Vulnerability Effect Propagation
in Service-Oriented Architectures

Lutz Lowis, Sebastian Hohn, and Maike Gilliot
Albert-Ludwig University of Freiburg
Institute of Computer Science and Social Studies, Department of Telematics
Friedrichstrasse 50, D-79098 Freiburg, Germany
{lowis, hoehn, gilliot} @iig.uni-freiburg.de

Abstract: Software vulnerabilities put automated business processes at risk. In service-
oriented architectures (SOA), where business processes are implemented as potentially

highly complex service compositions, the exploit of a software vulnerability can have

far reaching effects on the confidentiality, integrity, and availability of business pro-

cesses. In this paper, we report on our ongoing work which combines business process

models with vulnerability information to automatically determine those effects. This

determination is required in the identification phase in risk management.

1 Introduction

Implementing business processes by composing services of other services and applications
is one of the main concepts in service-oriented architectures (SOA). Software vulnerabil-
ities impose a security challenge on these compositions, because a vulnerable service or
application can have the effect of making all dependent services vulnerable. In terms of
the SOA layers displayed in figure 1, a software vulnerability in the application layer ver-
tically cuts through the integration layer and affects the dependent services on the service
layer. There, the effects can propagate horizontally between services, because services call
each other and service compositions can appear as services (in figure 1, the service circle
size reflects the degree of composition). Finally, the effects on the service layer influence
the workflow. Concentrating on sofware vulnerabilities in the application layer and their
effects on the service and orchestration layer, we ignore the infrastructure and presentation
layer for now.

For a SOA-based business process, which is the workflow in SOA terms, this means that
a single vulnerability can have effects on the confidentiality, integrity, and availability in
various locations among each of these layers. In order to determine these security effects
for a given vulnerability, two steps have to be taken (cf. figure 1). First, the vulnerabil-
ity’s precise location within the application layer (step 1a in figure 1) and the service layer
(step 1b in figure 1) has to be identified. Second, the possible propagation paths of that
vulnerability’s exploitation have to be identified (step 2 in figure 1). These two steps ide-
ally should be performed automatically, because the flexible and frequent changes a SOA
allows within its possibly complex service compositions make the manual identification

474 L. Lowis, S. Hohn und M. Gilliot

Orchestration > >> >> >

Servi o
ervIces 2. Vulnerability
— affect propagation

Integration Architecture e

Seylnprable sorvice
Applications D [] I:l

fa. Localizafion of
vulmsarabha apphicaion

e w B whEiy

WiAara Ty

e £ A O

Figure 1: SOA layers and vulnerability effect determination

too time consuming. With the proposed vulnerability effect identification approach, the
steps in the identification phase of risk management can be automated through the combi-
nation of vulnerability descriptions (e.g., from vulnerability databases), business process
models, and algorithms for determining the risk a vulnerability imposes on a business pro-
cess. This allows frequent updates and, thus, risk management decisions based on current
identification results.

The scenario we are considering is that of a company which implements an internal SOA.
In that scenario, the company acts as service provider and service consumer (these and
related terms are used as in [OAS06]) at the same time, and performs the analysis on the
basis of its knowledge about the applications, services, and business process models. If
the service provider and service consumer do not share that knowledge with each other,
only a third party can determine the vulnerability effect propagation.

In the following section, we point out some technical challenges regarding the localization
of an application vulnerability within a business process, and suggest a solution. The third
section introduces the vulnerability effect propagation within a SOA in detail. Then, we
motivate and present our method of determining the vulnerability effect propagation, a
model-based identification approach. After discussing our approach using a propagation
example, work related to our approach is discussed in section five. We conclude in section
six and point out our future work.

Vulnerability Effect Propagation 475
2 Locating vulnerabilities in a SOA

A few selected vulnerability databases and vulnerability description standards are pre-
sented, showing where and in which form vulnerability information can be obtained.
While introducing some mapping challenges, which have to be overcome in the course
of locating a vulnerability in a SOA, the types of security effects a vulnerability’s exploit
can have within a SOA are identified. Both the sources and mapping parts are put together
by suggesting an automated localization solution.

