
Tool Supported Aspectual Predesign

Vladimir A. Shekhovtsov1, Arkadiy V. Kostanyan1, Eugene Gritskov2, Yury Litvinenko2

1National Technical University 
“Kharkiv Polytechnical Institute” 

21 Frunze Str., 61002, Kharkiv, Ukraine 
shekvl@kpi.kharkov.ua

2Kharkiv National University 
4 Svobody Sq. 

61077, Kharkiv, Ukraine 

Abstract: Aspectual predesign is an approach to user-verified mapping of the non-
functional requirements to the system into the aspect-oriented design model. It is
an extension of the Klagenfurt Conceptual Predesign. In this paper, we present the 
architecture of modular software tool aiming to support the aspectual predesign
workflow. The XML-based Predesign Exchange Format (PEF) for conversion-
independent representation of aspectual predesign model (APM) is introduced.  

Key words: non-functional requirements, conceptual predesign, aspectual 
predesign, XML, KCPM, AOSD, APMTool, Eclipse Modeling Framework 

1   Introduction

Our paper presents the current results of the research which goal is to allow conversion 
of the non-functional requirements to the system into an intermediate model residing
between requirement analysis and conceptual design and to map this model into the 
conceptual model. Non-functional requirements [Chu00] are related to such important
system characteristics as security and performance. This paper is the follow-up of the 
previous paper of the authors [SK05]. In that paper, we introduced the Aspectual
Predesign technique allowing user-verifiable mapping of the non-functional 
requirements. Being the first paper about the subject, [SK05] touched the
implementation issues only briefly. The purpose of this paper is to look at these issues in
more detail. Its goal is to outline the directions for the practical implementation of the 
aspectual predesign workflow and to describe the architecture of its software prototype - 
the APMTool.

The remainder of this work is organized as follows. Section 2 gives brief background
information about the Aspectual Predesign approach. Section 3 introduces the APMTool 
and describes its general architecture. Section 4 contains the detailed description of the
core data format of APMTool called Predesign Exchange Format (PEF). A sample of the 

153



APMTool requirements processing is presented in Section 5. In Section 6, our
conclusions and the directions for future research in the aspectual predesign field are
presented. The home page for the APMTool project is at
http://apmtool.sourceforge.net.

2   Aspectual Predesign  

Aspectual predesign [SK05] is a method that allows non-functional requirements to the 
system to be converted into the intermediate model (Aspectual Predesign Model, APM) 
that in turn can be converted into the conceptual model of the system. This model is
more general than the conceptual model but more formal than the requirements 
specification.

Aspectual predesign is based on two well-known software engineering approaches: 
Aspect-Oriented Software Development (AOSD) [Asp05, CB05, JN04] and the 
Klagenfurt Conceptual Predesign [KM02, MK02, FKM03]. 

AOSD addresses crosscutting concerns or aspects of the system (goals and principles
such as logging, security, performance that are implemented in different parts of the
system but have nothing in common with their main functionality). At the requirement 
analysis phase, aspects correspond to the non-functional requirements to the system. At 
the design phase, the UML-based and proprietary notations can be used to represent the 
aspects. At the implementation phase, aspects can be implemented in the program code.
The most widely used implementation technique is Aspect-Oriented Programming 
(AOP) that maintains clear separation between core classes of the system (related to its 
main functionality) and its aspects. Core classes and aspects are weaved together to form 
the final application. The AOP introduces several basic constructs that are used in the 
aspectual predesign: 

a) aspects (modules that encapsulate crosscutting behavior);  
b) join points (places where execution of base classes could be intercepted to run the

crosscutting code);
c) pointcuts (rules that define the set of join points);  
d) advices (the crosscutting aspect code running at join points defined by pointcuts; at

the weaving stage, the code of advice is injected into the code of the base classes at
the places defined by pointcut.) 

The main goal of the Klagenfurt Conceptual Predesign is to implement requirement 
gathering that could be controlled and verified by the end-user. This goal is achieved 
with the help of KCPM (Klagenfurt Conceptual Predesign Model) – intermediate
semantic model that resides between the requirement specification and the conceptual
model. This model consists of semantic concepts that are more general than conceptual
modeling concepts and could be more easily understood and verified by the end user.
These concepts are thing-type (generalization of entity/class and attribute), connection-
type (representing all kinds of relationships among the concepts), operation
(generalization of the method), and event. KCPM could be presented in tabular form (as 

154



glossaries) and as the semantic network. After verification, this model could be mapped 
into the conceptual model. This mapping is performed according to the precisely defined
mapping rules. The KCPM is supposed to be retrieved from the functional requirement 
specifications. This can be done manually or with the help of Natural Language 
Processing (NLP) tools. The latter approach is used in the project NIBA [Nib02]. 
Aspectual predesign can be seen both as an extension to the Klagenfurt conceptual 
predesign that allows mapping the non-functional requirements and as an intermediate
step of the AOSD residing between aspect-oriented requirements engineering and
aspect-oriented modeling (Fig.1). 

