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Abstract: Most information systems rely on meta data artifacts, such as database
schemas, interface specifications, or view definitions, to store, transform, validate,
and exchange information. Applications that produce and manipulate these meta data
artifacts are complex and hard to build. The goal of model management research is to
develop a set of powerful high-level operators that simplify the programming of such
applications, and increase the productivity of developers by an order of magnitude.
This paper discusses some results and challenges in generic model management based
on a first published dissertation.

1 Introduction

Engineering and deployment of today’s information systems involves a number of meta
data manipulation tasks. To illustrate some of these tasks (in italics below), consider data
integration. A key objective of data integration is to provide a uniform view of heteroge-
neous data sources. To construct a uniform view, source schemas are matched to identify
their similarities and differences. The relevant portions of schemas are extracted and in-
tegrated into a uniform schema. The translation of data from the representation used at
the sources into the representation conforming to the uniform schema is specified using
database transformations, which may be expressed in SQL, XQuery, XSLT or other data
manipulation languages. The queries that are stated against the uniform view are trans-
parently rewritten into queries on sources. As the source schemas evolve, the database
transformations and the uniform schema need to be updated accordingly.
The tasks resembling the ones above arise across a variety of other meta data intensive ap-
plications, which include data warehousing, data extraction, transformation, and exchange,
and peer-to-peer data management. Despite these commonalities, applications that involve
meta data manipulation tasks remain complex and hard to build, due to several reasons:

• Meta data applications are developed using low-level programming interfaces. Such
interfaces typically provide access to the individual elements of meta data artifacts,
such as individual attribute definitions of database schemas. The programming of
meta data applications against such interfaces requires an extensive amount of navi-
gational code and incurs high development and maintenance cost.

• Most approaches are application-specific. That is, reusing the code and infrastructure
developed say for schema evolution to a data integration setting requires a major
customization effort.

• The solutions are language-specific, i.e., are developed for SQL, UML, or XML,
and are not easily portable to other domains. For example, solutions developed for
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managing evolution of database schemas are hard to adapt to managing evolution of
websites.

• No general-purpose platform is available to simplify the development of meta data
tools and applications. The existing general-purpose solutions typically focus on
persistent storage or graphical design environments for meta data artifacts and do not
go far enough to support the developers of meta data applications. In fact, many
of today’s meta data related tasks are still solved manually, because an automated
approach requires too much implementation effort due to the lack of a common pro-
gramming platform.

To address these challenges, Bernstein et al. [BHP00, Ber03] outlined a vision to provide
a truly generic and powerful environment to enable rapid development of meta data inten-
sive applications in different domains. They called this capability generic model manage-
ment. A model is a formal description of a meta data artifact. Examples of models include
database schemas, ontologies, interface specifications, object diagrams, control flow dia-
grams, device models, and form definitions. The manipulation of models usually involves
designing transformations between models. Formal descriptions of such transformations
are called mappings. Examples of mappings are SQL views, XSL transformations, ontol-
ogy articulations, mappings between class definitions and relational schemas, mappings
between two versions of a model, mappings between device specifications and device
functions, etc.
The key idea behind generic model management is to develop a set of algebraic operators
that generalize the transformation operations utilized across various meta data applica-
tions. These operators are applied to models and mappings as a whole rather than to their
individual elements, and simplify the programming of meta data applications. The opera-
tors are generic, i.e., they can be utilized for various problems and different kinds of meta
data artifacts. Some of the major model management operators are:

– Match: semi-automatically create a mapping between two models.
– Merge: merge two models into a third one using a mapping between the two models.
– Extract / Diff: return a portion of a model that participates / does-not-participate in a

mapping.
– Compose: return the composition of two mappings.

