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Abstract: This paper addresses a basic security requirement of electronic voting, namely
that a voter can correct or abort his vote at any time prior to his final vote casting. This
requirement serves as a protection against voter precipitance (haste). We specify rules for a
reset and cancel function that implement the correction and abort requirement. These rules
are integrated in an extended version of the formal IT security model provided in [VG08].
We show that these rules do respect the requirements covered in this model namely that
each voter can cast a vote, that no voter loses his voting right without having cast a vote
and that only eligible voters can cast a vote. This paper formally describes and
mathematically proves the model and finally shows at which places of a voting process the
formal rules apply.

1 This paper is developed within the project “ModIWA – Modellierung von Internetwahlen” which is funded
by DFG, and carried out at the Universities Kassel (Roßnagel, Richter) and Koblenz-Landau (Grimm, Hupf)
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1 Introduction

Security is an elementary property of electronic voting systems and is thus fundamental
for the trust of the voters in the system. Security objectives for electronic voting were
first collected in an informal way, for example by a European-wide accepted
recommendation adopted by the Council of Europe [CE04]. Later the semi-formal
method of the Common Criteria [CC06] was used to specify a Protection Profile (PP) for
a basic set of security requirements for online voting products [VV08]. There are good
reasons to specify the security objectives of an IT system in a formal way, i.e., by
mathematical calculus which states and proves properties clearly [Wa05]. The
formalization of security objectives is a way to gain unambiguous and clearly understood

Requirements for electronic voting. Due to its formal base, it can be mathematically
proven that a specification or implementation conforms to these formal security
requirements. For example, the mandatory access model of Bell and LaPadula [BP73]
strengthens the trust in a secure centrally controlled multi-user computer system, such
that in the early days of computer system security evaluation it used to define the highest
assurance level of the Orange Book Criteria [DD85]. Thus a formal IT security model on
electronic voting defining security requirements from [CE04] and [VV08] in a formal
language can create large amounts of trust in the effect of the security functions
implemented in the electronic voting system.

However, the Common Criteria Protection Profile for online voting products [VV08]
requires an evaluation according to evaluation assurance level EAL2+ on a scale from 1
to 7. This level does not require any formal proof. This evaluation level seems to be
acceptable as this PP only claims to define basic requirements. Parliamentary elections,
however, demand a higher evaluation level, probably EAL 6 or 7. At this level, the
application of formal methods and the definition of a formal security model [CC06] are
mandatory for the Common Criteria evaluation.

To enable a Common Criteria evaluation according to these levels, the authors of
[VG08] provide an IT security sub-model for electronic voting. However, this model
only covers a small subset of security objectives namely that each voter can cast a vote,
that no voter loses his voting right without having cast a vote and that only eligible
voters can cast a vote. This model needs to be extended to meet the remaining security
objectives. The aim of this paper is to extend the protection against errors by haste
(precipitation). Moreover, in extending the model in [VG08] we have found a weakness
in the model which is corrected in this paper, as well.

Protection against errors by haste is a basic legal requirement well established in private
and public law [Ba06]. This requirement is expressed by two security objectives in
[VV08], “O.Correction” and “O.Abort,” as well as by the security objectives 10 and 11
in [CE04]. To meet these two security objectives, we will propose two functions “reset”
and “cancel” of a voting process. The abortion of a voting process protects not only
against precipitation, but it also protects the secrecy of voting against unwanted external
events like the appearance of another person during the voting process. Thus reset and
cancel are important for the support of the freedom of vote.
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The paper is organized as follows: In the subsequent section 2 we quote those security
objectives, from the Protection Profile on basic requirements for online voting products
[VV08], that we are going to formalize in this paper. In section 3 we enhance the
existing formal IT security model in [VG08] according to our findings and provide a full
proof of its correctness. In section 4 we formalize the “reset” and “cancel” functions,
which have been introduced in section 2. In section 5 we prove that this extended
security model is correct and, thus, provides a smooth extension of the original security
model [VG08]. To complete the picture, in section 6 we show (informally) at which
points in a voting process our security rules of the formal model are applied. Finally, in
section 7 we draw some conclusions from our work and point to further research.