Fig.1. Aspectual predesign as an extension to KCPM (a) and as an intermediate step of AOSD (b) 

There are several steps of the aspectual predesign [SK05]: 

a) analysis of the natural language requirement specifications and obtaining the non-
functional requirements from these specifications (this problem is very complicated
and needs additional investigation);  

b) user-assisted gathering of the requirements into the entries of the APM schema (this 
schema is an extension to the KCPM); 

c) mapping of the entries of this schema into the aspectual design model (expressed in
UML-based or specialized aspectual design notation). 

The aspectual predesign model is based on the KCPM. Thing-types are used to represent
concerns (aspectual modules), advices (indirectly called operations) are represented via 
the operation-types; pointcuts (rules that connect advices to some places in code where
they are supposed to be called) are represented via the modified connection-types. 
Aspectual predesign extends the KCPM mapping rule set with additional aspectual 
mapping rules. The most important rules from this set are the following [SK05]: 

a) aspect rule: a thing-type T is mapped into an aspect AT, if the designer in the 
“classification” column of the thing-type glossary specifies T as “concern”. 

b) advice rule: an operation O is mapped into an advice ADO if O references the 
thing-type, which has been previously mapped into an aspect, and O is specified as 
“auto-called” in the “type” column of the operation glossary. 

c) pointcut rule 1: a connection-type C is mapped into pointcut PC  if C references the 
operation that has already been mapped into an advice. 

(a) (b) 

Functional 
requirements 

KCPM

Conceptual 
(design) model 

APM 

Non-Functional 
requirements 

Aspectual  
(design) model 

Aspectual  
predesign  

Aspect-oriented 
modeling 

Aspectual 
requirements

155



The glossary representation of the APM and the complete set of aspectual mapping rules 
are described in [SK05] in detail. 

3   APMTool architecture 

The main requirements for the architecture of the predesign tool are its flexibility and 
extensibility. To meet these requirements, it is necessary to develop the format for the
internal representation of the APM. We call this XML-based format Predesign Exchange
Format (PEF). It was designed taking into account the glossary representation of the
model but is flexible enough to be able to represent other external representations (e.g. 
the semantic network representation.) All the data exchange inside the system is 
performed using the PEF. We will describe this format in detail in Section 4. It can also 
be used as a format describing the internal representation of the KCPM. The APMTool 
has extensible three-tier architecture (Fig.2) based on the Java platform. We start its 
description from the middle tier and will then proceed to the data access and presentation
tiers.

Fig.2. APMTool architecture

System kernel. The APMTool kernel is responsible for transferring the information 
between other parts of the system and for coordinating their work. The implementation 
of the kernel is based on the Spring lightweight container [Joh05]. The main kernel 
component is a PEF-processing engine that parses PEF structures into core objects trees.
All core system components correspond to the instances of the APM artifacts such as
thing-types, connection-types, and operation-types. These components are plain Java
objects, their integration into the system infrastructure is supported with Spring 
extensibility mechanisms based on the dependency injection pattern [Fow04]. With this
pattern applied, the inter-component dependencies are specified in the separate
configuration file so it is not necessary to change any code to add the support for the new

Requi
re
ments 

Presentation/verification layer 

Kernel 

Database

Requireme
nt 

engines 

Mapping 
modules 

Data access layer 

PEF

PEF

PEFPEF XMI 

APMTool 

156



kind of object or to alter the associations among the objects. 

The code for the PEF processing engine and for the core components is supposed to be
partially automatically generated from the PEF specification using the Eclipse Modeling 
Framework (EMF). This framework [Bud03] allows developers of the software systems
to switch between different modeling notions for their design needs. It supports the
general metamodel called Ecore that can be converted into different models. Among 
these models are UML models, annotated Java code, and XML schema. The EMF allows
the developer to start working on a model from one format (e.g. XML Schema), and later 
convert it to other representations. The EMF Generator framework allows generating the 
corresponding implementation classes from any kind of model. 