Model-management operators can be used for solving schema evolution, data integration,
and other scenarios using short programs, or scripts, which are executed by a model man-
agement system. A high-level architecture of model management is depicted in Figure 1.
The tools that deploy a model management system may maintain models and mappings
in their own repositories, or may exploit the persistence capabilities of the model man-
agement system. The tools remain responsible for the management of model instances,
such as data that resides in operational databases, XML documents, web pages, or device
specifications, and may be capable of executing the mappings, i.e., transforming instances
of one model into instances of another model.
If successful, generic model management may improve programmer productivity for meta
data intensive applications by an order of magnitude. However, the vision for management
of complex models raises many hard questions, such as the ones that were debated in the
VLDB’00 panel [BHJ+00]:
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Figure 1: A high-level architecture of model management

• Is it feasible to develop a generic infrastructure for managing models and mappings?
If so, what would it need to do, beyond what is offered in today’s database manage-
ment systems and repositories?

• Can we devise a useful generic notion of model that treats all popular information
structures as specializations (SQL/XML/OO schemas, UML/ER diagrams, website
maps, make scripts, etc.)?

• Can we produce a generic model manipulation algebra that generalizes transforma-
tion operations developed for data warehousing, integration, and translation?

One of the conclusions of the panel was that realizing the vision of generic model man-
agement would take years of research and that substantial implementation effort and theo-
retical work was required to answer the above questions to the full extent.
The questions raised in the panel set the stage for the first published dissertation on model
management [Mel04]. Its objective was to demonstrate that model management operators
are implementable and useful. The dissertation presents an initial study of the concepts
and algorithms for generic model management. In the next sections, we highlight the key
aspects of this work and discuss some subsequent efforts.

2 Change Propagation: a Ubiquitous Scenario

To illustrate the model management approach, consider a change propagation scenario.
Initially, we have a “source” schema 1 whose instances are mapped to a “destination”
schema d1 by way of the mapping 1 d1 (see Figure 2). Subsequent changes of the source
schema need to be propagated to the destination schema. This scenario surfaces in data
exchange (where 1 is the schema of the operational database and d1 is the exchange
schema), data integration (where 1 is a local schema and d1 is the integrated schema),
data warehousing (where 1 and d1 are the schemas of the warehouse and a data mart), and
other settings. The mapping 1 d1 may be given as a view definition or, more generally,
as a set of constraints that hold between 1 and d1.
Suppose that 1 changes to 2. The change is described by the view 1 2 that defines 2
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Figure 2: Propagating changes by the view 1 2

in terms of 1. Our goal is to obtain an updated version d2 of d1, and the mappings d1 d2

and 2 d2 that relate the new versions of the schemas to the old ones. Mapping d 1 d2 tells
us how to migrate the data from d1 to d2, while 2 d2 is the updated version of the input
mapping 1 d1. Using the model-management operators, the solution can be obtained by
executing the script shown below. The operators used in the script take models and map-
pings as input, and produce models and mappings as output; some operator invocations
are nested:

script PropagateChangesByView( 1 , d1, 2, 1 d1, 1 2)
1. d1 2 = Invert( 1 d1) ◦ 1 2;
2. 〈 d1 〉 = Extract(d1 d1 2);
3. 〈n d1 n〉 = Diff(d1 Invert( 1 d1));
4. 〈d2 d2 d2 n〉 = Merge( n Invert(d1 ) ◦ d1 n);
5. d1 d2 = (d1 ◦ Invert(d2 )) ⊕ (d1 n ◦ Invert(d2 n));
6. 2 d2 = Invert(d1 2) ◦ d1 d2;
7. return 〈d2 2 d2 d1 d2〉;

To explain the intuition behind the operators and the above solution, assume that all
schemas are relational, and that schema 1 contains the relations R , schema 2 con-
tains R U and so on as shown in Figure 2. Further, suppose that each mapping asserts
that relations with equal names have equal extents, i.e., the mapping 1 d1 specifies that
relations R of 1 are copies of relations R of 2, etc. Thus, to obtain d2, we

• “extract” the relations of d1 that are still connected to some relations in the modified
schema 2, and obtain as {R} = {R U} ∩ {R } (Line 2);

• compute the “difference” n between d1 and 1 as {U} = {R U} − {R } to
determine the relations to be kept in the updated schema d2 (Line 3); and finally,

• “merge” and n to get d2 (Line 4).

