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A Hardware Accelerator Framework Approach for Dynamic
Partial Reconfigurable Overlays on Xilinx PYNQ

Benedikt Janßen1, Tim Wingender2, Michael Hübner3

Abstract: Reconfigurable System-on-Chips (SoC) combine processor cores with Field-Programmable
Gate Array (FPGA) fabric. Thereby, these systems enable to optimize the execution of application
to some extend by hardware accelerators in the FPGA fabric. However, hardware accelerator
development requires special skills from the developer since hardware development differs substantial
from software development. Overlays offer a way to abstract the complexity of FPGA usage by
predefined programmable hardware architectures. With Dynamic Partial Reconfiguration (DPR) it
becomes possible to exchange parts of an overlay’s architecture without affecting the operation of the
remaining parts. In this article, we present a first version of our framework to ease the integration of
hardware accelerators in Python via DPR overlays. The integration into Python is based on Xilinx
PYNQ. The framework approach is based on our Python package ‘pynqpartial’.
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1 Introduction

Application-specific hardware accelerators enable an optimized application execution.
Besides the implementation into an application-specific integrated circuit (ASIC), Field-
Programmable Gate Arrays (FPGAs) offer another more flexible way for the implementation.
Their functionality can be defined by downloading configuration bitstreams in the field. The
flexibility to program the hardware design in the field comes at the cost of an increased
number of transistors and thus, in chip area and power consumption. However, it has been
shown that FPGAs often offer a beneficial performance per watt ratio in comparison to pure
processor and graphic processing unit (GPU) based designs [Le16][Nu16][AKJH16].

The higher optimized execution comes at the cost of an increased programming complexity.
Within the FPGA research community, FPGA overlays are an active field of research to
overcome this hurdle. Overlays abstract the complexity and challenges of hardware design by
offering a predefined but programmable hardware architecture which is optimized for a class
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of applications. Even though overlays are not optimized for a specific application, it has been
shown that it is possible to maintain a high performance [CA13][JMF16][AKJH16][Pu14].

If an overlay targets an increasing bandwidth of functionality, its hardware resource
requirements will increase too. Thereby, the resources available in the FPGA fabric are a
limitation for such comprehensive overlays. Dynamic partial reconfiguration (DPR) offers
a way out by enabling a temporarily shared usage of FPGA resources among different
overlay processing functions. This sharing is done in a time-multiplexed manner. Thus,
DPR enables a better resources utilization and resources efficiency [Ri16b][Ri16a][NL16].
For DPR a partial bitstream is loaded onto the FPGA, targeting only a certain part of its
area. Within current FPGAs, this area need to be predefined during hardware design time
and are called reconfiguration partition (RP).

The goal of our work is to enable a better integration of hardware accelerators into the
software domain. To achieve this goal, we follow two approaches. First, to ease the hardware
accelerator usage for software developers, and second, ease hardware accelerator interface
creation for hardware developers. Therefore, we are developing a framework to support
hardware developers to integrate their hardware into Python. Our work extends the Xilinx
PYNQ project and targets the Xilinx Zynq-7000 System-on-Chip (SoC). The Zynq consists
of an ARM A9 dual-core processor, denoted as processing system, and FPGA fabric,
denoted as programmable logic.

The next Section 2 of this article presents the work related to our research. It is followed by
a detailed explanation of our approach in Section 3 and a description of the implementation
in Section 4. We evaluated the current version of our framework on the PYNQ-Z1 with
multiple basic applications. The evaluation setup and results are presented in Section 5.
Finally, Section 6 concludes the presented work and gives an outlook to future work.

2 Related Work

The Xilinx PYNQ open-source project was launched in 2016. The project goal is to
enable the utilization of the Zynq’s processing system and programmable logic through the
productivity language Python [Xi16]. On the software side, PYNQ consists of a Python
package, called ‘pynq’, which is shipped with a Linux image for the Xilinx Zynq. On the
hardware side, the project develops an overlay that helps to evaluate the possibilities of the
FPGA fabric from Python. By the time this article was written, the project supports the
PYNQ-Z1 board as hardware platform. Subsection 3.1 analyses the PYNQ project more
detailed.

