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Abstract: HPC applications usually are not written in a way that they can cope with dynamic
changes in the execution environment, such as removing or integrating new nodes or node com-
ponents. However, for higher flexibility with regard to scheduling and fault tolerance strategies, ad-
equate application-integrated reaction would be worthwhile. However, with legacy MPI codes, this
is difficult to achieve. In this paper, we present Lightweight Application-Integrated data distribution
for parallel worKers (LAIK), a lightweight library for distributed index spaces and associated data
containers for parallel programs supporting fault tolerance features. By giving LAIK control over
data and its partitioning, the library can free compute nodes before they fail and do replication for
rollback schemes on demand. Applications become more adaptive to changes of available resources.
We show a simple example which integrates our LAIK library and present first results on a prototype
implementation.
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1 Introduction

Modern High Performance Computing (HPC) systems become more and more parallel
nowadays. To achieve the goal of exascale computing, technologies like on-chip paral-
lelism are increasingly used in these supercomputers [SDM10]. This development greatly
challenges programmers, especially on managing the data across all these distributed com-
pute nodes. For future systems, Defense Advance Research Projects Agency (DARPA) ex-
pects that existing technology such as Checkpoint & Restart will require extensive amount
of resources, which contradicts to the expected high efficiency of HPC. Therefore, it is
no longer sufficient to handle the evolving requirements on fault tolerance and reliability
[BBea08]. Towards exascale computing, different approaches are possible to increase the
system reliability. For example, attempts4 to add fault tolerant components [FD00] to the
4th version of Message Passing Interface (MPI) exist. Furthermore, mechanisms like pro-
cess level migration [Wa12] or virtual machines [Na07] are presented to achieve a fault
tolerant environment which is transparent to the application programmer. However, these
solutions often require a significant amount of resources similar to the classical Check-
point & Restart technique and limit an application’s scalability, providing only limited
applicability to emerging exascale requirements.
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In extension of the application-transparent strategies mentioned above, we point out that
there is another possibility to make applications fault tolerant. Instead of speculating on the
programmers’ intention and applications’ execution, one can ask the programmer to write
the program in a manner that includes fault tolerance features. This results not only in re-
duced resource management overhead by the framework that provides fault tolerance, but
also keeps this framework lightweight, with the application keeping control over any addi-
tional overhead required e.g. by redundancy. This way, we can achieve simple, lightweight
and scalable fault tolerance on modern exascale HPC.

However, one cannot expect the programmer to write fault-tolerance features from scratch.
To this end, in this paper we propose a lightweight library to achieve exactly that: LAIK
focuses on providing fault tolerance by taking over control of the partitioning of data
containers. If a node or node component is expected to fail, the library can be instructed
to free the corresponding part of an HPC system from any compute load and application
data. This is done by repartitioning within LAIK. Furthermore, to help with spontaneous
failures, LAIK can be asked to maintain redundant copies of important data structures
by updating copies on nearside nodes (local checkpointing). The update frequency can
be controlled by a predicted probability of failure. If a fault-tolerant MPI implementation
detects a node fault, a local rollback and repartitioning can be done with the help of LAIK.

In this work, we present our requirements for LAIK, an API proposal, and a first prototype
implementation using an MPI communication backend. The latter is available as open-
source on Github5.

2 Related Work

The currently most widely used de-facto parallel programming model for legacy HPC
applications is MPI [Fo12], which allows to do message passing or one-sided communi-
cation via mapping of remote address spaces, both at a low level. For higher productiv-
ity, the Partitioned Global Address Space (PGAS) model was proposed which provides
global address spaces and allows to program for good locality of accesses by making the
fact whether an address is local or remote explicit. Implementations come either in new
programming languages e.g. Chapel [ZCC07] and X10 [SBea14], or as libraries such as
Global Array Toolkit (GAT) [Ni06], GASPI [ABea13], and DASH [FGea14, IFG16]. The
drawback of Chapel or X10 is that programs have to be rewritten which can be painful for
legacy code. The library GAT allows programmers to do put and get operations from local
memory to data structures in a global address space. Similarly, GASPI provides a global
address space with distributed data and allows access via RDMA (remote direct memory
access) operations provided e.g. by Infiniband, which should result in better asynchronous
communication than MPI. DASH uses C++ templates to provide a selection of standard
data structures for the application programmer. The communication of DASH is built on
top of DART [ZMea15] - a run-time system which provides abstraction of different com-
munication libraries. All of the mentioned approaches provide application programmers a
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Figure 1: LAIK and Communication Backend