In our example, the script propagates the deletion of relation from the source schema to
the destination schema, as expected. The remaining lines of the script deal with producing
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Figure 3: Architecture of the Rondo prototype

the correct mappings between the schemas using the operators Compose (◦), Confluence
(⊕), and Invert.
Using the model-management operators, we were able to solve a challenging meta data
management problem using seven lines of code, instead of the typical hundreds of lines.
The solution script is language-independent, i.e., it factors out the specific schema and
mapping languages. Thus, the solution developer can focus on the fundamental properties
of the problem, and can reuse the solution across applications and domains.

3 Rondo: A Programming Platform for Model Management

To run the scripts such as the one presented in the previous section, we implemented
the first prototype of a programming platform for model management, called Rondo
[MRB03b]. The prototype supports the execution of model management scripts that are
written using high-level operators, which manipulate models and mappings as first-class
objects. In prior work, e.g., in [BHP00, BR00], detailed walkthroughs of various model-
management problems have been examined to address the question of whether meta data
management can be done in a generic fashion. Our contribution is that we succeeded in
making such abstract programs executable.1

Rondo supports several schema languages, including relational and XML schemas, and
simple mappings, called morphisms. Conceptually, a morphism is a set of arcs connecting
the elements (e.g., relational tables, XML types) of two schemas. Clearly, a morphism is a
weaker representation of a transformation between two models than an SQL view or a set
of constraints. Morphisms are useful in metadata applications that do not require instance
transformations, such as dependency tracking, model translation (e.g., UML to IDL or ER
to SQL), and impact analysis. Furthermore, morphisms can represent mappings between
different kinds of models (e.g., between a relational and XML schema), can always be
inverted and composed, and can be implemented and manipulated easily.
Rondo implements all model-management operators suggested to date in the literature,
and offers a graphical user interface for displaying and editing morphisms. Its architecture

1The source code and sample scripts of Rondo are available at http://www-db.stanford.edu/∼modman/rondo/
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is shown in Figure 3. The central component is an interpreter that executes scripts. The
interpreter can be run from the command line or invoked programmatically by external
applications and tools. Its main task is to orchestrate the data flow between the operators.
The operators can be defined either by providing a native implementation, or by means of
model-management scripts. Models and mappings are represented as structured objects in
a common meta-meta-model and can be stored in a DBMS or file system. The operators
are defined in terms of transformations of these structured objects.
In designing and implementing our prototype, we consciously focused on simplicity. We
investigated how far we can go with a comparatively weak representation of models and
mappings that can be used to solve an interesting class of problems. We also deter-
mined how much code is needed for a basic, but still useful, model management sys-
tem. We showed that introducing a new model type like SQL DDL schemas in our pro-
totype requires a moderate programming effort, but brings a large new class of model-
management tasks within reach. The usefulness of the operators was studied in several
model-management scenarios, such as change propagation and reintegration [MRB03a].

4 Match and Similarity Flooding Algorithm

Although many model-management tasks can be automated, there remain critical places
where human decision-making is needed, e.g., to address the semantic heterogeneity. The
operator Match, which establishes correspondences between models, inherently does not
have formal semantics and is among the most difficult to automate. It gives us what we
know about the relationship between models in the context of a particular application.
Sometimes this relationship can be discovered semi-automatically [RB01] but ultimately
Match depends on human feedback (and hence may be partial or even inaccurate). For
example, it is likely that the input mapping 1 2 from Section 2 can be obtained auto-
matically with high accuracy if 2 is a minor modification of 1. In contrast, matching two
independently developed schemas is closer to a computer-aided design task [BMPQ04].
In [MGMR02], we present an algorithm called Similarity Flooding (SF) that can be used
for matching diverse data structures and is utilized for implementing the operator Match in
the Rondo prototype. The input models are represented as directed labeled graphs and are
used in an iterative fixpoint computation whose results tell us which nodes in one graph
are similar to nodes in the second graph. For computing the similarities, we rely on the
intuition that elements of two distinct models are similar when their adjacent elements are
similar. Over a number of iterations, the initial similarity of any two nodes propagates
through the graphs.
Usually, for every element in the matched models, the SF algorithm delivers a large set
of match candidates. Hence, the immediate result of the fixpoint computation may still
be too voluminous for many matching tasks. We examined several filters that can be used
for choosing the best match candidates from the list of ranked matches returned by the SF
algorithm. After filtering, a human is asked to verify and if necessary adjust the results.
We suggested a novel accuracy metric that measures the quality of SF and other automatic
schema matching algorithms by counting the number of the needed adjustments.
With help of the members of the Stanford Database Group, we conducted a user study to
evaluate the effectiveness of our algorithm and to determine the fixpoint formula and the
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filters that perform well. A discussion of the general issues with evaluating the perfor-
mance of matching algorithms is presented in [DMR02].
We demonstrated the applicability of the SF algorithm for several matching tasks and ex-
amined its basic computational properties. Since its appearance in [MGMR02], variants
and extensions of the algorithm were used for matching diverse artifacts including ontolo-
gies, web services, metabolic pathways, and synopses of medical images.

