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Adapting Organic Computing Architectures to an
Automotive Environment to Increase Safety &Security

Kevin Lamshoft, Robert Altschaffel, Jana Dittmann !

Abstract: Modern cars are very complex systems operating in a diverse environment. Today they
incorporate an internal network connecting an array of actuators and sensors to ECUs (Electronic
Control Units) which implement basic functions and advanced driver assistance systems. Opening
these networks to outside communication channels (like Car-to-X-communication) new possibilities
but also new attack vectors arise. Recent work has shown that it is possible for an attacker to infiltrate
the ECU network insides a vehicle using these external communication channels. Any attack on the
security of a vehicle comes implies an impact on the safety of road traffic. This paper discusses the
possibilities of using architectures suggested by Organic Computing to reduce these arising security
risks and therefore improve safety. A proposed architecture is implemented in a demonstrator and
evaluated using different attack scenarios.
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1 Introduction

Modern cars are complex systems containing a wide array of actuators,
sensors and ECUs (Electronic Control Units). Some of these components
are essential for the basic function of a car while others provide assistance
or amnesties to the driver. All these components are connected to an
internal network. With the growing number of external means to connect
to this network, like Car-to-X-Communication (C2X), In-Car Internet or
remote diagnostics an inherent risk of attacks on these networks arise.
Recent work [MV15] has proven this assumption. Any attack on the
security of a vehicle carries the same implication on the safety of road
traffic as error and faults of individual vehicular components. They can lead
to dangerous situations either through direct means (e.g. failure of brakes),
interruption of an assistance function the driver relies on (e.g. ABS) or
distraction (e.g. Multimedia). The complex interplay of all these
components is bound to further increase with the introduction of
autonomous vehicles. This complexity challenges classical engineering
approaches. Hence this paper explores the possibilities of using
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architectures derived from the field of Organic Computing in order to cope
with the growing complexity.

During this paper section 2 handles a brief introduction on the specifics of
automotive IT and gives an overview on the topic of Organic Computing
in general and the observer/controller architecture in particular. Section 3
will discuss how the naive implementation of Organic Computing
architectures would perform in an automotive environment while section 4
presents and discusses changes to such an architecture proposed by us.
Section 5 describes the implementation of a demonstrator used for
evaluation of the concepts proposed in this work. Section 6 discusses
practical scenarios in which an attacker injects spoofed messages in a
malicious manner. Here it is evaluated if and how the demonstrator could
reduce the impact of an attack. Section 7 concludes this paper with
summary and outlook.

2  State of the Art

This section gives a brief overview on the state of automotive IT focused
on the main vehicular network - the CAN bus. Further introduction is given
on the principles of Organic Computing (OC) and the means to achieve
them by using various architectures. Finally, information on anomaly-
based intrusion detection will be presented since it will be used in the
demonstrator used for evaluating the concepts presented in this work.

2.1 Specifics of automotive IT

Modern cars consist of dumb and smart components. The dumb (or passive)
components are all parts without electronics. Smart (or active) components
consist of:

. Sensors measure the conditions of the vehicle's systems and environment (e.g.
pressure, speed, rain intensity etc.) but can also capture user input requests.

. Actuators are units that perform a mechanic actuation.

J Electronic Control Units (ECUs) perform the electronic processing of input
signals, which are acquired via different types of sensors and relay commands to the
actuators. Some units control critical systems of the vehicle such as the engine and
safety systems (ABS, Airbag) while others control comfort units such as the door
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control units. The number of ECUs embedded with a vehicle is still rising to more
than 100 in 2010 [Sul4].

. Direct analogue cable connections are used to carry measured signals (from
sensors to ECU) or actuation impulses (from ECU to actuators).