2 Security Objectives

Security models start with the identification of security objectives [CC06, Gr08]. In the
protection profile of a basic set of security requirements for online voting [VV08], a set
of thirty-two security objectives for online voting products are specified. The following
two of these have been used as a first step towards a formal model for remote electronic
voting systems in [VG08]2:

O.OneVoterOneVote: It is ensured that (a) each voter can cast one vote and (b) no
voter loses his voting right without having cast a vote.

O.UnauthVoter: Only eligible voters who are unmistakably identified and authenticated
are allowed to cast a vote that is stored in the ballot box.

These two objectives are met by specifying properties that define “secure system states”
and rules to be applied on any function that securely transfers a system state into another
system state. Therefore, these rules are called transition rules. After specifying the
related security state properties and transition rules of these two security objectives, we
will extend the model by including two more security objectives from [VV08], namely:

O.Abort: The voter can abort his voting process at any time prior to the final casting of
the vote without loosing his right to vote.

O.Correction: There is no limit on the number of corrections a voter can make to his
vote until the final casting of the vote.

These objectives will not be met by security properties, but by a further transition rule.
We propose that “reset” and “cancel” functions are the appropriate prototype functions
of this rule, whereby “cancel” will be a repetition of “reset” until the initial state of a
voter’s voting process. We will prove (in section 5) that these rules preserve the security
properties of O.OneVoterOneVote and O.UnauthVoter.

2 We refer to [VV08] as well. This paper formally models some basic security requirements for electronic
voting, which apply to both voting machines and online voting.
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The rules for allowed state transitions are to be implemented by voting products as
functions for data processing. However, the rules do not determine appropriate places for
these functions within a voting process. Strictly speaking, it is not the purpose of an IT
security model to design processes or protocols. Although we are not going to design the
voting process, we will show (in section 6) informally at which points in a voting
process our rules (and especially the “reset” and “cancel” functions) would be applied.

3 The Basic Model

3.1 The original model of [VG08]

We quote the basic model from [VG08] in that we take the security objectives
O.OneVoterOneVote and O.UnauthVoter and associate them with properties of a
secure state and allowed state transitions. Before we define the security properties, we
define (general) system states of a voting process:

Definition 1 (voting system state)

A system state S := <W, V, voter> is represented by a triple of the following three
entries:

1. W – Set of eligible voters (those who are listed in the electoral register and
have not yet cast a vote).

2. V – Set of (encrypted) votes stored in the e-ballot box.

3. voter: V M – Mapping of (encrypted) votes to their electors.

Wtotal is the set of all eligible voters registered by the responsible voting officials before
the voting system is started. M is a superset of Wtotal that contains any user who tries to
access the remote electronic voting system, whether or not this particular user has the
right to cast a vote. The function voter assigns each (encrypted) vote to its producer
(voter).

The initial state is defined as the triple S0 := < Wtotal, V0={}, voter0={}>.

We assume that state transitions t1, t2 … that carry the system from state to state are
stimulated by events such as the login of a voter into the system, the request of an empty
voting ballot, the filling out of the ballot, the casting of a vote, etc.

i
ttt SSS i ...21

10

Now we follow the basic model in [VG08] and proceed to defining secure system states,
and then we state the rules for allowed state transitions.
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Definition 2 (secure voting system state, basic version)

A state Si is a secure state iff (all of) the following constraints hold:

totali

iitotal

i

WvvoterVvrUnauthVote
wvvoterVvWWwBeVoteOneVoterOn
vvvvotervvoterVvvAeVoteOneVoterOn






)(:
)(::\)(

')'()(:',)(

Definition 3 (rules for permitted state transitions)

A state transition from state Si to state Si+1 stimulated by event ti+1 is permitted,
 11

 

i
t

i SSpermitted i , if one of the following rules holds:

[Rule 1] Wi=Wi+1 Vi= Vi+1 voteri= voteri+1

[Rule 2] vVi+1 : (voteri+1(v)Wi  Wi+1 = Wi \{voteri+1(v)}  Vi = Vi+1\{v} )

[Rule 1] represents a state transition in which no vote is cast whereas [Rule 2] models a
state transition during which an eligible voter casts a vote into the ballot box. This voter
is eliminated from the list of eligible voters and his vote is stored in the ballot box.