Integrating hardware accelerators into the software domain is an ongoing research topic
within the FPGA community. The basic communication mechanism between hardware and
software in [Ka13] and [PK15] is memory-mapped register access. It is also the basis of
hardware interface of the pynq package.
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A Hardware Accelerator Integration Framework 13

Xilinx SDSoC is a high-level synthesis (HLS) development environment for the Zynq-
SoC. SDSoC enables a semi-automated implementation of hardware/software co-designs.
For basic implementations, the developer does not need to be familiar with hardware
development mechanism, e.g. hardware description languages. However, to guide SDSoC to
an optimized implementation through directives, certain hardware properties and behavior
need to be understood. The hardware/software co-design implemented by SDSoC is either
based on Linux image which contains the application or the application is compiled into
a bare-metal executable. For both cases, wrapper functions for the hardware access are
inserted. In [KG16], the authors describe their work to enable DPR designs within SDSoC.
They used the Tcl script interface of SDSoC to invoke the necessary commands. This
way, the FPGA fabric can be utilized through comprehensive application-specific hardware
accelerators. For their implementation, only minor hardware development knowledge is
necessary.

FUSE targets to abstract the architecture of reconfigurable systems from the software
developer [IS11]. FUSE is a front-end user framework to manage hardware accelerators.
Software tasks represent the loaded accelerators to the software developers and enable a
POSIX thread based API. This way, software developers do not need to have knowledge
about the HW accelerator. Instead, it can be used through multithreaded programming
models.

‘hthreads’ is a computational architecture created by Peck et al. [Pe06]. It has real-time and
multithreading support, as well as POSIX-like threads. It is based on the concept of hybrid
threads. The implementation is based on the hthreads microkernel. It is real-time capable,
with support for multithreading and POSIX-like threads. The application source code is
translated into a ‘hardware intermediate form’, which can be translated into VHDL.

ReconOS is a Linux-based operating system which provides libraries and drivers for
hardware interaction [Ag14]. Moreover, its authors define a programming model and a
dynamically reconfigurable architecture. The architecture developer is supported by a system
builder tool, that integrates the system components. A distinguished feature of ReconOS is
the migration of tasks from software to HW and vice versa.

In [AP16], the authors of hthreads and ReconOS, Andrews, Platzner, et al., summarize the
goal of their work and provide a retrospective, with an emphasis on the programming model.
They conclude that high-level programming models are a key for the success of reconfigurable
manycore systems. Moreover, they point out that their results show, that tradeoffs between
portability, scalability and performance are necessary. These key-objectives need to be
considered when enhancing the hardware and software architectures.

R3TOS is a real-time operating system for reconfigurable devices [It13]. It supports hardware
and software tasks and provides an API for developers. The communication between the
hardware and software is based on buffers in a shared memory.

RIFFA is an open-source reusable integration framework for FPGA accelerators. In [JFK12],
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Jacobsen and Kastner present the second version, RIFFA 2.0, which supports C/C++, Java
1.4+ and Python 2.7+. In software, byte arrays are used as data interface, the control of the
hardware is done over PCIe register accesses. The communication is based on PCIe and
hardware accelerators are interfaced with a FIFO-based protocol.

Sheffield et al. present ‘Three Fingered Jack’ [SAK12], a vectorising compiler and HLS
tool to map certain Python loops onto an FPGA. They use a Python decorator ‘@fpga’, to
mark functions that should be redirected to their toolchain. The toolchain creates processing
elements (PEs) that are placed in a cluster to compute the loop in parallel.

In [LKM16], Logaras et al. present SysPy, a Python-based tool to describe, verify and
start the design implementation. Besides Python it is possible to describe parts of the
system with VHDL. For the verification, it is possible to use Python-based testbenches and
generate waveform diagrams. The implementation is supported by the generation of scripts
for synthesis and implementation. Thus, SysPy is a Python-based hardware design tool for
hardware developers than an application acceleration tool for software developers.

3 Framework Approach

Our framework approach utilizes the pynq package from the PYNQ project, as shown in Fig.
1. We chose this approach to build on top of an active project with a growing community. The
framework utilizes the programmable logic management capabilities of the pynq package.
The following Subsection 3.1 describes the interplay between our framework and the PYNQ
components. The usage of DPR hardware accelerators through our framework is based on a
DPR overlay concept that is described in Subsection 3.2.

Fig. 1: Overview about the framework structure and its integration into PYNQ.
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3.1 PYNQ Project Evaluation

The PYNQ project defines the web application Jupyter Notebook as its standard Python
programming interface. Moreover, it uses the concept of overlays to utilize the programmable
logic. It provides two classes for the developer to interact with the programmable logic itself,
the ‘Bitstream’ and the ‘Overlay’ class. Moreover, it contains several classes to interact
with hardware modules inside the programmable logic. The classes wrap the hardware by
providing an API. It is also possible to wrap the FPGA configuration bitstream inside a
Python package to enable an automated installation on other PYNQ systems via the Python
package manager ‘pip’ [Ta16].