° Shared Digital Bus Systems are used for communication among ECUs. Beyond
the direct connections between ECUs and sensors/actuators, ECUs are additionally
connected amongst each other via digital field bus systems [Tr09]. This shared
medium is used to exchange required information, like forwarding digitized sensor
signals, exchanging current operating parameters, remote actuation requests or
diagnostic requests for maintenance purposes. In modern cars, several different
technologies for digital automotive field bus systems are used. The most common
automotive field bus system is the Controller Area Network (CAN) [Bos91], which
is the core network of the vehicle systems communication. This CAN network is
divided into sub-networks such as powertrain/engine, diagnostics, comfort or
infotainment. ECUs are connected to each sub-network depending on their functions
and these sub-networks interconnect in a ECU device called CAN Gateway which
handles the routing of messages to different sub-networks. The specific sub-
networks offer a shared medium for the exchange of CAN messages. The CAN
message consists of several flags without further importance to this paper, the CAN
ID and the payload. The CAN ID represents the type of a message and implies a
certain sender and receiver for the message - hence any ECU on the specific bus
will receive all messages but discard the ones with CAN ID unimportant to it. It is
assumed that a message with the corresponding ID is send by the ECU normally
responsible for this message. In addition, the CAN ID serves as priority. Since there
is no sender verification it is very easy to insert crafted packets into CAN networks
once access to an entity able to send on the bus (an ECU or a tap) is established.

Recent trends show the increased communication between cars and other
cars (Car-to-Car, C2C) or infrastructure (Car-to-Infrastructure, C2I
[Ka08]). These communication channels not only increase functionality but
also carry the risk of new attack vectors, as demonstrated [MV15].

In an automotive environment, an attack on the security of the car is bound
to also become a safety risk due to the already dangerous nature of road
traffic. If in classical desktop IT a system crashes the system simple
crashed. If the IT system in a moving vehicle crashes you have a moving
vehicle that does not act reliable to user input and might as well crash in a
more dramatic manner.
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2.2 General Introduction to Organic Computing

Organic Computing is an approach to deal with the complexity regarding
systems of systems. With the ever-growing amount of different
participating systems, scenarios and circumstances classical engineering
approaches are reaching their limits. OC aims at viewing the system of
systems as an organic whole with the user only formulating aims or tasks
while the subsystems themselves deal with the realization of these tasks, as
evident in the quote from [Wu08]:

In organic computing, the only task humans hold on to is the setting of
goals. As the machine is autonomously organizing, detailed
communication between programmer and machine is restricted to the
fundamental algorithm, which is realizing system organization.

A fundamental aspect of OC is emergence. [WHO05] define emergence as:
A system exhibits emergence when there are coherent emergents at the
macro-level that dynamically arise from the interactions between the parts
at the micro-level. Such emergents are novel w.r.t. the individual parts of
the system.

Hence emergence describes a macro behaviour of a complex systems not
inherent in the behaviour of the specific components. A system based on
OC principles is henceforth called an organic system and should fulfil
several properties. These properties are known as self-x-properties. These
include self-adaption as the core property of any organic system [MSU11].
Other examples for self-x-properties in their work are include self-
configuration, self-optimization and self-healing, which are specialized
types of self-adaption. Furthermore, self-perception was identified as a
basic requirement for organic systems [Al14].

2.3 Generic Observer/Controller Architecture in Organic
Computing

In order to guarantee that the macro behaviour of a decentralized self-
organizing system meets the intended purpose a so called
observer/controller is used. A suggestion for this central concept is the
Generic Observer/Controller Architecture as introduced in [Ri06] and is
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used the foundation for the approach presented in this work. The
architecture consists of three major entities: A multi-agent system, called
System under Observation and Control (SuOC), an observer and a
controller. The Observer is monitoring the SuOC with sensors, processes
the data and passes accumulated information on the state to the controller
which then evaluates possible actions and might control the SuOC. The
observer/controller pattern is built on top of the SuOC - if the
observer/controller fails, the SuOC will retain its self-organizing structure.

