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Abstract: Nowadays, the design of so-called consistent time-stepping schemes that
basically feature a physically correct time integration, is still a state-of-the-art topic
in the area of numerical mechanics. Within the proposed framework for finite elasto-
plasto-dynamics, the spatial as well as the time discretisation rely both on a Finite Ele-
ment approach and the resulting algorithmic conservation properties have been shown
to be closely related to quadrature formulas that are required for the calculation of
time-integrals. Thereby, consistent integration schemes, which allow a superior nu-
merical performance, have been developed based on the introduction of an enhanced
algorithmic stress tensor, compare [MMS06]-[MMS07c].
In this contribution, the influence of this consistent stress enhancement, representing
a modified time quadrature rule, is analysed for the first time based on the spatial dis-
tribution of the tensor-valued difference between the standard quadrature rule, relying
on a specific evaluation of the well-known continuum stresses, and the favoured non-
standard quadrature rule, involving the mentioned enhanced algorithmic stresses. This
comparative analysis is carried out using several visualisation tools tailored to set apart
spatial and temporal patterns that allow to deduce the influence of both step size and
material constants on the stress enhancement. The resulting visualisations indeed con-
firm the physical intuition by pointing out locations where interesting changes happen
in the data.

1 Motivation

It is well-known in literature that the performance of classical time integration schemes
for structural dynamics, as for instance developed in [New59], is strongly limited when
dealing with highly nonlinear systems. In a nonlinear setting, sophisticated numerical
techniques are required to satisfy the classical balance laws, as for instance balance of
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linear and angular momentum or the classical laws of thermodynamics. Nowadays, en-
ergy and momentum conserving time integrators for dynamical systems, like multibody
systems or elasto-dynamics, are well-established in the computational dynamics commu-
nity, compare e.g. [ST92]. In contrast to the commonly used time discretisation based on
Finite Differences, one-step implicit integration algorithms relying on Finite Elements in
space and time were developed, for instance, in Betsch and Steinmann [BS01]. Therein,
conservation of energy and angular momentum have been shown to be closely related to
quadrature formulas required for numerical integration in time. In this context, specific
algorithmic energy conserving schemes for hyperelastic materials can be based on the
introduction of an enhanced stress tensor for time shape functions of arbitrary order, com-
pare Gross et al. [GBS05]. Recently, a generalisation of these Galerkin-based concepts
to finite elasto-plasto-dynamics has been worked out by Mohr et al. [MMS06]-[MMS07c].

However, it has been shown by many authors that the introduction of a modified stress
tensor represents an appropriate tool to design specific conserving respectively consis-
tent time-stepping schemes, compare e.g. [Arm06, Gonz00, GBS05, ML02a, MMS07c,
NSP06]. Nevertheless, in our opinion the influence of this stress enhancement is not com-
pletely understood yet. One very interesting aspect that has not been addressed in the
literature so far, is for instance the spatial distribution of the difference tensor between
the stresses of the continuum model and the enhanced stresses for the time-stepping. In
this context, we have already encouraged some basic discussions in [MMS06] based on
an ‘ad hoc’ visualisation approach that provides very limited information. In this contri-
bution, several more sophisticated techniques that offer different levels of detail regarding
the included information, have been developed to visualise the difference between both
second-order tensor fields. It will be demonstrated by means of representative parameter
studies that the proposed concepts indeed represent an effective tool to better understand
the numerical behaviour of the underlying time-stepping scheme.