2.1 Sources of software vulnerability information

Sources of vulnerability information such as the NIST National Vulnerability Database
(NVDB, with US-CERT CVE entries) [Nat07], ISS X-Force [XF07], Security Focus [Sec07],
and the Open Source Vulnerability Database (OSVDB; note that despite its name, the Open
Source Vulnerability Database contains vulnerability descriptions of both open source and
proprietary software) [OpeQ7] are updated daily and reflect the set of published, widely
known vulnerabilities. Although there always might be unknown vulnerabilities waiting
for their discovery, in the following we only consider published vulnerabilities, because
we are not trying to find new vulnerabilities but to identify the effects of a given vulnera-
bility’s exploit.

Figure 2 shows a typical entry in the NIST NVDB; other databases use a very similar
format. Besides the self-evident unique vulnerability id, common fields are a textual de-
scription, accessibility information (remote and/or local), as well as cross references to
the according vulnerability entry in other databases. Without these references, it would be
an error prone and time consuming task to find information on a certain vulnerability in
different databases, simply because many databases use a custom naming scheme.

Walaarabiliny Rervavaery CVE-2087-34 4

Dwigeral relpass dabs: 1170007 Lemi revinasd 1UR00T, Saecs: US-CERTAEST

Drvwrriw: Bufler overfios i e pofpmorpne. cpoods sppar in e Bepuler Expresaon Enges (wgoomp) n Ped 58 alows
oo si-deperdes siachen o soetuis by code by peiiching froem Byie o Unioods [UTT) charsciens in @ reguier sssesason
rpack L5 Sewerily Dririeon 2 O OS50 v Beinka pooew 1000 THgR | DA MO L Ry P00 50) (lappeiesd |
Wil Subieioon. 10 0, Expltatity Botatoin D10
Ak Wl Prue gophiatalle Ridi By Lo, A g Rl et b el
Wvapail Ty Fronedes sl ddid, Ao Ooydeds Qoralierlally, mbelily o Evildafdly vod@hln Alnd udnd o
ikl OF rdr T Al AT OF el
Bldne et o Adwiiored Solonons ead Toost
]
Criwerl Seeprm B dclmcimrrar), Mors - TS Myparing: hisPawer saoorifiooum oy b0
|
Walrarably softwpre pnd Fereons
onigaraton T

I
iy s ([hpelndn® | Dailmaies | wnan i Pojssepe:

Wi sl Daiaain
Wulirgermbliny Tpa (Vs A Tollor Trory (O UTE OVE Sisrderd Wuinersteay Friry PEn oes mis orgroge-hd syl Cg

Figure 2: An actual NIST NVDB entry

476 L. Lowis, S. Hohn und M. Gilliot

The Common Vulnerability Scoring Standard (CVSS, [RF07]) defines a set of metrics to
score a vulnerability. These metrics describe not only the accessibility mentioned above,
but also the confidentiality, integrity, and availability impact of a vulnerability on the af-
fected application. It is important to note that this does not equal the impact on the busi-
ness process which depends on the service composition. Some databases, for example,
the NIST NVDB and ISS X-Force, include CVSS values in their entries (compare figure
2). Should the vulnerability description at hand not contain CVSS values, sometimes the
cross references can be used to obtain these values from other databases.

Many vulnerability databases are online accessible and offer email notifications or RSS
feeds (e.g., NIST NVDB and OSVDB). This provides the opportunity to always receive
information on newly published vulnerabilities in a machine readable format.

2.2 Mapping challenges

Given a vulnerability from the sources and with the information described above, the ques-
tion is not only where this vulnerability is located within the SOA, but also what its effects
are on the confidentiality, integrity, and availability of the immediately affected service.
When using web services, the business process is often modeled in UML, as Business
Process Modeling Notation (BPMN) [Obj06] diagram, or described in a Business Process
Execution Language (BPEL) [Org07] script. Both contain services, not applications. Since
vulnerability descriptions typically refer to applications, there is a technical challenge of
mapping vulnerabilities in applications to vulnerabilities in services. Referring to figure 1,
a logical link between the applications, the integration architecture, and the services must
be created, which allows to unambiguously identify the location of the vulnerability in
both the application layer and the service layer. Implementing a solution to this challenge
is one of our current tasks.