The observer consists of different modules, which define the observation
process:
. O1 Monitor: gains raw data from the underlying SuOC

. 02 Log file: saves data from each iteration which might be used for predictions
. O3 Pre-Processor: prepares data for analyses and prediction
. O4 Data analyser: applies a set of detectors on the pre-processed data; result is

reflecting the current state of the SuOC

. OS5 Predictor: predicts future system states based on raw data, history data and
analyser data

. 06 Aggregator: accumulates data which is then passed to the controller

The controller receives aggregated data from the observer and compares it
to the goals for the organic system by the external user. This component
directs emergent behaviour of the SuOC in order to achieve desired
emergent behaviour or disrupt or prevent undesired emergent behaviour.
Three types of control can be applied by the controller: Influencing local
decision rules, influencing the system structure and influencing the
environment. The controller uses an internal action selector which selects
best suited action based on the current situation of the SuOC (mapping) and
forwards this decision towards its actuators. The applied action is saved in
a history file and is in a next step evaluated by comparing the new system
state with the state before. Depending on how much the action influenced
the system state of the SuOC the fitness value for the mapping is updated.
Hence the mapping is improved over time. This learning process can be
enhance using machine learning techniques, for example, by using
evolutionary algorithms, learning classifier systems, reinforcement
learning or neural networks.
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2.4 Anomaly-based Intrusion Detection

The use of use Shannon entropy for detection of anomalies in in-vehicle
networks was proposed in 2011 [MN11]. This work uses entropy which is
the expected average value of information that a message carries in a
message flow. Entropy can be calculated for a single message, specific
CAN IDs or the whole bus traffic. The entropy of the usual behaviour is
determined a priori in a learning phase. For intrusion detection, the entropy
is calculated in fixed intervals and compared to the entropy of normal
behaviour. An anomaly is found if the difference if the expected and the
current value differ more than a threshold. This approach has been
successfully tested and proved useful [MSGC16]. An Extension [CK16]
proposes the use of fingerprinting techniques known from conventional IT

in automotive networks. Here the clock skew estimation is used to localise
affected ECUs.

3 Adopting the Generic Controller/Observer Architecture to
Automotive Bus Networks

As mentioned in section 2.1 defending against advanced attacks on
automotive bus networks is a non-trivial task.

However, most attacks have one aspect in common: On the lowest level,
they are sending forged messages on automotive bus networks. Such a
message does look legitimate in CAN bus networks since there is no
authentication. While fuzzing and replay attacks reportedly can be detected
in parts by automotive IDS [MSGCI16], more sophisticated, targeted
attacks can be recognized only by looking at the result in the overall system
— 1in this case the car.

For example, prior experiments with several cars have shown that an
attacker is able to lock the doors permanently by sending forged messages
on the CAN bus. This prevents the passengers from leaving the car. In
addition, the heating can be turned on and air conditioning can be turned
off while preventing user input. This can lead to serious disturbance or even
bodily harm. For this attack, an attacker only needs a few forged messages.
Each message by itself is inconspicuous and seems legitimate and therefore
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should not raise any alarm. However, the behaviour of the overall system,
caused by these accumulated messages, is suspicious and harmful.

As shown before a car is a system of system and hence this undesired
behaviour akin to an undesired emergent behaviour. As shown in section
2.3 the Generic Observer/Controller Architecture forms the part of the
Organic Computing approach aiming to observe emergent effects and
either taking actions to achieve desired emergence or preventing/disrupting
undesired emergence. By adapting this architecture to the requirements of
cars and implementing the concept we might be able to detect such
advanced attacks and mitigate their impacts with low-cost hardware. In
contrast to Intrusion Detection Systems the presented approach goes further
and does not only detect anomalies but also takes actions to counter attacks.
This is achieved by not only looking for anomalies but aggregating data
from multiple sources in order to get a better understanding of the systems
state and reducing the number of false-positives. By using methods derived
from the field of machine learning the system learns with each incident and
gets better over time.

The following section will deal with adapting this generic approach to the
automotive domain.

3.1 Theoretical Considerations

The first step on adapting the Generic Observer/Controller Architecture to
the automotive domain is a the definition of system boundaries for the
SuOC. Since this approach aims to increase robustness against attacks, or
in fact general malfunctions as well, we want to achieve desired and disrupt
undesired emergent behaviour of the whole system — technically speaking
the whole car. Considerations on the feasibility of defining a car as SuOC
rely on the definition of a SuOC presented in section 2.3. Here a SuOC is
defined as a multi-agent, self-organizing system.