full interface for all possible communication needs of an application. In contrast to that,
LAIK only provides one specific functionality and can be used in cooperation with existing
communication libraries, by asking a communication backend to perform required actions
for LAIK. The latter can be provided by the application itself to ensure correct embedding
into already existing communication behavior of an application. Other approaches, such as
Legion [TBA13], a region based programming system, handles data partitioning in a sim-
ilar manner as LAIK. It shows the capability of keeping data coherence with non-disjoint
data partitions by providing a such runtime with corresponding C++ API. However, it is
not lightweight and incremental. An existing application cannot be ported without signif-
icant effort. FTC-Charm++ [ZSK04], a protocol for in-memory checkpointing and restart
for MPI applications, provides scalable fault tolerance for applications written in Charm++
[KK93]. It provides very similar concepts which allows application to run with less pro-
cessors after a crash. However, it relays on the Charm++ runtime. Thus, only a limited
class of applications can benefit from this approach.

3 Features of the LAIK Library

The idea behind LAIK is to provide lightweight management for the distribution of global
data containers for parallel applications using index spaces. By giving LAIK control over
partitioning, it should be able to provide application-integrated fault tolerance features. To
this end, the library is expected to sit in-between the application and the communication
library used by the application, as shown in Figure 1.

First, we state our requirements guiding the design. Similar to MPI, LAIK should support
SPMD-like programming with collective functions. That is, every participant in a paral-
lel application, a LAIK task, executes the same code. Most LAIK functions are collective
operations, this is all LAIK tasks have to call into this same LAIK function to ensure cor-
rect behavior. For highest flexibility of using LAIK with existing application codes, LAIK
is expected to work in cooperation with other communication libraries e.g. MPI. Com-
munication backends in LAIK should have a documented API and may be implemented
by the application itself. For convenience, we will provide standard backends for MPI and
multi-threaded shared memory (which mostly reduces communication to synchronization)
which may be customized by applications. Furthermore, we want porting of existing codes



Figure 2: An example of a partitioning specification for a 1d data structure.

to LAIK to be done in an incremental way, step by step: the programmer can put one data
structure after the other into LAIK’s responsibility. This should not mean that the actual
allocation of memory resources has entirely to be done by LAIK, as the programmer still
may want to use allocator functions of another library. To this end, programmers should
be able to specify an allocator interface (alloc/realloc/free) which LAIK will use to get
real memory resources. Applications may use complex data structures such as compressed
matrices in an application-specific format. It would be difficult to make LAIK aware of
how to handle all kinds of such data structures. To still allow LAIK to take control over
partitioning of such data, the programmer should be able to use LAIK’s core abstraction,
which is about distributed (possibly multi-dimensional) index spaces. Whenever the par-
titioning of the index space changes, the application can request to get a call-back with
parameters specifying which parts of the index space should migrate among LAIK tasks.

With these requirements in mind, we now list the features we want LAIK to provide. The
goal of LAIK is to provide a fault tolerant, yet efficient way of distributing data across
different nodes. Towards this goal, the following functionalities must be supported:

3.1 Partitioning and Repartitioning of Data

For application data to be globally distributed among different parallel tasks, LAIK should
be able to take control over data partitioning. Here, a data partition for a given task specifies
which data should be available locally to the task using direct memory access. Different
program phases or algorithms may expect different parts of data to be available locally.
This requires the declaration of multiple partitions, between which the application may
want to switch back and forth. For such switches, LAIK is expected to calculate and ex-
ecute the data transfers required to satisfy the requirements for task-local data accesses
as specified by the partitions. To allow for minimal data exchange, the application should
specify the type of access done during the time a partitioning is active. E.g. switching to a
partitioning where after the switch all data will be overwritten anyway does not need any
communication at all. Access types are read-only, read-write, write-only. A data element
may be required to be locally available by multiple tasks for reading, but usually only by
one task for writing. However, multiple writers can be supported if a conflict resolution
is provided which decides about the resulting value. Reduction operations such as Sum,
Product, or Minimum, are typical conflict resolutions. The operations are automatically
triggered when the program switches to a partitioning with read access to the given data
elements, which decrease programming effort.