At first, the XML schema of PEF is mapped into the EMF Ecore model. After that, the 
generation of the code for the parser, the validator, and the core components is
performed using the EMF Generator framework. The kernel delivers events for the
different parts of the system. For example, obtaining new requirements from the
requirements engine fires an event forcing the presentation layer to update the view and 
the data access layer - to start the database transaction.  

Requirements engines. These engines are responsible for the requirements 
specifications processing. It can be performed via the natural language processing 
techniques similar to those developed for NIBA project [Nib02], or via other approaches. 
All such engines must present the results of their analysis in the PEF format. These 
results will be transferred to the kernel for further processing. The system can contain 
several requirements engines implementing different approaches to the aspectual 
requirement analysis. For now, we are working on an interface with requirements 
engines along with a Java library for creating PEF documents that can be used in their 
code.  

Mapping modules. The APMTool has to support different AOSD design notations such
as aSideML [Cha04], Theme/UML [CB05, CW05], AODM [SHU02, SHU04], and to 
allow the user to add support for the new notations. The reason for this requirement is 
relative instability of the AOSD design standards. Currently there are no official 
standard for the AOSD design notation and it would be unwise to tie the implementation 
to one particular notation. 

Mapping modules implement the mapping rules for the particular aspectual design 
notations. The mapping module obtains the PEF data as its input and applies the
mapping rules for the corresponding design notation to this data. As a result, it performs
the conversion into the format specific for this notation (in most cases, the target format 
is supposed to be XMI, but proprietary formats can also be used). We do not expect from 
the modules to add any diagram-specific information to the XMI data, because this 
information is layout-specific and is very difficult to generate. The APMTool supports
different implementations of the mapping modules. If PEF-to-XMI mapping is not very
complicated, the module can consist of the XSLT conversion. Another approach is to
create the design models directly in code using specialized APIs suitable for this
purpose. For example, EMF and EMF-based Eclipse UML2 Framework [Ecl05] can be

157



used in this case. 

Data access layer. The APMTool data access layer consists of two base components.
The APMWriter component converts PEF-representation into the relational form and 
stores it into the database; the APMReader component obtains the data from the database
and performs reverse conversion. In the current version of the system, both these 
components are supposed to use pure JDBC, as a result, APMTool will be able to use
any DBMS with JDBC drivers. 

The system architecture does not rely on DBMS-specific code (stored procedures,
triggers etc.), the database is supposed to be used mostly for storing the data. The
requirements for DBMS are not strict because we do not currently expect to use
APMTool under heavy load or with large amount of data. APMTool currently uses
MySQL 5 for storing the data.

Presentation/verification layer. This layer allows the user (business analyst or system
administrator) to look at the APM artifacts in the user-friendly format and to perform the 
verification of the model. This layer obtains the PEF-formatted APM data from the
kernel, parses and displays it, interacts with the user in the process of its verification, and 
sends the user-verified data back to the kernel.  

We do not tie the presentation/verification layer to one particular implementation; the 
only requirement for its code is the PEF support. In fact, the system can use several such 
implementations at the same time. In the current version of the system, standalone
AWT-based interface is implemented (the samples of this interface are shown below on
Fig.3-5), it is planned to add web-based interface in future, in this case XSLT can be 
used to map PEF into XHTML. 

4   Predesign Exchange Format

The design of the format for internal representation of the APM was performed with the 
following goals in mind: 

a) completeness: it has to describe the APM completely (including the verification 
information and the information allowing working with several models at the same
time;) 

b) extensibility: it should be possible to add support for the new APM artifacts easily; 
c) self-maintainability: for example, one should be able to apply integrity checks to

the data in this format using only the format description. 

To meet these goals, we introduced XML-based Predesign Exchange Format (PEF) 
defined by means of XML Schema. In this section, we describe the general structure of
the PEF document and the presentation of thing-types and connection-types. Other parts 
of the format will be discussed briefly. The complete schema of the PEF is available
online at http://apmtool.sourceforge.net/pef/pef.xsd.

158



General structure of the PEF document. The top-level structure of the PEF document 
is shown below. All the PEF structures are declared in their own namespace “pef”. 