Automotive IT consists of a network of ECUs, sensors and actuators. As
these ECUs are autonomous entities, communicating and interacting with
each other, observing and acting in an environment to achieve goals they
can be considered agents. Technically speaking a set of ECU networks can
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therefore considered a multi-agent system. Following the definition given
by [MWIJ+07] a self-organizing system is self-managing, structure-
adaptive and employs decentralized control. The network of ECUs is self-
managing in the sense of adapting to different I/O requirements without an
explicit external control input on how to achieve this. The driver gives a
general objective (I/O requirement) towards the car (e.g. Acceleration)
causing multiple ECUs to work together in order to achieve that goal.
Automotive IT is structure-adaptive as the ECUs maintain their structure
and provide the systems primary functionality. As there is no central ECU
that controls the others it employs decentralised control — leading to the
conclusion that the network of ECUs can be seen as a self-organizing
system.

3.2 Adapting the Observer to Automotive Bus Networks

We aim at not only detecting irregularities in the function but the car but
also on reaction towards these irregularities. Therefore, we propose the
usage of multiple cooperating Observer/Controller instances (as defined in
the Generic Observer/Controller Architecture). One major task of the
observer is, similar to IDSs known from conventional IT, detecting
anomalies - called "symptoms" in the MAPE cycle [IBM06]. These
symptoms might lead to an undesired emergent behaviour. Going beyond
the possibilities of an IDS in this approach the Observer considers the
symptoms more thoroughly by aggregating data from several data
analysers (resp. emergence detectors or IDSs), Log files, Predictors and
communicating with other Observers. This helps to reduce false-positives
and get a better understanding of the symptom before applying control
actions.

In order to achieve this the Observer presented in section 2.3 is adapted to

an automotive environment as follows:

. O1 Monitor: In the OC architecture the observer is monitoring the influence of the
agents on their surroundings. In the case of automotive IT this means that the
Observer is not monitoring the ECUs directly but their influence on the car. Hence
this means the monitoring of specific actuators. As it would require a broad range
of sensors to monitor the actual behaviour of all actuators we propose a different
approach in not monitoring the physical actions of the actuators but in monitoring
the communications on the automotive bus networks. This is feasible since actuators
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at this moment do not have any computing power themselves and just act on the
orders given by them from the ECUs. Hence, if there is an action, there is also a
message causing this action. This might not hold true for the future, though, so
future work will add sensors which directly monitor the physical actions of the
actuators. Even then the primary sensor will most likely still be the networking
interface which allows the observer to read all BUS communication.

02 Log file: Since the log files function is basically to save data for further iterations
and predictions no adaption to an automotive context is needed.

O3 Pre-Processor: This step prepares the raw data supplied by the monitor for the
following steps of analysing and prediction. Depending on the Data Analysers and
Predictors the specific tasks of the Pre-Processor might vary. For bus networks the
main part of the Pre-Processor is filtering (e.g. leave out keep-alive-messages or
duplicates) and prioritising (e.g. error messages) of the network traffic. Aggregation
and counting of reoccurring messages might be useful as well.

04 Data Analyser: This is one of most important parts in the approach presented
in this work. It applies a set of detectors on the pre-processed data in order to identify
undesired behaviour of the car. One trivial approach would be to identify error
frames (e.g. failure of signal lights) on the bus network. This relies on the affected
ECU detecting such failures. It hence would not work in scenarios where no
malfunction of specific components are caused but rather a harmful macro
behaviour, like in the scenario introduced in section 3. Therefore, a deeper analysis
of the network traffic is needed in order to detect undesired emergent behaviour.
Two different approaches are suggested here: detect unusual behaviour and detect
illogical behaviour and detect rule violations. An example for unusual behaviour
might be the toggling of certain features multiple times in short intervals (e.g.
recurring signals to close windows). This might also point to a component failing
to react on a given input, like repeated pushing of a brake pedal without reaction of
the brake. In these cases further analysis will be conducted. As the log file stores
information about the system state the Analyser is able to check if the speed reduced
in case of the repeatedly triggered brake pedal. Examples for illogical behaviour are
opening the trunk while driving, pushing brake and accelerator pedals at same time
causing invalid system states. The third option is to define correct behaviour a priori
by rules (e.g. doors need to be closed while driving) and monitor violations.