Figure 2 shows an example partitioning of 1d data among nodes N0, N1, and N2 (rows).
For each element, exactly one node is the owner with read and write access. As shown in
the figure, we want LAIK to provide copies for reading of the neighbor elements at the
border of owned regions. This is useful for e.g. stencil codes. This example shows that it
is useful to “switch” to the same partitioning, which ensures consistency of the values of
elements to be accessible at multiple nodes. Thus, instead of a switch, it is better to talk
about enforcing consistency requirements of a given partitioning. In the example, this will
result in copying data as shown by the arrows in the figure. To support communication
asynchronous to computation, a program first has to acquire access to parts of a LAIK
partition with different access permission right after a switch: in the example separately
for the RW and R parts. This may allow to already do computations on the inner parts of
the owned regions while communication for the border elements is still going on, which
probably speeds up the computation.

3.2 Coupling Partitions of Data Structures

Applications often use multiple different data structures at the same time. Thus, if LAIK
decides that only a given portion of a data structure will be available locally to one task, the
application may want simultaneous access to elements in other data structures. To provide
flexible coupling of partitions, the user actually should be able to specify coupling of
(partial) index spaces according to the data pattern of an algorithm. E.g. for matrix vector
multiplication, we want to couple the row dimension of the 2d index space of the matrix
to the 1d space of the vector. Another example are compute kernels which, for writing to
an element in one data structure, may need read access to corresponding data elements in
another structure and its neighbors in the index space (for so-called ghost layers in stencil
codes). Switching between partitions of one data structure thus may result in automatic
switching also for other data structures.

3.3 Communication backend

LAIK shall support different communication libraries to execute data migration demands
due to switches between partitions. Standard backends to be supported are MPI and Shared
Memory. The latter is wanted to allow multi-threaded programs to use LAIK for synchro-
nization. Furthermore, LAIK should work together with any communication library used
by an application. This should be supported by allowing application programmers to im-
plement their own LAIK backend.

3.4 Efficient Fault Tolerance

Application data shall be recoverable upon system failure. The LAIK library shall support
both recovery-based (e.g. Checkpoint & Restart) and proactive (e.g. Fault Prediction) fault
tolerance. We want LAIK to support local recovery, that is on node failure, a near-side node



Figure 3: Load Balancing (left), Remove work from N1 due to failure prediction (right).

should be able to take over the computation of the failed node by using duplicated data.
This way, LAIK can support a more efficient scheme than classical global Checkpoint &
Restart. For failure prediction, we expect that there is a way to do online monitoring of
hardware health via adequate sensors. However, this is out of scope for LAIK. Any support
to react to outside sources should be implementable as a thin layer on top of LAIK. This
may regularly poll (synchronous to program phases) for incoming messages using IPC
mechanisms or protocols like Message Queue Telemetry Transport (MQTT).

3.5 Load Balancing

A task within a parallel application usually has a work load depending on the size of data it
has access to. As LAIK provides partitions to tasks, this influences the work load distribu-
tion. We want LAIK to support automatic workload distribution via regular repartitioning
of data structures. For that, LAIK should be able to make use of task-related profile data
(such as time measurements of program phases). To be able to support different load bal-
ancing mechanisms, both static and dynamic, a key-value store may be needed to have
historical data available. This must be persistent to allow static load balancing.

Figure 4: Hierarchical LAIK Instances



Figure 3 (left) shows an example of data re-distribution for load balancing. First, the data
is distributed unequally across nodes. Upon a load balancing request, recalculation of par-
tition borders from profile data results in a data redistributing with better load balancing.
Figure 3 (right) shows an example of data reacting to failure prediction as part of a pro-
active fault tolerance scheme. A pre-failure condition for node N1 results in LAIK initiat-
ing a repartitioning such that the failing compute node is excluded from execution. Here
we assume that a system health monitor with an integrated fault predictor exists. Related
works such as [LZea06] shows the possibility of predicting system failure.