2 Finite Elasto-Plasto-Dynamics

First, the nonlinear deformation map ϕ(X, t) : B0 × [0, T ] → Bt is introduced as a map-
ping from the material to the spatial configuration, whereby B0/t ⊂ R2/3. In the context
of finite plasticity, the resulting deformation gradient F := "Xϕ(X, t) is assumed to be
multiplicatively decomposed into an elastic and a plastic part:

F
.= F e · F p (1)

In contrast to the modelling of elasticity, additional internal variables κ are included in
the Helmholtz energy density ψ(F , κ) for the plastic case to model the loading history.
Moreover, it is accepted to introduce the so-called conjugated thermodynamical forces
β := −"κψ which render the dissipation inequality, namely D =

�
β, κ̇

� ≥ 0. In view of
a thermodynamically consistent modelling this dissipation inequality has to be respected
not only by the continuum model, but also by the applied numerical integration scheme.
In a next step, we apply a standard Finite Element discretisation in space for the material
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configuration of a solid continuum body. Using the spatial approximations, the semi-
discrete deformation map can be written by means of the spatial shape functions NA(X)
in the form: ϕ(X, t) =

&nnode

A=1 qA(t)NA(X). Consequently, the approximations in
space of the spatial velocity v :=

&nnode

A=1 q̇A NA and the right Cauchy-Green tensor

C := F t · F =
nnode%
A,B=1

qA · qB "NA ⊗"NB (2)

can be computed straightforwardly. To obtain a semi-discrete system of equations of mo-
tion, we combine the placements of the spatial nodes q = [q1, ..., qnnode

]t and the nodal
generalised momenta p := M · q̇ = [p1, ...,pnnode

]t with the mass matrix M to the vec-
tor z := [q, p]t. Furthermore, the sum of the kinetic energy T (p) = 1

2 p · M−1 · p,
the free energy Ψ =

�
B0

ψ dV and possibly an external potential V ext is defined as
H(q, p; κ) := T + Ψ + V ext. Inspired by the purely elastic case, the resulting equa-
tions of motion can still be written in a compact format of Hamilton-type

ż(t) = J · "zH(z; κ) with "zH =



F int − F ext

M−1 · p

�
, (3)

wherein we have incorporated the symplectic matrix J and the internal load vector F int(S),
involving the Piola Kirchhoff stresses S = 2"C ψ. Next, the time discretisation of the
semi-discrete system of equations of motion (3) is considered. We start with a decompo-
sition of the time interval [0, T ] =

(N
n=0[tn, tn+1] and a map of each sub-interval to the

reference time interval [0, 1] via the function α(t) := [t − tn]/hn based on the time-step
size hn = tn+1 − tn. For the approximation in time a continuous Galerkin method –
abbreviated by: cG(k)-method – is applied. Therefore, the time approximations of the
unknown function zh =

&k+1
j=1 Mj(α) zj and the test function δzh =

&k
i=1

'Mi(α) δzi

are introduced 1. In a compact notation the resulting weak form in time is given by� 1

0

�
J · δzh

�
·
�

Dαzh − hn J · "zH(z; κ)
�

dα = 0 . (4)

Obviously, Equation (4) involves time-integrated internal load vectors, which will be re-
ferred to as F̄

int
A i related to the spatial node A. As discussed for instance in Mohr et al.

[MMS06]-[MMS07c], the crucial aspect for the conservation properties of the resulting
time-stepping schemes is the approximation of these highly nonlinear time integrals. Of
course, one potential option concerning the approximation is the application of a standard
Gauss quadrature rule represented by

F̄
int
A i ≈

ngpt%
l=1

node%
B=1

wl
'Mi(ζl) qh

B(ζl)
� �

B0

"NA ⊗"NB : S dV

�))))
ζl

, (5)

1It is important to emphasise that the time shape functions Mj ∈ Pk are polynomials of degree k, whereas
the reduced shape functions fMi ∈ Pk−1 are only of degree k − 1.
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using the Gauss points ζl and the Gauss weights wl. The foregoing discretisations render
a completely discrete system of equations, representing a time-stepping scheme with the
following conservation properties. If we assume vanishing external loads, the resulting in-
tegration scheme allows the conservation of linear momentum as well as the conservation
of angular momentum. Nevertheless, it can be shown that such a standard quadrature rule
is not able to guarantee the conservation of total energy for elastic deformations, despite
being an essential feature which has to be captured by the integrator regarding the claimed
thermodynamical consistency. Consequently, we introduce the nonstandard quadrature
rule