5 Operator Semantics: Leveraging Established Database Problems

The Rondo prototype was instrumental to clarify the intuition behind the model-
management operators and to show that the operators are useful for solving practical prob-
lems. However, it does not tell the whole story, mainly because morphisms is a very
limited mapping language. And yet, the purpose of many model-management scripts is
to generate mappings that drive data migration, message translation, or database wrap-
ping. Such mappings transform instances of models. How does a developer know that a
script generates mappings that transform instances as expected? When designing a model-
management system, how do we know that our operator implementation is correct? The
answers require an understanding of the relationship between the models and mappings re-
turned by each operator and the transformations expressed by those mappings on the states
of those models. That is, a formal semantics for the operators is needed to explain what
outputs should be produced if the input mappings are SQL views, XSL transformations,
database constraints, etc.
Developing such semantics, which we call state-based semantics, is the subject of [Mel04,
Part II]. We assume that a model denotes a set of states, or instances. For example, a
relational schema denotes a set of database states; an XML schema denotes a set of XML
documents; a workflow definition denotes a set of workflow instances; a programming
interface denotes a set of implementations that conform to the interface. A mapping is a
relation on instances. Thus, a mapping between two database schemas is a binary relation
on the database states of these schemas, a mapping between XML schemas is a relation on
XML documents, a data exchange mapping that generates XML messages from relational
databases is a total function that assigns an XML document to each database state, etc.
The state-based operator semantics is defined by imposing constraints on the output mod-
els (sets of instances) and mappings (relations on instances). For example, the operator
Compose (◦) is defined as a set-theoretic composition of mappings:

1 2 ◦ 2 3 := {( z) | ∃y(( y) ∈ 1 2 ∧ (y z) ∈ 2 3}

Operator Compose generalizes query composition and view unfolding. It is equivalent
to view unfolding when 1 2 is a view on 1 and 2 3 is a query on 2, i.e.,
both are functional mappings. Other basic operators, such as Domain, Range, or Invert,
have analogous natural definitions. To define the more complex operators, we exploit and
generalize some other well-known problems studied in the database literature:

• The Extract operator builds on the problems of view selection in data warehous-
ing [ACN00, CHS01, LBU01, TLS01], and finding exact rewritings for answering
queries using views [CGLV05, Hal01]. Intuitively, to “extract” a portion of a schema
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means to construct a schema that has the same query-answering capability as the
original one for a given query workload. As a generalization of query workload, the
operator takes as input an arbitrary mapping.

• The Merge operator is based on the desiderata put forth in schema and view inte-
gration [SP94, BDK92, Len02, AB01, PB03]. Intuitively, to “merge” two (view)
schemas connected by a mapping means to construct a non-redundant schema that al-
lows performing all queries and updates that can be done on the input (view) schemas.
The operator covers a general case in which the input mapping may be not conflict-
free, or inconsistent [BC86, LM98].