3.6 Hierarchical Data Partitioning

In order to make the LAIK library even more usable, LAIK shall be able to run in a nested
multi-instance mode. It should be possible to connect different LAIK instances at different
hierarchy levels. Thus, a partition in one LAIK instance should map to a top-level index
space in a lower LAIK instance. To this end, LAIK index spaces must be able to shrink or
expand. Data migration request may be passed between instances. Thus, a repartitioning
happening in a lower LAIK instance is ignored in a higher LAIK instance, but a reparti-
tioning of a higher instance will potentially result in size changes of index spaces in lower
LAIK instances, resulting in forced repartition of the lower instances. The expected use for
this nesting functionality is that large HPC systems may have a hierarchical topology with
different resource capabilities (network, processors, accelerators) at different levels. This
can be represented by adequate LAIK nesting. In the simplest case this would be inter-node
and intra-node. Figure 4 shows a hierarchical configuration using different nested LAIK
instances. Application data is first divided into LAIK data partitions node-wise. These data
partitions then are mapped to top-level spaces if the inner LAIK instances. These divide the
data again to be assigned to different devices (for example CPU cores or multiple GPUs)
within the node.

4 Examples

Figure 5 shows the implementation of a parallel vector sum using LAIK with the MPI
backend. The compiled binary can be run with “mpirun” using the number of LAIK tasks
as requested as number of MPI tasks. First, the vector is initialized on the master node
using a master partitioning, giving all elements write access on the master node only.
To actually write the values, the partitions have to be “mapped” to local memory using
a canonical ordering: the index into the 1d array is equal to the offset in memory (more
data layout options are planned for 2d or 3d data). Afterwards, we switch to a stripe
partitioning with equal size for all tasks, resulting in MPI messages from master to other
nodes. After another mapping request for direct access, partial sums are generated with
the result written to another LAIK array with only one element per task. This shows how
LAIK can be asked to do a sum reduction, which actually happens when this array is
switched to a partitioning, in which only master having access to print out the final result.



#include "laik -backend -mpi.h"

int main(int argc , char* argv [])

{

Laik_Instance* inst = laik_init_mpi (&argc , &argv);

Laik_Group* world = laik_world(inst);

// allocate global 1d double (8 bytes) array: 1 mio entries

Laik_Data* a = laik_alloc_1d(world , 8, 1000000);

// initialize at master (others do nothing)

laik_set_new_partitioning(a, LAIK_PT_Master , LAIK_AP_WriteOnly );

laik_map(a, LAIK_DL_CANONICAL , (void **) &base , &count);

double* base; uint64_t count;

for(uint64_t i = 0; i < count; i++) base[i] = (double) i;

// distribute data equally among all tasks , do partial sums

laik_set_new_partitioning(a, LAIK_PT_Stripe , LAIK_AP_ReadWrite );

laik_map(a, LAIK_DL_CANONICAL , (void **) &base , &count);

double mysum = 0.0;

for(uint64_t i = 0; i < count; i++) mysum += base[i];

// write partial sums as input for sum reduction

Laik_Data* sum = laik_alloc_1d(world , 8, 1);

laik_set_new_partitioning(sum , LAIK_PT_All , LAIK_AP_SUM );

laik_map(sum , LAIK_DL_CANONICAL , (void **) &base , &count);

*base = mysum;

// master -only: does sum reduction to be read at master

laik_set_new_partitioning(sum , LAIK_PT_Master , LAIK_AP_ReadOnly );

if (laik_myid(world) == 0) {

laik_map(sum , LAIK_DL_CANONICAL , (void **) &base , &count);

printf("Sum: \%.0f", *base [0]);

}

laik_finalize(inst);

}

Figure 5: Example using LAIK for parallel vector initialization and sum.