F̄
int
A i ≈

ngpt%
l=1

node%
B=1

wl
'Mi(ζl) qh

B(ζl)
� �

B0

"NA ⊗"NB : Salg dV

�))))
ζl

, (6)

wherein the so-called elastic-enhanced algorithmic stress tensor Salg := S + elSenh has
been applied based on the enhancement

elSenh(S) = 2
ψα=1 − ψα=0 −

� 1

0
S : 1

2 DαCh dα� 1

0
||DαCh||2 dα

DαCh . (7)

This approach follows the enhanced Galerkin methods – or short: eG(k)-methods – that
have been proposed originally by Gross et al. [GBS05] in the context of hyperelasticity.
Based on this specific nonstandard quadrature rule, the resulting time integrators guaran-
tees additionally a conservation of the total energy Hα=1 − Hα=0 = 0 when the defor-
mation is elastic. In combination with a strictly positive dissipation in the plastic case,
a monotonic decrease of the total energy Hα=1 − Hα=0 < 0 and, consequently, a ther-
modynamically consistent time-integration can apparently be featured, offering superior
performance in comparison to standard integration schemes. In this context, we want to
point out once more that the key to thermodynamical consistency exclusively relies on a
modified approximation of the corresponding time-integrals based on the elastic-enhanced
algorithmic stress tensor.

3 Comparative Tensor Visualisation

In the previous section, the essential ingredients for a thermodynamically consistent time-
integration have been presented. Thereby, the crucial difference between the standard
Gauss quadrature rule and the more sophisticated nonstandard quadrature rule is directly
related to the tensor-valued difference between the standard stresses of the continuum
model S and the algorithmic stresses Salg, involving the enhancement tensor (7). One
interesting aspect not addressed in literature so far is the spatial distribution of the corre-
sponding difference tensor field. We are optimistic that such a comparison between both
tensor fields provides a much deeper insight into the numerical behaviour of the related
time-stepping schemes. In this context important issues are for instance: the correlation
between the corrections and the underlying deformation, the influence of the time-step size
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or the material properties, the evolution of the corrections in time, the existence of charac-
teristic patterns within the difference tensor field, etc. However, a satisfying visualisation
is a non-trivial task, dealing with two different tensor fields and a large number of time
steps. A further difficulty is the fact that a direct physical interpretation of the enhance-
ment term elSenh and the algorithmic stress tensor Salg, respectively, is not valid since
it represents only a numerical tool to support the quadrature rule for time-integration. In
the following, we focus on the development and the comparison of various visualisation
approaches to better understand the influence of the correction on the time-quadrature rule.

To generate a benchmark data set, we calculated the motion of a ‘Flying L’ based on 36
4-node Finite Elements in space, using linear Finite Elements in time. For further set-
up details we refer to Mohr et al. [MMS06]. In view of the abovementioned issues,
the calculations have been performed with stiff/non-stiff material properties, involving
[λ, µ] = [10000, 5000]/[1000, 500], and with large (hn = 0.4) respectively small (hn =
0.04) time-step sizes. Since the considered tensor fields are both defined in the reference
configuration B0 only the undeformed configuration is of interest and, consequently, the
actual deformation of the body is not shown, compare Figures 1- 10.

Figure 1 shows a visualisation obtained with Matlab by representing the tensor with its
two orthogonal, normalised eigenvectors based on the spectral decompositions

Salg =
2%

i=1

Sλalg
i Nalg

i ⊗Nalg
i and S =

2%
i=1

Sλi N i ⊗N i . (8)

This figure was our initial motivation for experimenting with more advanced visualisa-
tions, especially to overcome the occlusion problem. Moreover, Figure 1 shows the two
tensor fields and not its difference. However, a natural possibility to reduce the complex-
ity of information is to find an appropriate representation of the difference field, since
basically the corrections are of particular interest.