The programmable logic management is implemented within the ‘PL’ class, that inherits
from the ‘PL_Meta’ metaclass. To avoid conflicts in the usage of the programmable logic
between different classes, the PL class uses a client-server-approach based on the Python
multiprocessing package to enable a central management. For our framework, we utilize
the PL class to download bitstreams onto the programmable logic. This functionality is
implemented within the ‘download’ method of the Bitstream class. The download is done
through a driver provided by Xilinx and integrated into the PYNQ Linux image.

Moreover, the PYNQ Linux image includes another Xilinx driver that enables the allocation
of physically contiguous memory. Physically contiguous memory is beneficial when working
with hardware accelerators to enable simple direct memory access (DMA) from hardware,
instead of complex scatter-gather DMA. The DMA class, included in the pynq package,
provides a method to allocate physical contiguous memory from Python through the C
Foreign Function Interface (CFFI). The translation of virtual memory from within Linux
to physical addresses is implemented inside the ‘MMIO’ class that is based on the mmap
system call. We utilize the MMIO class to access registers of the evaluation hardware.

3.2 Dynamic Partial Reconfigurable Overlay Concept

Our DPR overlay concept adopts and integrates into Python’s package concept. As described
in Section 3.1, overlay bitstreams can be wrapped in Python packages. We extend this
relation, to relate the package itself to the static part of a DPR overlay. The classes, contained
in package module, implement the methods to communicate with the hardware accelerators.
A specific class is related to a specific hardware accelerator, and thus to a specific set of
partial bitstreams. We call those classes hybrid classes, as they incorporate hardware and
software. The concept is depicted in Fig. 2.

When an instance of a hybrid class is created, the object exists in the memory of the
processing system, as well as in the programmable logic. Therefore, when the instance is
deleted, the memory, as well as the programmable logic area needs to be freed.

A Hardware Accelerator Integration Framework 485
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Fig. 2: Overview about the hybrid Python packages concept for DPR overlays.

4 Framework Implementation

To implement our concept, the framework approach consists of the Python package
‘pynqpartial’ and a hardware design template. Moreover, it defines a hardware/software
interface, as introduced in Fig. 1. This part of the work is described in Subsection 4.1. For
the communication between hardware and software, we use physical contiguous memory
buffers. For the data type of the buffers CFFI supported data types can be used. This
interfacing is described in Subsection 4.2.

4.1 Python Package

On the software side, our framework depends on our Python package pynqpartial []. For
this work, we extended the pynqpartial package by the decorator function ‘hw_acceleration’
code to serve as the framework basis.

The decorator ‘@hw_acceleration’ creates a wrapper, which interacts with the hardware
accelerator. The function to be accelerated is passed as an argument. The execution sequence
is shown in Fig. 3.

Before the wrapper function is created, the compatibility between the hardware accelerator
and the hardware platform is checked. This process is shown in Fig. 3a). Therefore, the
overlay must include a hardware description file, which describes the compatibility of the
hardware functions. For this hardware description file, we chose the JSON format.

486 Benedikt Janßen, Tim Wingender, Michael Hübner
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Fig. 3: Control flow sequence of wrapper creation (a) and wrapper execution (b).

Fig. 3b) shows the execution of the wrapper. Since Python is a dynamically typed language,
we need to check the function arguments each time the function is called. With the first
version of the framework, we support only keyword-only arguments. If the arguments match
the requirements of our accelerator interface, a predefined wrapper function is returned.
The following Subsection 4.2 describes the interfacing of the accelerators. The predefined
wrapper is based on two instance of the DMA class to move data to and from the accelerator.
For other accelerator interfaces a template function needs to be filled with the specific
hardware calls by the hardware developer.

4.2 Accelerator Interface and Data Types

Currently, we support Xilinx’s simple DMA cores as accelerator interface. Our wrapper
is able to interface hardware accelerators with one or two input arrays and one output
array. Any other hardware interface requires an adaptation of the hardware wrapper code.
Since the DMA cores provide an AXI Stream interface, hardware accelerators should be
compatible with this protocol. The input and output buffers need to be created manually by
the application. With this first framework version, we evaluate NumPy arrays as interface
for the hardware accelerators. As mentioned earlier currently up to two input buffers and

A Hardware Accelerator Integration Framework 487
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one output buffer are supported. The management is not optimized and involves several
steps. The basic sequence for buffer allocation is listed below.