O5 Predictor: Based on data from the analyser and log file the predictor calculates
possible future system states which will be passed to the controller. This enables the
controller to take preventative actions. For example, the predictor extrapolates the
speed for a time t+1, based on the current speed at time t and the speed of the state
before at time t-1.

06 Aggregator: The aggregator accumulates information of the analysers detectors
and the predictor to give a most accurate evaluation on the current and future system
states to the controller which then based on that information takes actions to
influence the environment towards a desired behaviour. In order to identify and
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analyse the symptom the Aggregator needs to interpret the data coming from the
data analysers. Hence a semantic lookup table (which message is representing what
information) is needed but could also be implemented at an earlier stage in the Data
Analyser. The data coming from the Observer needs to be encoded in a way that the
Controller can map it to an action. One naive approach is to pass raw information
coming from the analysers without any semantics towards the Controller. For
example, the corresponding CAN IDs which show anomalies could be mapped to
an action (e.g. a detected anomaly at 0x172 would be mapped to an action which
opens the windows). Depending on the Data Analysers and information gathered by
the Aggregator more precise information could be passed. An exemplary data set
for the given scenario could be state = [{Entropy Anomaly Detector -> Affected ID:
Ox172}, {ECU Fingerprint Anomaly Detector -> Anomaly Source: central lock
ECU}, {Aggregator -> Result: doors do not open] and would map actions = [{flash
central lock ECU}, {open windows}, {open trunk}]. We recommend using multiple
Observers communicating with each other, getting additional information and do
cross checking, to specify the systems state more accurately. For example, an
Observer monitoring unusual behaviour of the doors (e.g. a door is opening and
closing repeatedly) can request additional information from another Observer which
is monitoring different parts of the vehicle like the powertrain bus in order to
determine if the vehicle is moving.

3.3 Adapting the Controller to Automotive Bus Networks

The Controller’s main task is to take actions based on information it
receives from the Observer. The Controller takes actions by sending
messages to the agents (ECUs) which then applies actions to the car.
Therefore, a mapping of the environmental states and actions is required by
the Controller.

When the Controller gets information by the Observer it applies a set of
classifiers (rules) to map environmental states into actions. Each classifier
has a fitness value/reward that defines the quality of the action and is
updated when the Controller gets feedback on how good the applied action
has performed.

If multiple classifiers fit a given environmental state the one with highest
fitness/reward is selected. The structure of a classifier is given by{State ->
Action : Fitness}. One basic example for a classifier would be {0x/72 ->
Ox172#1122 : 42}, where Ox172 marks the CAN ID, which shows
anomalies, Ox172#1122the action (the CAN message to be sent by the
controller) and 42 the fitness value. Before applying actions, we suggest
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reporting to the driver. The user should be informed that an anomaly has
been detected, what causes are probable and which influences are detected
and expected. The driver should have the option to mark the anomaly as
false-positive. Causes for false-positives are found in the data analysers as
well as in unexpected behaviour of the driver or passengers. In a next step
the driver should be informed on planned actions and asked for permission.
There might be situations in which the driver has to act by himself (e.g.
applying manual handbrake to slow the car in case of brake failure). In that
case, the controller only gives a warning and recommendations on how to
act. The rules for reaction can be added manually or generated by machine
learning.

4 Implementation

The approach presented in this paper has been evaluated in a demonstration
in order to examine its merits and drawbacks. For our experimental work
we used the electronics of an Audi Q7 built in 2008. These electronics have
been extracted after a crash test. Due to the crash, most parts of its drive
train were missing. Hence, we focused on ECUs communicating on the
comfort bus. The CAN bus was accessed directly by a Raspberry Pi using
CANTtact interfaces. CANtact was chosen for using the SocketCAN driver
of can-utils which allows to receive all frames from the bus and send
arbitrary messages. A Raspberry Pi was used for implementing the
Observer/Controller functionality.

The following subsections give an overview on how the concepts
developed in section 3 have been implemented for the demonstrator.

4.1 Observer Implementation

This subsection describes how the observer was implemented in the

demonstrator.