Our goal is to provide multiple different visualisation tools to support the understanding
of both the spatial distribution of the algorithmic enhancement terms and their effect on
the stress field. Therefore we examine the data in a spatial context from different points
of view, one focusing on the magnitude of numerical differences in the stress tensors S
and Salg such as tensor invariants, another focusing on differences in extracted entities
like principal stress directions. We combine basic visualisation techniques such as colour
coding, transparency effects, and scaling together in order to provide the most helpful
tools, thereby applying Information Visualisation [Jac99] techniques. Very little work
has been carried out for difference tensor visualisation; most results relate to the tensor
visualisation itself, which already is a challenge. Some examples include the visualisation
of stress and strain tensors [GGH*97, NJP05] and the visualisation of diffusion tensor
MRI [WMN*02].

We analyse a particular time step from abovementioned simulation for the combination
of stiff/non-stiff material and fine/coarse time resolution, resulting in four different con-
figurations. These are shown in Figure 2, showing the principal directions [Nalg

i , N i] in
[blue, red] 2 similar to Figure 1. Since principal stress directions are not oriented, we use

2This is replaced by a [lighter,darker] grey in the b/w print.
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line segments scaled by the magnitude of the corresponding eigenvalues to show the stress
distribution over the elements. The scaling has been chosen to avoid the visual clutter
seen in Figure 1, yet although both stresses are visualised, the absolute difference in these
intuitive representations is too small to be seen, justifying the direct analysis of difference
terms as proposed in the subsequent sections.
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Figure 1: (a) reference configuration B0 with the eigenvectors [N alg
i , N i] of the elastic-enhanced

algorithmic stress tensor Salg & the Piola Kirchhoff stress tensor S, (b) deformed configuration Bt

after 10s, (c) zoom of the principal directions [N alg
i , N i].

3.1 Interpreting the symmetric difference tensor field as a 3d vector field

We are interested in a way of representing the difference tensor field. Notice that the
considered tensors are all symmetric so we have three independent components, i.e.

S =
�
S11 S12

S12 S22

�
(9)

which we can represent as a 3d vector s = [S11 S22 S12]t, similar to the classical Voigt
notation in the Finite Element context.

We have chosen this approach since we find it much more intuitive to compute the differ-
ence between two vectors than computing the difference between two tensors. We then
connected the 3d vectors of each Gauss point, four by four, to create patches resulting in a
quad-patch for every calculation element. Even if the resulting patches are indeed 3d we
find it useful to simply visualise their 2d projection, as it shows the deformations. Note
that this type of deformation is not related to the physical deformation of the considered
body. Based on this visualisation, we compensated the loss of one dimension by adding
circles at each Gauss point whose radii are the Euclidean norm of the 3d difference vectors,
namely r =

$
ΔS11

2 + ΔS22
2 + ΔS12

2. Figures 3(a,b) and 4(a,b) respectively illustrate
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(a) stiff data set, hn = 0.4, time step 11 (b) stiff data set, hn = 0.04, time step 110

(c) non-stiff data set, hn = 0.4, time step 11 (d) non-stiff data set, hn = 0.04, time step 110

Figure 2: The stress configurations in question, where the lines depict the principal stress directions
scaled by the magnitude of the corresponding eigenvalues.

those visualisations for stiff and non-stiff data sets3.

The results clearly demonstrate that the proposed approach is considerably well-suited to
highlight regions of the body in which large corrections occur, compare Figure 3(a). More-
over, it is obvious that the corrections are higher when large time-step sizes are involved,
compare e.g. Figure 3(a) and Figure 3(b).

3Note that we used a linear scaling to avoid occlusion.
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(a) stiff data set, hn = 0.4, time step 11 (b) stiff data set, hn = 0.04, time step 110

(c) stiff data set, hn = 0.4, time step 11 (d) stiff data set, hn = 0.04, time step 110

Figure 3: Circle- and ellipsoid-based visualisation using stiff material properties.

