 6)
to their representation as an array data type [Sc21c] (SQL + Arrays). We apply both
representations for use within neural networks in SQL and let the benchmarks4 run in
Umbra [NF20] and PostgreSQL (PSQL) 14.5 [SR86] as target engines. The implementation
with NumPy (List. 1) serves as the baseline. We use two different data sets: Fisher’s Iris
flower data [Fi36] (four attributes, one label) and the MNIST data [CMS12] for image
classification (ten categories, 784 pixels).

3.1 Scaling the Number of Input Tuples

Figure 4 shows the first benchmark on the Iris data set. As we are interested in the
performance numbers and not in the model quality, we replicate the Iris flower data set
for the first benchmark to enable a flexible input size. A neural network with one hidden

4 https://gitlab.db.in.tum.de/MaxEmanuel/nn2sql
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Fig. 4: Runtime for training a neural network with one hidden layer (size 20/50, 10/100/1000 iteration).
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layer is trained to classify the flower category. We vary the size of the training data set, the
number of iterations and the size of the hidden layer. Although the NumPy implementation
outperforms both SQL variants, the performance increase of Umbra with its in-memory
performance in comparison to PostgreSQL is visible. With only four attributes, the overhead
for array operations dominates, so the relational representation performs better than the
array data type for larger input data. Both SQL variants perform better with an increasing
number of tuples per iteration. A small number of input tuples corresponds to a small
batch size, leading to a small number of tuples used during one recursive step. This thwarts
database systems as they excel in batched processing.

3.2 Image Classification

The second benchmark simulates image classification based on the MNIST data set using
a neural network with one hidden layer. We measure the runtime for training one epoch
depending on the batch size. As we can see in Figure 5, database systems perform better the
bigger the batch size is. With a larger batch size, the runtime of the SQL implementations
approximates the one of the baseline implementation. As the MNIST data set contains
more attributes than the latter, the cost for aggregation into arrays is amortised and the
SQL array data type outperforms the relational representation. To conclude, in-memory
database systems are able to carry out matrix operations as required for neural networks.
Nevertheless, use-case-specific optimisations are needed to support smaller batch sizes.

4 Conclusion

This paper has discussed and benchmarked building blocks for training neural networks
in SQL. In order to deduce the necessary SQL queries that represent matrix algebra
for evaluating and training neural networks, we first discussed reverse mode automatic
differentiation to reuse partial derivations. The partial derivations formed the foundation for
nested CTEs. They were cached within a recursive CTE when deriving the weight matrices
to compute the optimal weights. In the evaluation, in-memory enhanced database systems,
i.e. Umbra, showed comparable performance to state-of-the-art libraries used in machine
learning, i.e. NumPy in Python, when training with larger batch sizes only.

Future research is required on optimising recursive CTEs for this use case and on automati-
cally generating the presented queries. As we are using recursion to imitate a procedural
loop, the recursive CTE grows with each iteration. Therefore, the memory consumption
increases per iteration, which restricts the number of iterations and the model size. To
overcome the restrictions, database optimisers should either detect subsequent selections to
eliminate intermediate results within the CTE or output intermediate results to free memory.
Assuming these optimisations, one can use the presented queries to train more complex
models with more weight variables.
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