. O1 Monitor: The Monitor was implemented on a Raspberry Pi using Python. It
uses a SocketCAN interface to communicate with the CANtact board and the
python-can package to monitor traffic on the bus.

. 02 Log File: The demonstrator saves general information on the vehicle state, e.g.
the status of ignition and door locks.
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. O3 Pre-Processor: Received CAN frames are striped to CAN ID and payload only,
removing timestamps since these would cause bogus results during entropy
calculation.

. 04 Data Analysers: An entropy-based anomaly detection approach was
implemented. (see section 2.4). The demonstrator implements a combination of
entropy calculation for the whole bus and dedicated calculations for specific IDs.
The entropy analyser has to go through a learning phase before it can be used. In
that learning phase the average entropy p, standard deviation g, a model parameter
k and time windows t are calculated and defined. A target space which marks the
usual behaviour as a range[u — o, u + oland a acceptance space which allows
minor deviation of the usual behaviour (reduces false-positives) as range
[ — ko, u + ko], where k is a model parameter are defined. Figure 1 shows the
learned parameter settings used in the experiments.

Entropy Controller | average standard model time
Calculation | Area entropy p deviation ¢ | parameter k | message
Network ID window £
Comfort - 5.04 0.1 47 5 (seconds)
Bus
Locks 0x171 1.385 0.252 1.9 30 (frames)
Windows 0x182 0.11 0.33 0.6 30 (frames)
Multimedia | 0x3C4 0.941 0.02 1.95 30 (frames)

Fig. 1: Learned parameter settings for the demonstrator
. O5 Predictor: Prediction is not included in this demonstrator.

. 06 Aggregator: The Aggregator fetches data from the entropy analysers and
general information of the log file and passes them towards the Controller module.
In this demonstrator the Observer reports where an anomaly is detected (whole bus
and/or CAN IDs), the value of constraint violation (distance of measured entropy
from acceptance space) and a human readable state of the system (e.g. car standing,
doors locked, anomaly regarding locks detected) in order to inform the driver and
for debugging purposes.

4.2 Controller Implementation

For the implementation of the controller a pre-defined classifier set is used.
Using fitness values and wildcards for the classifiers the controller is able
to map any state given as input from the Observer. Before taking any action
the controller reports the aggregated information of the observer and the
mapped action to the user (in the current version via CLI) and asks for
permission. After taking the action the user is asked whether the problem
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persists (in future versions the controller evaluates that by itself using data
from the observer). If the problem is solved the classifier gets a reward
which increases its fitness. If the anomaly persists the controller takes
another matching action if available. If that is not the case the controller
notifies the user to stop the car.

5 Evaluation

This section describes how the demonstrator was evaluated.

5.1 Adversary Model and Attack Scenarios

Prior research has shown several physical and remote attack surfaces and
vectors [MV15]. In this evaluation scenario we selected an attacker who is
able to send arbitrary messages with spoofed IDs. This allows the attacker
to toggle certain features of the car in with the aim of making driving
impossible or at least very uncomforting. This type of attack is typical for
ransomware campaigns from other computational domains. We define
three different attack scenarios for our experiments:

. S1 Lockout The attacker locks the driver out of his car. This attack can be
implemented for the Q7 with a minimum effort. When the car gets locked or
unlocked by the remote a corresponding sequence of messages is transmitted on the
comfort bus. The attacker monitors the bus for the first message of this sequence.
Upon detection the attacker immediately sends the sequence to lock the doors. That
procedure is sufficient to lock the doors permanently. As the lock is purely electric
a manual opening with the key can be overridden as described before.

. S2 Nuisance The attacker randomly toggles warning and turning lights,
continuously raises the volume of the multimedia system and opens and closes the
windows in a random way. This can again be done by inserting CAN messages to
the comfort bus.

. S3 Confinement The attacker waits on the driver to turn off the car and release the
key. Then the central locks are applied and windows are closed followed by a
Denial-of-Service attack. This results in locked in passengers as doors and windows
are closed an no user input is registered by the ECU.