<xs:schema xmlns:pef="http://www.kpi.kharkov.ua/pef" … > 
<xs:element name="predesign_model">
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="model_info" type="pef:ModelInfo"/> 
      <xs:element name="requirements_library" type="pef:ReqLibrary"/> 
      <xs:element name="thingtype_list" type="pef:ThingTypeList"/> 
      <xs:element name="opertype_list" type="pef:OperationTypeList"/> 
      <xs:element name="conntype_list" type="pef:ConnectionTypeList"/> 
    <xs:sequence> 
  </xs:complexType> 
</xs:element>

General model information. The <model_info> element contains the general 
information about the aspectual predesign model (its unique identifier and description). 
This information allows working with different models at the same time because it is
used to distinguish between the models loaded into the tool. 

Requirements library. The <requirement_library> element contains the library of the
requirements specifications. This library contains the specification texts characterized 
with unique identifiers and titles.  Every test contains the list of specification sentences.
The sentences identifiers are unique throughout the entire library (they will be referred to 
from the specifications of APM artifacts). 

Thing-type format. The <thingtype_list> element contains the list of the thing types
represented via <thingtype> elements: 

<xs:complexType name="ThingTypeList"> 
  <xs:sequence> 
    <xs:element name="thingtype" type="pef:ThingType"
                maxO curs="unbounded"/>
  </xs:sequence> 
</xs:complexType>

The thing-type specification uses the simple types for its unique identifier (string-based) 
and for the type classification (enumeration with possible values “thing-type”, “concern” 
etc.). The <requirement_source> element contains the list of the identifiers of 
requirements sentences from the requirements library (such lists are contained in other
artifact specifications as well.) 

<xs:complexType name="ThingType"> 
  <xs:sequence> 
    <xs:element name="thingtype_id" type="pef:ThingTypeID"/> 
    <xs:element name="thingtype_name" type="xs:string"/> 
    <xs:element name="classification"
                type="pef:ThingTypeClassification"/> 
    <xs:element name="requirement_source" type="pef:ReqSourceType"/> ... 
  </xs:sequence> 
</xs:complexType>

159



Operation-type format. The <opertype_list> element contains the list of the 
operation-types declared similarly to the list of the thing-types. The operation-type 
declaration (<opertype> element) contains the unique identifier, the enumeration-based 
classification element (with possible values “manual”, “auto-called” etc.), the reference
to the ID of executing thing-type (the <executing> element), and the requirements list. 

Connection-type format. The <conntype_list> element contains the list of the 
connection-types (represented via <conntype> elements). Inside the connection-type
declaration along with connection ID, connection name, and other elements there are
declaration of the two <perspective> elements representing the sides of the connection.

<xs:element name="perspective" minOccurs="2" maxOccurs="2"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="perspective_no">
        <xs:simpleType> 
          <xs:restriction base="xs:string"> 
            <xs:pattern value="[AB]"/> 
          </xs:restriction> 
        </xs:simpleType> 
      </xs:element> 
      <xs:choice> 
        <xs:element name="involved_thingtype" type="pef:did"/> 
        <xs:element name="involved_opertype" type="pef:oid"/> 
      </xs:choice> 
      <xs:element name="perspective_name" type="xs:string"/> 
    </xs:sequence> 
  </xs:complexType> 
</xs:element>

Each perspective is characterized by side code (<perspective_no> element with 
possible values “A” and “B”), its name and either involved thing-type or involved 
operation-type. Both variants are the references to the corresponding artifact 
specifications.

Verification support. Every artifact specification in PEF is supplemented with the 
verification information structured as the list of verification elements. The verification 
element currently contains the name of the verifier, the time of verification, and the 
optional comments. In future, we plan to extend this information (using the separate
experts/verifiers directory.)

Integrity checking. PEF-structured documents are self-maintainable with respect to the 
integrity checking. This self-maintainability is implemented via the <key> and <keyref>
constructs of the XML Schema. The <key> constructs mark the unique identifiers of the 
artifacts (thing-type ID etc.), the <keyref> constructs mark the references to other 
artifacts:

<!-- thing-type unique constraint --> 
<xs:key name="thingtype_key">
  <xs:selector xpath="pef:thingtype_list/pef:thingtype"/> 
  <xs:field xpath="pef:thingtype_id"/> 
</xs:key>

160



<!-- the reference to this constraint from the connection-type --> 
<xs:keyref name="involved_thingtype_ref" refer="pef:thingtype_key"> 
  <xs:selector xpath="pef:conntype_list/pef:conntype"/> 
  <xs:field xpath="pef:involved_thingtype"/> 
</xs:keyref>

These declarations guarantee that the verification errors supplementing with meaningful 
error messages will be received from the XML parser if the PEF data contains 

a) the <thingtype> elements with duplicate <thingtype_id> identifiers; 
b) the <conntype> elements with <involved_thingtype> elements referring the non-

existing thing-types. 