Another challenge lies in the mapping of a vulnerability’s effect on the confidentiality, in-
tegrity, and availability of an application to the according effect on the dependent services
and their outgoing messages (compare figure 3). Following a conservative estimation, the
effects can be mapped one-to-one. This is certainly appropriate for availability, because
if an application is not available, the dependent service will not be available, and the de-
pendent service will usually not generate any messages while it is not available. However,
regarding confidentiality and integrity, the mapping can become more complex. For ex-
ample, harming the confidentiality of an application by reading a database’s content does
not necessarily imply insight into the dependent service (harming the confidentiality of the
service), or being able to read all messages the service generates (harming the confiden-
tiality of the messages). We are currently developing a mapping scheme for this challenge.
For the rest of this paper, we assume the conservative one-to-one mapping. Please note
that this mapping is different from the effect propagation discussed later, because the effect
mapping takes place between one application and the directly affected services, whereas
the effect propagation happens between a service and all dependent services.

Inbegraton Archisctiue

Vulnerability Effect Propagation

2. ... what is the affact O Sence
Senvices . I, A and message C, 1, A P

el
Integration Architecture ='""'.-
I 1 : 1.Ghan e affact or
Applications NN
Le i L

Figure 3: Mapping vulnerability effects to services and messages

2.3 Towards automated vulnerability localization

et Of danece C, 1 A

SOrvices

«

4 Map seourty alleck
BOODe T b P SOhEsT | AESeT ST
R vt it C, i, A
i snvied C, I A

i
|

4. LECasTe varei ey
Wil S non Liner

applications []]
2 Localite vislrernbelily
idrivmbald'y o Lt ne e L) e et Lymd

£Y, Cibsin wulnesaldity GessCTipion
i i et et e e
WSOy S
Sieoien Bppbonion, efecrs on O, L A

Figure 4: Detailed localization approach

477

Based on the mentioned vulnerability information on the one hand, and using business pro-
cess models with their web service composition description on the other, we suggest the
approach depicted in figure 4, which is a refined version of the first step in figure 1. First,
the affected application and the security effects on that application are extracted from a
vulnerability description. Then, that precise application is localized within the application
layer by using, e.g., application name and version number to differentiate between appli-
cations. In the next step, the vulnerability can be mapped through the integration layer to
the service layer by means of a deployment diagram or similar information (grey area in
figure 4). Besides the pure location in the service layer, the security effects are mapped
according to a mapping scheme, which allows for a flexible mapping rather than the static
one-to-one mapping.

478 L. Lowis, S. Hohn und M. Gilliot
3 Model-based determination of vulnerability effect propagation

We argue for a model-based approach of identifying the vulnerability effects and their
propagation. A propagation matrix is presented, allowing the derivation of a vulnerability’s
effect propagation paths, and a suitable model is developed, which allows to compute
propagation paths based on a vulnerability’s localization.

3.1 Utilizing SOA modeling advantages

The effects a vulnerability’s exploit has can be determined by penetration testing [Bis03]
the production system. Because this can easily interrupt the production and incur high
costs for restoring the production system, penetration tests on a duplicate system might
seem to be a better solution. However, this still incurs costs for creating a duplicate sys-
tem. Completely duplicating all web services might simply be infeasible, and separately
testing single services does not allow an automated determination of the vulnerability ef-
fect propagation. A different solution is needed. Following the SOA approach, a model of
the business process and its services is essential. If this model (e.g., in BPMN or BPEL)
or a derivation thereof could be used to identify the business process impact of a vulnera-
bility’s exploit, this would allow for an inexpensive, realistic, and complete approach. In-
expensive, because the model is already available. Realistic, because the model itself will
be executed in terms of BPEL scripts. Complete, because the whole composition would
be examined rather than separate services. For these reasons, we suggest a model-based
approach.

3.2 Vulnerability effect propagation matrix

Recalling the SOA layers in figure 1, at first vulnerability effects manifest in the applica-
tion and service layer in a single location only. Taking into account the service compo-
sition, it shows that many services can be affected by a vulnerability in a single service.
Also, vulnerable services can make the workflow vulnerable (orchestration layer in figure
1). To support the automated determination of a vulnerability’s business process impact,
it must be formalized how breaches of confidentiality, integrity, and availability propa-
gate between and within the service and orchestration layers. We first define these effects
on services, messages, and workflows, then suggest an according propagation matrix (see
figure 5).