• The Diff operator exploits the view complement problem [BS81, LV03]. Two views
are complementary if given the state of each view, there is a unique correspond-
ing state of the source database. That is, if the two views are materialized then the
database can be reconstructed from the views. Intuitively, “difference” is a portion
of a model that complements the “extracted” portion, i.e., merging the two portions
yields the original model. The operator covers the general case in which the input
mapping is non-functional (i.e., not a view).

The problems mentioned above have typically been studied in isolation and trimmed
to specific languages. We distill essential properties of these problems into language-
independent operators, which can then be combined to address other problem settings,
such as change propagation illustrated in Section 2. A number of other database problems
can be set into the context of the model-management algebra:

• Finding a redundant peer in a peer-to-peer network amounts to determining whether
a mapping is functional, i.e., the data stored at the redundant peer can be computed
from the data stored at other peers.

• Determining whether schema integration constraints are conflict-free [BC86]
amounts to testing whether the input mapping is a total and surjective relation.

• Testing query containment is a special case of testing mapping containment.

In [Mel04], we present detailed examples that substantiate and illustrate the state-based
operator definitions using relational schemas and SQL views. We derive alternative for-
mulations of operator definitions that are substantially easier to work with. We discuss the
state-based semantics of the conceptual structures and operators used in Rondo.
Although state-based operator definitions, such as the above definition of Compose, look
quite simple, implementing them is very challenging. Technically, computing the operator
or script amounts to finding expressions in concrete model and mapping languages (e.g.,
SQL DDL or XQuery) that specify precisely the desired output models and mappings. In
a recent effort, Fagin et al. [FKPT04] arrived independently at the same natural defini-
tion of mapping composition that we suggested, and embarked on a systematic study of
the properties of the composition operator. They focused on relational schemas and a class
of mappings called source-to-target tuple-generating dependencies (st-tgds), which are ex-
pressions of the kind Q1 ⊆ Q2, where Q1 is a conjunctive query over the “source” schema
and Q2 is a conjunctive query over the “target” schema. Fagin et al. showed that the com-
position of two mappings given by st-tgds cannot always be given by a set of st-tgds,
i.e., composition is not closed with respect to this class of mappings. To overcome this
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problem, they introduced a second-order extension of st-tgds, which allow existentially
quantified function symbols yet have an efficient chase procedure. Fagin et al. showed
that second-order st-tgds are closed under composition and presented a composition algo-
rithm whose output may be exponential in the size of the inputs. As one of the negative
results, they established that composing first-order formulas is undecidable.
It is unlikely that implementing other model-management operators for model and map-
ping languages of practical importance is any easier.

6 Conclusions

Generic model management is a rich emerging area of research. Its ultimate goal is to build
model-management systems that help solve challenging meta data management problems.
We laid some stepping stones toward that goal by building a first running prototype, study-
ing the usefulness of the model-management operators in practical scenarios, and examin-
ing the semantics of operators and scripts.
The research issues outlined in this paper are part of the agenda of the Model Management
project2 at Microsoft Research. In [BMPQ04], we discussed what it takes to build a robust
schema matching platform. In another recent effort, we studied composition for a broader
class of mapping languages and showed that the operators Domain, Range, and Compose
are computationally equivalent, i.e., an algorithm developed for one of them can be used
for computing the others. Other problems under investigation, which are motivated by
feedback from product groups, include schema evolution, data migration, and the operator
ModelGen, which translates models from one language into another (e.g., ER to SQL or
SQL to XML).
Model management offers a wide spectrum of exciting open problems, which are techni-
cally challenging, motivated by real user requirements, and have plenty of research con-
tent. Some of these problems are rooted in the foundations of database theory, others are
better solved using heuristic approaches. We embarked on [Mel04] thinking of model
management as a project. Along the way, we uncovered so many hard problems that are
beyond what could be accomplished in a single thesis that we now regard model man-
agement as a field. We expect that some of the problems can be solved by generalizing
approaches that were developed for specialized settings. Others may be solved by ap-
plying techniques from related fields, such as programming languages, computer-aided
design, mathematical logic, finite automata, etc. We expect they will keep many research
groups busy for many years to come.
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