1. Create NumPy arrays for input and output data

2. Convert physical contiguous memory buffers to NumPy arrays

3. Copy data from NumPy input array to physical contiguous memory input array

4. Do hardware processing

5. Copy data from physical contiguous memory output array to NumPy output array

This flow has some potential for optimization, since (1) we currently need two NumPy
arrays, for input and output data, and (2) the data needs to be copied from the NumPy arrays
to the buffers. Aspect (1) depends on the application, for sequential memory accesses a
single buffer can be sufficient. However, when dealing with random memory access patterns,
it is likely that valid data will be overwritten. Aspect (2) depends on the memory allocation,
NumPy arrays do not use physical contiguous memory, but virtual one. Therefore, we plan
to introduce a data type which utilizes physical contiguous memory as data memory for
NumPy arrays. This way, the software interface is a NumPy array and the hardware interface
is a physical contiguous memory buffer.

5 Framework Evaluation

The focus of the evaluation lies on the decorator based hardware wrapper functionality. A
data copy application, as well as a threshold filter have been used for the evaluation. The
implementation is based on Xilinx Vivado HLS, its structure is depicted in Fig. 4.

Fig. 4: Structure of the evaluation design; vector addition application uses three DMA channels, data
copy application uses one per direction which are connected directly.

488 Benedikt Janßen, Tim Wingender, Michael Hübner
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Fig. 5 shows the data copy application. We compare our hardware implementation against a
for-loop, as well as NumPy’s copy function. Since we are using NumPy.copy to copy the
NumPy array data into the physical contiguous memory buffers, the hardware accelerated
application is always slower. The execution time is not increasing significantly with an
increase in data to be transfered. Therefore, it can be concluded that the communication
overhead for the hardware is the bottleneck.

Fig. 5: Copy data application execution time over amount of data copied.

In the second evaluation benchmark we filtered four images with a threshold filter. The
results are shown in Fig. 6. The hardware filter is about 56 times fast for processing the
smallest image. For the larger images the speedup factor is around 98. The difference can
be based on the communication overhead for configuring the DMA cores. The Python
implementation is listed below. ’np_img’ is a NumPy array that stores the image data.

n p _ i m g _ f l a t = np_img . f l a t t e n ( )
f o r i in range ( num_elmnt ) :

i f n p _ i m g _ f l a t [ i ] >= t h r e s h _ v a l u e s [ 0 ] :
ds tBuf_sw [ i ] = t h r e s h _ v a l u e s [ 1 ]

e l s e :
ds tBuf_sw [ i ] = n p _ i m g _ f l a t [ i ]

6 Conclusion and Outlook

In this article, we present our framework approach for DPR overlays on Xilinx PYNQ. We
extended the pynqpartial package with function wrapper code to interact with hardware
accelerators interfaces. Currently, only simple DMA cores are supported as hardware
interface without manual adaption. The basic handling of the FPGA fabric is done via
the ‘Overlay’ and the ‘Bitstream’ class of the pynq package. To use our framework, minor
modifications to the pynq package are necessary.

A Hardware Accelerator Integration Framework 489



i
i

“proceedings” — 2017/8/24 — 12:20 — page 490 — #490 i
i

i
i

i
i

20 Benedikt Janßen, Tim Wingender, Michael Hübner

Fig. 6: Threshold filter execution time over image size.

In comparison with the related work, we focus on the interface between software and
hardware developers. Therefore, unlike [SAK12], we do not target a just-in-time acceler-
ation of software, but a library based acceleration. Moreover, we do not target an eased
implementation of hardware accelerators, as for instance [LKM16], but a simplification
of interface building for hardware developers. In comparison to the approaches taken by
the authors of FUSE [IS11], hthreads [Pe06], ReconOS [Ag14] and R3TOS [It13], our
hardware management is done at a higher level within Python. Therefore, it can be ported
to other Linux-based systems on Zynq that support Python.

With this first framework version, we evaluated our approach. Up until now we do not have
a comprehensive performance analysis, since our goal was to evaluation the functionality
of our approach. Therefore, we will proceed with an analysis of the performance and
bottlenecks, as well as requirements for more complex applications. For the future we plan
to evaluate our framework with a data processing application from the process industry
and extend it further based on the requirements of this application. Another aspect is the
evaluation of a specific hardware type to avoid unnecessary memory allocation.
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