¢ Confidentiality (C).
For services: the attacker does not know the exact inner workings of the service.
Note that this implies that the service has not been replaced with an attacker’s own
version of the service.
For messages: the attacker cannot read the message.

Vulnerability Effect Propagation 479

e Integrity (I).
For services: the attacker cannot make the service produce arbitrary results.
For messages: the attacker cannot change the message.

e Availability (A).
For services: the attacker cannot stop the service from working.
For messages: the attacker cannot delete the message.

P respaagat ben Wiledn service layer Sryvice fo work [Tow feper
: efect LTI E T Callisg (| Calisbsal
Called IR S Ve wn] e workc] |
servior has losi b s limcs
sy o [ndkzntasdany . i . . i . [
e Inleg ity | TFaf- Iiland & |BFlamd A -
mo SAwailabiliny & Al & A

Figure 5: Vulnerability effect propagation matrix

The first column of figure 5 contains the effects a vulnerable service has on its outgoing
messages: if a service loses its confidentiality, integrity, or availability, the messages that
service creates are affected in the same way.

In the second column, the effects on the calling service are shown, which are none regard-
ing confidentiality, because reading the input to a service does not tell the attacker how the
service works. A breach of message integrity does only propagate if the calling service
cannot detect that breach. If the breach is detected but cannot be fixed, the calling services
availability is harmed. If the calling service is able to detect the integrity breach and fix it,
the effect is none. Regarding availability, the effect on the calling service is none only if
the breach is detected and a substitute service can be called.

The effects on the local and global workflow are displayed in column four and five, respec-
tively. While confidentiality breaches propagate unconditionally, integrity and availability
breaches only propagate as long as there is no mechanism which detects these breaches
and either restore integrity or call substitute services to maintain availability.

Please note that the propagation matrix in figure 5 is based on very conservative assump-
tions, showing the worst case effect a vulnerability could have. In an actual SOA, the prop-
agation depends on the system environment, meaning that the same vulnerability might
have an effect in certain environments and none in others.

3.3 Model-based propagation determination

With the results of the vulnerability localization described in 2, the business process model
and its service compositions given in the form of UML diagrams, and the above vulner-
ability effect propagation matrix, there is only one piece missing before the vulnerability

480 L. Lowis, S. H6hn und M. Gilliot

effects and their propagation can automatically be determined. This missing piece is the
information required to solve the case differentiation in the integrity and availability rows
of the propagation matrix. To this end, we use parameterized UML stereotypes. BPMN
diagrams or BPEL scripts can automatically be transformed to UML diagrams, which is
why we opt for UML modeling

Currently, we use three tagged values, which can be attributed to services. “i:detect” means
a service can detect if the integrity of incoming messages is harmed, “i:fix”-services can
even fix changed messages. “a:maintain” means a service can maintain availability in spite
of a single unavailable service by calling a substitute service.

Based on the vulnerability localization as presented in section 2.3, the effect propagation
can now automatically be determined by creating a bottom-up propagation path. Starting
with a service which is vulnerable according to the vulnerability localization, this service
is assumed as “called service” and dependent services are regarded as “calling services”
(cf. figure 5). Now, for each of the three possible effects (loss of confidentiality, integrity,
and availability), the propagation matrix is combined with the value of the propagation
stereotype, and the calling services are tagged correspondingly. Then, the procedure is
repeated for every calling service in its new role as called service. In the end, all ser-
vices which directly or indirectly depend on the vulnerable service have been rated. The
resulting model then shows which services and workflow parts lose their confidentiality,
integrity, or availability, and where. In a SOA, this reflects the business process impact
of the examined vulnerability. Figure 6 is a refined version of the second step in figure 1,
showing the propagation determination steps in detail.