3.2 Visualising the tensor invariants through ellipsoids

Another approach - more rigorous this time - consists of visualising the tensor invariants
as ellipsoids. Despite looking very similar to Kindlmann’s tensor glyphs [Kin04], our
ellipsoids don’t involve the tensor eigenvectors at all. The characteristic function of a
tensor S is given by

χ(S) = |S − λI| = λ2 − [S11 + S22]λ + [S11S22 − S12
2] (10)
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(a) non-stiff data set, hn = 0.4, time step 11 (b) non-stiff data set, hn = 0.04, time step 110

(c) non-stiff data set, hn = 0.4, time step 11 (d) non-stiff data set, hn = 0.04, time step 110

Figure 4: Circle- and ellipsoid-based visualisation using non-stiff material properties.

and provides two invariants, namely the trace and the determinant of the tensor:

I1 = tr(S) = S11 + S22 and I2 = det(S) = S11S22 − S12
2. (11)

The ellipsoid is built using the components’ basis

(x, y, z) = (ΔI1, ΔI2,
ΔI1 + ΔI2

2
), (12)

where ΔIi is the difference between the invariants of both tensor fields.
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Figures 3(c,d) and 4(c,d) respectively illustrate the ellipsoid-based visualisations for data
sets that have been calculated by means of stiff and non-stiff material properties. More-
over, Figure 5 shows the evolution of the differences between the invariants over time.
To investigate a potential correlation between the deformation and the corrections, the
norm of the physical strain field based on the right Cauchy-Green strain tensor C has
been additionally incorporated, where the following colour-coding has been used: from
blue [lighter] to red [darker] for increasing strain norms. Note that we used a logarithmic
scaling here, as opposed to a linear scaling, since the differences are much greater than in
the circle-based visualisation4. In comparison to the previous approach, the corresponding
plots provide an essentially better view on the spatial distribution of the corrections, since
the regions with extremely large corrections are not so dominant due to the mentioned
logarithmic scaling. In this context, it becomes obvious that the locations of the correc-
tions are, especially for the stiff data set shown in Figure 3(c,d), more homogeneously
distributed when a smaller time-step size is applied. Also very interesting is the clustering
of large corrections in certain regions of the ‘L’ particularly where the norm of the strains
is high, as pictured in Figure 5.

3.3 Interpreting the differences of physical measures

So far, focus has been on the display of abstract measures derived from numerical repre-
sentations of the stress tensors that might be hard to interpret. We now turn our attention to
changes in more physically motivated measures given by the eigenvectors [Nalg

i , N i], and
eigenvalues [Sλalg

i , Sλi] of both stress tensors [Salg, S], as already introduced in Equa-
tion (8). From a mechanical point of view, such a spectral decomposition is quite intuitive,
since the results can be interpreted as principal stresses and principal stress directions
respectively. Nevertheless, keep in mind that a direct physical interpretation of the algo-
rithmic stress tensor by itself is critical. However, the actual goal is to show how the stress
distribution is modified by the introduction of the correction term, related to Equation (7).
We therefore consider rotation of the principal stress directions, and changes in the stress
magnitude along these, whereby particularly the rotation seems to be an interesting issue
in this context.

The computation of a rotation angle αi between the principal directions requires the asso-
ciation of each direction in Nalg

i with a direction in N i. This can be based either on the
minimisation of the variation in the corresponding eigenvalues or the minimisation of the
angle between the directions. If these two criteria don’t agree, say, both major eigenvalues
are close but the major principal direction of the enhanced tensor aligns with the minor
principal direction of the untouched tensor, the choice is arbitrary and leads to different
magnitudes in angle or principal stress. In our considerations, we favour closely aligned
principal directions over similar eigenvalues, where the largest eigenvalue of S determines
the major principal direction. Finally, the difference in the absolute eigenvalues amounts
to the root-mean-square error between the ordered pair of absolute eigenvalues in both the

4The redistribution caused by the logarithmic transfer function can be seen in the histograms displayed in the
top-right corner.
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Figure 5: Ellipsoid-based visualisation over time. From top-left to bottom-right: time step 220 to
235.