Figure 6 shows excerpts from an example using LAIK to perform computation on a sparse
matrix distributed in row dimension for partitions containing a similar number of non-
zero elements. For this, we use an index space which also is bound to vector “r”, which
has the same number of elements as there are rows in the sparse matrix. To calculate
the requested weighted stripe partitioning, LAIK will call into an application provided
function (getEW) that returns a weight for each element in a 1d index space, equal to the
number of elements in that row. Here the structure type “SpM” encapsulates a matrix stored
in CSR format. Afterwards, each task performs a loop over all matrix rows belonging to
its partition.



double getEW(uint64_t i, void* d) {

SpM* m = (SpM*) d;

return (double) (m->row[i + 1] - m->row[i]); }

main {

...

Laik_Data* r = laik_alloc_1d(world , 8, SIZE);

Laik_Space* s = laik_get_space(r);

Laik_Partitioning* p = laik_new_base_partitioning(s,

LAIK_PT_Stripe , LAIK_AP_ReadWrite );

laik_set_index_weight(p, getEW , matrix );

laik_set_partitioning(resD , p);

laik_my_slice(p, &from , &to);

laik_map(r, LAIK_DL_CANONICAL , (void **) &res , &count );

for(int r = from; r < to; r++) { res[r-from] += ... }

...

}

Figure 6: Using element-wise weighting balancing workload involving a sparse matrix.

0/3 partng -0: 0:[0 -999999] , 1:( empty), 2:( empty)

...

0/3 partng -1: 0:[0 -333332] , 1:[333333 -666665] , 2:[666666 -999999]

0/3 partng -0 => partng -1: locl: [0 -333332]

send: [333333 -666665] => T1 , [666666 -999999] => T2

1/3 partng -0 => partng -1: recv: T0 => [333333 -666665]

2/3 partng -0 => partng -1: recv: T0 => [666666 -999999]

Figure 7: Excerpt of debug output from Example 1 (vsum). This shows the computed migration of
indexes for switching between master and Stripe partitioning.

5 Prototype Implementation and First Results

Our current prototype of the LAIK library6 comes with an MPI backend, support for 1D
data and different types of partitioning. The most important one is a stripe partitioning,
which slices a 1D space into an ordered sequence of consecutive partitions, one for each
task. This partitioning type supports element-wise and task-wise weighting. Element-wise
weighting is shown in Fig. 6; task-wise weighting similarly uses a function called by LAIK
e.g. returning time measurements for load balancing.

The LAIK prototype source code provides examples as shown in the previous section
(vsum and spmv, respectively). As expected, with enough parallel work load, we can
achieve the same scalability as if an example would have used MPI directly. Optionally,
debug output can be printed which includes the calculated partitions of index spaces as
well as the transition actions needed to migrate from one partitioning to another. This is
shown in Fig. 7.

6 Commit 790ea403 at https://github.com/envelope-project/laik



6 Conclusion and Future Work

In this paper, we presented our design and a prototypical implementation of LAIK, a
lightweight library for the distribution of data containers among tasks of a parallel ap-
plication. The idea is to separate the decision making of how to best partition application
data from the application code. This allows partitioning strategies which not only take
program-internal information (such as profiling data for load balancing) but also external
sources into account. This enables support for application-integrated fault tolerance fea-
tures, such as pro-active requests for removing computation from nodes predicted to fail
soon. As future work, we will support real-world applications which need coupling of in-
dex spaces of used data structures, as well as support for multi-dimensional data. Further,
we want to show how a local checkpoint/restart functionality involving rollback only for
data recovered with the help of redundant data duplication within LAIK. Furthermore, we
will implement a mechanism to adapt fault predictions from outside. Although adapted ap-
plications using MPI in this paper, it is to be expected that legacy MPI application cannot
continue the computation, if one of the ranks suffers from failure. Therefore, we will have
a closer look into potential fault tolerant MPI implementations, which allows to change
the size of MPI communicator and exclude some ranks at runtime.
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[ZSK04] Zheng, Gengbin; Shi, Lixia; Kalé, Laxmikant V: FTC-Charm++: an in-memory
checkpoint-based fault tolerant runtime for Charm++ and MPI. In: Cluster Computing,
2004 IEEE International Conference on. IEEE, pp. 93–103, 2004.