5   An Example 

We start with the simple example introduced in [SK05]. 

“The banking system deals with accounts and customers. All the operations with account 
must be logged into the file. When the customers attempt to withdraw the money from 
their accounts, it is necessary for them to supply a password.” 

Let us look at the fragments of the PEF output from the requirements engine (it would be 
also the output from the presentation/verification layer if the APM glossaries were filled 
manually.) On Fig.3-5, we present the APMTool AWT-based rendering of the different 
APM glossaries and the corresponding PEF code. The thing-type glossary will contain 
two concerns: Logging and Security. On Fig.3, the fragments of this glossary and the 
PEF data representing the Logging concern are shown. 

  <thingtype> 
    <thingtype_id>D1</thingtype_id> 
    <thingtype_name>Logging</thingtype_name> 
    <classification>concern</classification> 
    <requirement_source> 
      <source><source_id>S2</source_id></source> 
    </requirement_source> 
  </thingtype> 
Fig.3. Part of thing-type glossary and the PEF data for the example specification 

The mapping of such glossary fragment into the set of general aspect-oriented concepts,
according to [SK05] can be performed by applying the aspect rule to map Logging (D1) 
thing-type into an aspect. The operation-type glossary will contain the log and ask for
password operations corresponding to the advices. On Fig.4, the fragments of this
glossary and the PEF data representing the logging operation are shown. 

161



<opertype>
  <opertype_id>O1</opertype_id> 
  <opertype_name>Log</opertype_name> 
  <opertype_type>auto-called</opertype_type> 
  <executing>D1</executing> ... 
</opertype>

Fig.4. Operation-type glossary and the PEF data for the example specification 

To perform the mapping of this glossary fragment, it is necessary to apply the advice
rule to map log (O1) operation into an advice.The connection-type glossary contains
items representing the logging pointcut defined on all operations of the Account thing-
type, and the password-asking pointcut connecting the logging advice to all the 
operations of the Account thing-type. On Fig.5, only logging pointcut is shown.To 
perform the mapping of this glossary fragment, it is necessary to apply the pointcut rule
to map C1 connection-type into a pointcut.The complete PEF data for this example 
together with more complicated examples can be obtained online at 
http://apmtool.sourceforge.net/pef/examples/.

6   Conclusions and future work

In this paper, we outlined the architecture of the Java-based software tool implementing 
the aspectual predesign workflow. Selecting XML-based PEF as the core format for its 
architecture allowed us to make an important step towards the flexibility and 
extensibility of the tool and to simplify the handling of the core objects and the 
presentation/verification layer with the Eclipse Modeling Framework. Separating 
requirements processing and mapping modules from the system kernel allows us to 
support different requirement analysis techniques and different aspect-oriented design 
notations. Currently, main research in aspectual predesign field is concerned with 
collecting the non-functional requirements from the natural language specifications (i.e. 
the activities that correspond to the first phases of the NIBA project like those described 
in [Nib02].)  

The aim of this research is to design flexible architecture for recognition of language 
constructs specific to non-functional requirements in the specification documents. After 
recognition, these structures will be converted into the PEF documents that can be later 
verified by the infrastructure experts. The core of this architecture is supposed to be 
language-independent allowing the external language modules to be plugged in. Some
results are already obtained and will be described in forthcoming papers, but much work
still needs to be done. This problem is hard to solve, because user specifications of the 
non-functional requirements is one of the most imprecisely defined parts in the natural 
language specifications. We need to develop approaches that allow us to gather these
requirements in a way that supports user validation. It is difficult because the level of
experience of the user that is supposed to perform such validation is quite high by

162



default. Usually, the business users do not understand these requirements, only system
administrators and architects can work with them. Therefore, we need to define formal 
specification of such aspects as security, logging, performance etc. in the format that can
be explained to the business user. To be able to do so, we need to perform thorough 
investigation of business-related facets of these properties based on real system
requirements specifications. To start with, we are going to perform separate analysis of 
business-related facets of the several important non-functional properties, such as
security and performance. The results of this analysis will be the source of the further
generalization. On the later stages, we consider merging our investigations with the 
research of the NIBA group.