enhanced and the basic stresses, rendering

Δλ :=
	
(|Sλalg

1 | − |Sλ1|)2 + (|Sλalg
2 | − |Sλ2|)2

� 1
2

. (13)

3.3.1 Wedges as rotation indicators

As seen in Figure 2, the angular difference αi between [Nalg
i , N i] is too small for di-

rect visualisation purposes. We therefore propose an exaggerated display of those using
wedges that indicate the rotation direction with a colour sweep as seen in Figures 6(a-d).
Prior to display, the computed angles are equalised based on the transfer function

α̃i = sign(αi) · λ|αi|γ , λ, γ ∈ R+ . (14)
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(a) stiff data set, hn = 0.4, time step 11 (b) stiff data set, hn = 0.04, time step 110

(c) non-stiff data set, hn = 0.4, time step 11 (d) non-stiff data set, hn = 0.04, time step 110

Figure 6: Wedge visualisation for stiff and non-stiff data at different time resolutions. The angles
have been scaled such as to provide an exaggerated display of the qualitative behaviour.

Note that a choice of γ = 1 corresponds to linear scaling by λ, while for γ < 1, stretching
occurs in the interval [−1, 1] - which is a reasonable behaviour as αi ∈ [−π/4, π/4]. In the
present example a choice of λ = 1 and γ = 0.2 led to the best results, the corresponding
equalised angle distribution is shown in the top-right corner.

The visualisation in Figures 6(a-d) employs a uniform scaling of the major eigenvectors,
because the screen space occupied by one such glyph directly correlates with the user-
perceived importance. As the main objective is to indicate rotation, the change in the
magnitude of eigenvalues has been mapped linearly to circles, which we found least dis-
tracting from the main visualisation goal.

Once more, the results confirm the fundamental influence of the applied time-step size: a
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(a) stiff data set, hn = 0.4, time step 11 (b) stiff data set, hn = 0.04, time step 110

(c) non-stiff data set, hn = 0.4, time step 11 (d) non-stiff data set, hn = 0.04, time step 110

Figure 7: Colour-coded discs displaying the difference in the eigenvalues via diameter and angle
modification via blue (αi < 0) and red (αi > 0) colour. In the b/w print, this is replaced by
[lighter,darker] grey.

larger time-step size requires also larger corrections. Moreover, we can see that in some
elements large modifications of the angle are combined with small changes in the eigenval-
ues and vice versa, compare Figure 6(a). Analogously to Figure 3(a,b) and Figure 4(a,b),
it is obvious that for the present example the largest modifications are needed when stiff
material properties are combined with large time-step sizes.

3.3.2 Colour-coded discs as indicators of change in eigenvalue magnitude

The wedge-based visualisation obviously lacked clarity with respect to the rotation di-
rection due to the small size of the glyphs. A simple yet very effective visualisation of
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(a) stiff data set, hn = 0.4, time step 11 (b) stiff data set, hn = 0.04, time step 110

(c) non-stiff data set, hn = 0.4, time step 11 (d) non-stiff data set, hn = 0.04, time step 110

Figure 8: The same setting as in Figure 7, but now equalising the eigenvalues for all data sets based
on the same transfer function. All but (b) exhibit better visible details.

sign and magnitude is achieved by colour-coding, where blue indicates negative rotation
and red positive5, see Figures 7 and 8. Here again an equalisation of the value range is
necessary to address nuances in the angle distribution close to the origin.

We aim as a second aspect for the depiction of differences in the tensor eigenvalues, cor-
responding to the difference in the principal stress magnitude along [Nalg

i , N i]. Figure 7
displays coloured discs with linearly scaled differences as radii. As can be seen in Fig-
ure 7(a,c), regions with dominant corrections can be immediately captured, especially for
the large time-step size. However, the resulting visualisation only indicates changes in
few tensors because of the large variation in magnitude of the displayed values, therefore

5This is replaced by a [lighter,darker] pattern in the b/w print.
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Figure 9: Level-of-detail visualisation, showing more qualitative facts at a large scale while depicting
the concrete deformation on a per-tensor basis after an appropriate zoom. The pixel clutter visible in
the angle of the ‘L’ is actually a swept ellipse similar to the one depicted in the second top row, yet
very big and very thin (reproduced in colour on p. 189).

loosing more subtle details to the scaling.