3.2 Discussion of the original model

The security theorem in [VG08] proves that “for all permitted state transitions starting
with the initial state [...] holds that any reachable state is secure.” This security theorem
is correctly proven. But it doesn't regard those secure states that are reached by an illegal
state transition. Any state reachable by a permitted state transition from a secure state is
obliged to be secure, even if the initial state (which is secure) has been reached for any
reason by a non-permitted state transition. The following example shows that this isn't
fulfilled for the formal security model in [VG08]:

Assume an eligible voter casts a vote into the ballot box, but –due to erroneous
system implementation– the voter isn't eliminated from the list of eligible voters.
The succeeding system state remains secure because OneVoterOneVote(B)
doesn’t specify properties of Wi, but only of Wtotal\Wi. Suppose this voter casts a
vote again. Since this voter is still eligible, his vote is stored in the ballot box
and he is eliminated from the list of eligible voters. This represents a permitted
state transition according to [Rule 2]. But the ballot box now contains two votes
from the same voter. Thus an insecure system state is reached from a secure
state by a permitted state transition.
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To avoid this situation the definition of secure states needs to be extended such that a
voter who has cast a vote into the ballot box is removed from the list of eligible voters.
This can be incorporated into the formal model of [VG08] by extending definition 2 by
an additional requirement for secure states:

wvvoterVvWwCeVoteOneVoterOn ii  )(::)(

Still, this extension isn't sufficient yet. Let Si be a secure state. Furthermore, assume that
an eligible voter x who hasn't yet cast a vote wants to vote. Let the system be in a state
where the voter’s eligibility is provable, i.e., xWi. Due to an incomplete or incorrect list
of registered voters, let xWtotal. This situation and x Wi\Wtotal are not forbidden by the
definition of a secure state. Therefore, the system would follow [Rule 2] and let x cast a
vote v, such that Vi+1= Vi {v} holds. Even though state Si was secure and the state
transition from Si to Si+1 was permitted, state Si+1 isn't secure since x=voter(v)Wtotal
violates the security property UnauthVote.

To avoid this situation, we add one more requirement for secure states, namely, that the
system allows only registered voters (xWtotal) to cast a vote (xWi):

totali WWtersEligibleVo 

This leads our enhanced security model’s definition of a secure state.

3.3 The enhanced model

We now include the additional security properties OneVoterOneVote (C) and
EligibleVoters from our discussion in section 3.2 above to the three security properties
OneVoterOneVote (A and B) and UnauthVoter from definition 2 in section 3.1 above and
thus we get the final definition of a secure state by these five security properties:

Definition 4 (secure voting system state, advanced version)

A voting system state Si is a secure state if (all of) the following constraints hold:

totali

totali

ii

iitotal

i

WvvoterVvrUnauthVote
WWtersEligibleVo

wvvoterVvWwCeVoteOneVoterOn
wvvoterVvWWwBeVoteOneVoterOn
vvvvotervvoterVvvAeVoteOneVoterOn








)(:

)(::)(
)(::\)(

')'()(:',)(
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Obviously, the five properties above are equivalent to the two following properties:

(ap.1) voter is an injective function (equivalent to OneVoterOneVote (A)),

(ap.2) Wtotal=Wi+voter(Vi) (“direct sum”, equivalent to the other four properties). The
direct sum means that both hold,Wivoter(Vi)=Wtotal, andWivoter(Vi)=.