Propagatgn mates ior 2 1 A affect
EEiEaca Ty MG Rt TR A S,
suvvicas, ang workfow

Orchastration D DD

Sarvices y
=
[?. LY
E Propagation dansalypd valuad
e icholoct
Vulngraity (iacavied and * it
manpsd A5 shown garfusr) A ImRETEA

Figure 6: Detailed propagation determination approach

Vulnerability Effect Propagation 481
4 Discussion

An exemplary SOA instance is presented and used to discuss some selected aspects of the
approach introduced above.

4.1 SOA-based business process example

In a SOA-based business process, services are used by multiple other services to imple-
ment specific parts of the business process. Assuming the buffer overflow vulnerability
from figure 2 is present in the database application of an order service (cf. figure 7), an at-
tacker could execute arbitrary code, harming the confidentiality, integrity, and availability
of the application. Following the conservative application-to-service mapping discussed in
section 2.2, the dependent order service could lose its confidentiality, integrity, and avail-
ability as well. The shipping service and the inventory management service, which also
use that order service, would be affected as described by the vulnerability effect propaga-
tion matrix in section 3.2. Depending on whether the attacker harmed the confidentiality
of the database application, the shipping and inventory management service would lose
their confidentiality, too. Integrity and availability breaches might not propagate all the
way up to the workflow, because a subsequent service can detect and restore them, which
is not the case for confidentiality.

Workflow 2 } - }__
Iremreioy” :
-'\".'h'.:.j-:ﬁ-|" ﬂ“:‘_&-

s

Warkfiow 1

]

EFREry EarECT

1 ETWTnicy LI B

LT ----E

]
[ETELELE S, LIn T,

Mt il ST
iy (Tl W Eodieily [T e s e e T

Figure 7: Vulnerability effect propagation example

4.2 Selected aspects

Recall that the CVSS values regarding the vulnerability impact type (cf. section 2.1, es-
pecially figure 2) describe the vulnerability effect on an application and not on services,
let alone the workflow. When mapping the effects from the application to the service
layer, and later from the service to the workflow layer, a distinction must be made between

482 L. Lowis, S. Hohn und M. Gilliot

two different analysis types. The determination of the more theoretical, conservatively
estimated effects of a specific vulnerability’s exploitation shows what (in the worst case)
could happen. Trying to find the most probable effects, i.e., taking specific details of the IT
environment into consideration, is supposed to show what (in the most likely case) would
happen. While for the first kind of analysis, the one-to-one mapping mentioned in section
2.2 is sufficient, the second kind requires a mapping which accounts for conditions the IT
environment or even the execution context sets.

Just like the actual effect of an application vulnerability on the depending service, the
effect of vulnerable services on other services or the above workflow might be weaker or
stronger depending on the IT environment. This increases the complexity of the analysis,
because a single, unconditional propagation matrix (see figure 5) might be too coarse
to yield exact results. While it is theoretically possible to define a special propagation
matrix for each IT environment, in practice this would severely hinder the analysis because
of the high number of different IT environments and the frequency with which the IT
environment might change (e.g., due to updates and patches).

5 Related Work

Vulnerability taxonomies such as [Krs98] and [BRPOS5], depending on their focus, offer
a comprehensive explanation of how vulnerabilities come into existence, which different
vulnerability types exist, and which attacks can be performed through them. While a
suitable taxonomy of web service vulnerabilities could be used to develop a vulnerability
effect mapping scheme, to our knowledge at this time no such taxonomy of web service
vulnerabilities and their effects on web services exist.

Vulnerability description standards such as the Application Vulnerability Description Lan-
guage [Org04], VulnXML [Ope02], and the [Cor07], focus on describing how a vulnera-
bility can be exploited. This is useful when testing for or trying to fix a vulnerability. How-
ever, regarding the effect of a vulnerability’s exploit, the Common Vulnerability Scoring
Standard values mentioned in section 2.1 are more relevant.

Powerful analysis approaches and tools exist to check source code or running applications
for vulnerabilities (e.g., [MLLO5], [CM04], [WKPO05]). The vulnerabilities found through
such analysis tools, after being published in a vulnerability database, serve as input to our
approach.

The attack graph generation approach in [OBMO06] can be used to find new attacks in
enterprise networks. Again, the attacks found through this approach, or rather the involved
vulnerabilities, provide the vulnerability information input to the business process impact
determination we have presented.