We see two main directions of this merging. The first direction aims to extend the 
KCPM allowing the whole spectrum of requirements (both functional and non-functional
ones) to be collected and mapped into the whole spectrum of conceptual models (both 
object-oriented and aspectual ones) using the single workflow. The second direction
aims to add language-independency to the requirements elicitation steps of the NIBA 
workflow (currently this workflow only supports the German language requirements 
specifications.) The ultimate goal is to come with the universal framework that is able to 

<conntype>
  <conntype_id>C1</conntype_id> 
  <conntype_name>Logging for all operations</conntype_name> 
  <perspective> 
    <perspective_no>A</perspective_no> 
    <involved_opertype>O1</involved_opertype> 
    <perspective_name>log</perspective_name> 
  </perspective> 
  <perspective> 
    <perspective_no>B</perspective_no> 
    <involved_thingtype>D2</involved_thingtype> 
    <perspective_name>Account thing-type</perspective_name> 
  </perspective> ... 
</conntype>

Fig.5. Connection-type glossary and the PEF data for the example specification

163



obtain various kinds of requirements from the specifications in various natural languages 
and to map them into various kinds of conceptual models. 

Bibliography

[Asp05] Aspect-Oriented Software Development, Addison-Wesley, 2005. 
[Bud03] Budinsky, F.; Steinberg, D.; Merks, E. et al.  Eclipse Modeling Framework: A 

Developer's Guide. Addison-Wesley, 2003. 
[CB05] Clarke, S.; Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach, 

Addison-Wesley, 2005. 
[Cha04] Chavez, C.: A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis, 

Computer Science Department, PUC-Rio, April 2004. 
[Chu00] Chung, L.; Nixon, B.; Yu, E.; Mylopoulos, J.: Non-Functional Requirements in 

Software Engineering. Boston: Kluwer Academic Publishers, 2000. 
[CW05] Clarke, S.; Walker, R.J.: Generic Aspect-Oriented Design with Theme/UML. In: 

Aspect-Oriented Software Development, Addison-Wesley, 2005, pp. 425-458. 
[Ecl05] Eclipse UML2 Project. URL: http://www.eclipse.org/uml2 
[FKM03] Fliedl, G.; Kop, Ch.; Mayr, H.C.: From Scenarios to KCPM Dynamic Schemas: Aspects 

of Automatic Mapping. In: (Düsterhöft, A.; Thalheim, B. Eds.): Natural Language 
Processing and Information Systems - NLDB'2003. Lecture Notes in Informatics P-29,
GI-Edition, 2003, pp. 91-105.  

[Fow04] Fowler, M. Inversion of Control Containers and the Dependency Injection pattern, 2004. 
URL: http://martinfowler.com/articles/injection.html

[JN04] Jacobson, I.; Ng, P-W. Aspect-Oriented Software Development with Use Cases. 
Addison-Wesley, 2004. 

[Joh05] Johnson, R.; Hoeller, J.; Arendsen, A.S. et al. Professional Java Development with the 
Spring Framework. Wiley, 2005. 

[KM02] Kop, Ch.; Mayr, H.C.: Mapping Functional Requirements: From Natural Language to
Conceptual Schemata. In: Proc. International Conference SEA 2002, Cambridge, USA, 
Nov. 4-6, 2002, pp. 82-87. 

[MK02] Mayr, H.C.; Kop, Ch.: A User Centered Approach to Requirements Modeling. In: 
M.Glinz, G. Müller-Luschnat (eds.): Proc. Modellierung 2002. Lecture Notes in
Informatics P-12 (LNI), GI-Edition, 2002, pp.75-86. 

[Nib02] Niba, L.C.: The NIBA workflow: From textual requirements specifications to UML-
schemata. In: Proc. ICSSEA'2002, Paris, December 2002. 

[SHU02] Stein, D.; Hanenberg, S.; Unland, R.: An UML-based Aspect-Oriented Design Notation
for AspectJ. In: Proceedings of AOSD 2002 International Conference, pp. 106-112. 

[SHU04] Stein, D.; Hanenberg, S.; Unland, R.: Modeling Pointcuts. In: Early Aspects 2004: 
Workshop at International Conference on Aspect-Oriented Software Development 
(AOSD 2004), Lancaster, 2004. pp. 107-113. 

[SK05] Shekhovtsov, V.A.; Kostanyan, A.V.: Aspectual Predesign. In: Kaschek, R.; Mayr, 
H.C.; Liddle, S. (eds.): Information Systems Technology and its Applications - 
ISTA'2005. Lecture Notes in Informatics P-63, GI-Edition, 2005, pp. 216-226. 
URL: http://apmtool.sourceforge.net/apm/apmpaper.pdf

164