This is taken care of by again equalising the value range as shown in Figure 8. The re-
spective transfer functions are displayed in the top right corner of each figure. It can be
seen in Figure 8(b) that the equalisation, if not properly scaled, obfuscates details as the
result of a too uniform value distribution. Nevertheless, especially Figure 8 (a,c) enables
a very interesting perspective on the spatial distribution of the modifications. Obviously,
homogeneously coloured ‘correction clusters’ occur within the ‘L’, similar to the results
of the ellipsoid-based visualisation.

3.3.3 Level-of-detail investigation using complex glyphs

The last approach we present is based on a multiresolution paradigm, providing qualitative
information at a global scale while allowing to look at concrete behaviour in detail at an
adequate zoom level. The large scale visualisation in Figure 9 combines the difference in
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eigenvalues via the circle diameters, and the angle and direction of rotation via the circle
colours. The detail level depicts the magnitude and angle modification as a sweep between
individual representations of Salg and S.

The employed glyphs are created in the following way. Each pair [Nalg
i , N i] of principal

directions, scaled by the eigenvalues [Sλalg
i , Sλi], gives raise to a cross of two orthogonal

lines. The eigenvalues are also the radii of an ellipse aligned with the principal directions.
If different colours for the combination of cross and ellipse are assigned for Salg and S, the
linear sweep between the corresponding curves provides the complex glyph visualisation
in Figure 9.

This visualisation tool indeed incorporates most of the advantages of the different tech-
niques that have been discussed before. It allows, on the one hand, an excellent detection
of regions in which large modifications occur. On the other hand, a detailed physical-based
insight can be obtained by zooming-in, offering information both on magnitude and rota-
tion. The motivation for nested visualisation can be verified by looking at Figure 10, which
demonstrates that no single visualisation is usually capable of giving sufficient insight into
all interesting aspects present in the data.

4 Conclusions & Outlook

In the first part of this paper, we have presented the essential ingredients for a thermody-
namically consistent time-stepping scheme for finite elasto-plasto-dynamics, whereby the
conservation properties are directly related to the approximation of related time-integrals.
In this context, a modified quadrature rule has been applied based on a so-called elastic-
enhanced algorithmic stress tensor. In the second part, special emphasis has been placed on
the investigation of the spatial distribution of the resulting difference between the stresses
of the continuum model and the enhanced stresses for the time-stepping. Thereby, it has
been shown in previous work that an ‘ad hoc’ visualisation is not able to provide satisfy-
ing information. Therefore, we have devised visualisations of both abstract and physically
based measures in the spatial context of the simulated domain. The results help revealing
the intrinsic qualities of the data, especially by pointing out regions of interest. Indeed, the
developed visualisation approaches provide a deeper insight into the numerical behaviour
of the algorithmic stress tensor and, consequently, enable a better understanding of the
discussed integration algorithms.

In future work, the discussed results, like influence of the time-step size or clustering of
the corrections, should be verified for further data sets. Moreover, we plan to incorporate
the time dimension, looking at the evolution of the corrections based on the here pro-
posed visualisation techniques. Thereby, especially the question of time continuity of the
difference between both tensor fields seems to be essential.

Acknowledgements Financial support by the German Research Foundation DFG within
the International Research Training Group 1131 ‘Visualisation of Large and Unstructured
Data Sets. Applications in Geospatial Planning, Modeling, and Engineering’ is gratefully
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Figure 10: A collection of all presented visualisation tools applied to the same data set and time step
(reproduced in colour on p. 190).
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