Vulnerability Effect Propagation 483
6 Conclusion and Future Work

Business processes implemented in the notion of service-oriented architectures (SOA) are
workflows on — possibly highly complex — service compositions. Therefore, breaches of
the confidentiality, integrity, and availability of the underlying services can affect these
business processes. The underlying services can in turn be affected by vulnerabilities in
the applications they are based on. Identifying the security impact of such software vulner-
abilities on business processes is required for the identification phase in risk management
approaches, or vulnerability management as in [GorO7]. With the approach at hand, the
security effects a given vulnerability has on services, and also how these effects propagate
through the service composition to the global workflow, can automatically be determined.
In SOA terms, the global workflow is the business process, thus our approach will identify
the security impact of software vulnerabilities on SOA-based business processes.

To achieve this goal, we will at first implement the application identification described in
section 2.2. For a given vulnerability, the affected applications within a SOA will thus be
identified. Then, the application-to-service mapping scheme also mentioned in section 2.2
will have to be defined. At the same time, we will examine which type of (UML) model is
best suited for the localization and propagation determination steps introduced in sections
2.3 and 3.3, respectively. Currently, activity diagrams and deployment diagrams seem to
be the best choice. Also, the propagation matrix in figure 5 has to be extended to allow for
a more detailed view on vulnerability effect propagation. Finally, we will check whether
including the infrastructure and presentation layer (cf. figure 1) is a valuable widening of
the approach presented here or not.

References

[Bis03] Matt Bishop. Computer Security. Addison-Wesley, Pearson Education, Boston, USA,
2003.

[BRPO5] Chris Vanden Berghe, James Riordan, and Frank Piessens. A Vulnerability Taxonomy
Methodology applied to Web Services. In Helger Lipmaa, Dieter Gollman, editor, Pro-
ceedings of the 10th Nordic Workshop on Secure IT Systems (NordSec 2005), 2005.

[CMO04] Brian Chess and Gary McGraw. Static Analysis for Security. In IEEE Security and Privacy.
IEEE Computer Society, 2004.

[Cor07] MITRE Corporation. Open Vulnerability and Assessment Language (OVAL), 2007.
[Gor07] Vlad Gorelik. One Step Ahead. In ACM Queue. ACM, 2007.

[Krs98] Ivan Victor Krsul. Software Vulnerability Analysis (Ph. D. Thesis). Purdue University,
1998.

[MLLOS] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding Application Errors and
Security Flaws Using PQL: a Program Query Language. In 20th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, San Diego, Cal-
ifornia, USA, 2005.

484

[Nat07]

L. Lowis, S. Hohn und M. Gilliot

National Institute of Standards and Technology. National Vulnerability Database, 2007.

[OAS06] OASIS. Reference Model for Service Oriented Architecture 1.0, 2006.

[Obj06]

Object Management Group (OMG). Business Process Modeling Notation (BPMN), 2006.

[OBMO06] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A Scalable Approach to Attack

[Ope02]
[Ope07]

[Org04]

[Org07]

[RF07]

[Sec07]

Graph Generation. In Proceedings of the Conference on Computer and Communications
Security, Alexandria, Virginia, USA, 2006. ACM.

Open Web Application Security Project (OWASP). VulnXML, 2002.

Open Source Vulnerability Database (OSVDB). Open Source Vulnerability Database (OS-
VDB), 2007.

Organization for the Advancement of Structured Information Standards (OASIS). Appli-
cation Vulnerability Description Language (AVDL), 2004.

Organization for the Advancement of Structured Information Standards (OASIS). Business
Process Execution Language (BPEL), 2007.

Forum Of Incident Response and Security Teams (FIRST). Common Vulnerability Scoring
System, 2007.

SecurityFocus. SecurityFocus Vulnerability Database, 2007.

[WKPO5] Sam Weber, Paul A. Karger, and Amit Paradkar. A Software Flaw Taxonomy: Aiming

[XF07]

Tools At Security. In Software Engineering for Secure Systems, St. Louis, Missouri, USA,
2005. ACM.

IBM Internet Security Systems X-Force. Alerts and Advisories, 2007.