These three scenarios are implemented in Python using the python-can
package for receiving and transmitting messages. A second Raspberry Pi is
used for this. In each Scenario the BUS traffic is monitored (O1) and pre-
processed (O2).
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5.2 Test Results

S1 Lockout When the user tries to open to the car the doors are
locked immediately again. That incident alone does not raise any
alarm. Subsequent tries to open the car led to an alarm triggered by
the detector of the corresponding ID and the complete bus (O4).
The Aggregator (06) fetches data related to the doors from the log
file (O2) and passes information to the controller that anomalies
were detected on the comfort. It also reports that the doors are
probably closed. Since door locks are a concern for security the
controller reports to the user over a CLI that unusual behaviour is
observed related to the car locks and asks the user if he is trying to
open the car. Depending on user input the observer opens the doors.
S2 Nuisance The ransomware used in this scenario has several
phases. The ransomware toggles the warning lights (S21). This is
not sufficient to raise alarm. In the next step the ransomware
quickly raises and lowers the volume leading to distracting noise
(S22). The bus detector (O4) raises alarm due to low entropy values
but the ID detector does not. The detected anomaly and information
of the log file (O2) are not sufficient for the controller to take any
actions. Several runs with different parameters for the ID detector
have been performed. Large k values used in the ID detector imply
low false-positives rates but does not lead to the detection the
attack. Low k values lead to detection but brings high false-positive
rates. A productive use is not possible at this moment. However,
given the attack is detected the controller turns off the audio system
as countermeasure. In the next phase the ransomware raises and
lowers the windows in a random way (S23). This behaviour carries
the sample implications like S22. In total, the current
implementation cannot detect the attack reliable without producing
high rates of false-positives. In future implementations, multiple
analysers, for example ECU Fingerprinting or Artificial Neural
Networks, should be used. Moreover, the aggregator could be
improved by using a predictor (O5) and more detailed logs (02),
e.g. by building a model of the car that reflects its status.

S3 Confinement The Denial-of-Service attack is detected by ID
detectors of windows and locks as well as the bus detector (O4).
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Moreover, the Observer reports to the controller that doors and
windows are closed. The controller opens the trunk and notifies the
user to leave the car through the trunk.

6 Summary and Outlook

This work discusses the possibilities of bringing Organic Computing
Observer / Controller architectures into an automotive environment. It is
shown that such an adaption is possible and even enhances security and
safety of an automotive. The main contribution is the discussion and
exploration of necessary adaptation as well as limitation and merits. A first
demonstrator and its efficiency in hampering such complex exemplary
attack scenarios has been shown. The approach presented in this work
allows a reaction on complex threats which single constituent parts would
not itself register as a threat. This approach seems well suited for use in
other scenarios with similar threat scenarios and basic architecture. In
essence all systems which consistent of actuators, sensors, communication
bus and computational units carry the same risk of being attacked by
injected bus messages. If the system is complex enough that a single
injected message does not trigger any alarm or harm by itself while a
sequence of injected messages provokes a harmful macro behaviour the
same threat scenarios arise. The fact that these system of systems show an
observable macro behaviour implies that they influence their surrounding
and hence cause inherent safety risk once their security is compromised.
One example for such a system would be industrial automation. Industrial
automation shares the same basic components like automotive IT and faces
the same problems with ever growing complexity. It is without doubt that
industrial automation systems are systems of systems. In addition, attacks
on these cyber-physical systems also often consist of a sequence of bus
messages to the actuators which are each by itself without harm but in their
entirety cause a harmful macro behaviour. Examples of malicious attacks
on these types of systems might be similar to these presented in here. In the
lockout scenario (S1) an attacker would manipulate an industrial system in
a way to prohibit its normal function. This might include erratic moving of
the industrial robots so a maintenance crew might only be able to approach
the robot after powering it down. In either case the functionality is denied
to the user and a safety risk arises from the security risk. The possibility of
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causing nuisance (S2) by using industrial actuators and HMI is obvious,
while a locked in scenario (S3) would require doors to be attached to the
industrial system. This mighty only be relevant in risk zones separated by
doors and more a topic of smart home automation. However, an adaptive
system observing the macro behaviour of such a system again enables the
suppression of this threat.
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