The proof that (ap.1) and (ap.2) are equivalent to definition 4 is straight forward and left
as an exercise to the reader. It is also easy to see that the initial state S0 is secure, because
the voter function is empty, and hence injective; and W0voter(V0)=Wtotal=Wtotal ;
and W0voter(V0)= Wtotal=.

Security Theorem

Permitted state transitions of definition 3 carry secure states into secure states according
to definition 4.

Proof: In [VG08] we proved the security theorem in the weaker version that starting
with S0 any sequence of allowed state transitions would always lead to a secure state. We
had to prove this by mathematical induction. Here we prove a stronger version that
starting from any secure state (regardless of how this state was reached) an allowed state
transition according to [Rule 1] or [Rule 2] will always reach a secure state. That is, we
have to prove directly: For any i ≥0, if we assume that Si is secure, i.e., it has properties
(ap.1) and (ap.2), and that  11

 
i

t
i SSpermitted i , i.e., ti+1 follows [Rule 1] or [Rule 2],

then we have to show that properties (ap.1) and (ap.2) also hold for Si+1.

Let ti+1 follow [Rule 1]. Then Vi+1= Vi and Wi+1= Wi and voteri+1= voteri, thus Si+1 simply
inherits the security properties (ap.1) and (ap.2) from Si.

Let ti+1 follow [Rule 2]. Then exactly one eligible voter casts a vote v into the ballot box
during state transition ti+1. Thus,Wi+1= Wi\{voter i+1(v)} and Vi+1= Vi{v} holds.
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(ap.1) Then voteri+1 is injective on Vi{v}, because voteri+1 restricted on Vi is, by
definition, equal to voteri, which is injective, and voteri+1(v) does not match with any
other image of voteri, because voteri+1(v)Wi\ Wi+1 Wi and hence cannot have been in
voteri(Vi) sinceWivoter(Vi)=.

(ap.2) (i) Wi+1voter(Vi+1) = (Wi\{voter(v)})  voter(Vi{v}) =
(Wi\{voter(v)})  (voter(Vi){voter(v)}) = Wi voter(Vi) = Wtotal .
The last equality holds because Si has property (ap.2).

(ii) Wi+1voter(Vi+1) = (Wi\{voter(v)})  voter(Vi{v}) =
(Wi\{voter(v)})  (voter(Vi){voter(v)}) = Wi voter(Vi) = .
The last equality holds because Si has property (ap.2).

4 An additional transition rule for “reset” and “cancel”

In this section we incorporate the security objectives O.Abort and O.Correction into the
enhanced formal model. For this purpose we introduce an additional transition rule
[Rule 3], which meets these objectives and will, therefore, be associated with a secure
“reset” and “cancel” function.

4.1 Informal description of “reset” and “cancel”

While O.Abort is correlated with the sending and receiving of “cancel,” O.Correction is
associated with the sending and receiving of “reset.” With “reset” we mean that during a
voting process a voter can go back one step just before the last message that he sent to
the server. With “cancel” we mean, that a voter can repeat reset events back to the initial
state so that he can restart his individual voting process. On the receiving side, after a
voter’s “reset” the voting server must filter out all events that were stimulated by
messages exchanged with this voter just before the last message received from this voter.
However, all other events stimulated by messages with other voters must be kept by the
voting server. On receiving a “cancel” message from a voter, the voting server must
forget all events by messages exchanged with this voter, but keep all events stimulated
by other voters. The sending and receiving of a “reset” and “cancel” message must be
carefully synchronized between voters and their voting server. As a security rule, the
“reset” must not create or delete voting rights or cast votes

4.2 Formal basics

The formalization of the “reset” and “cancel” functions requires some formal basics on
lists and list operations and a communication function on events. Readers who are
familiar with the formal specifications can skip to section 4.3.
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Let M denote the set of all communication partners. Then we assume communication
partners a, b, …M who observe events that are correlated by a communication
function com. Partner a will be a model for a voter and partner b will be a model for a
voting server. Each partner observes events on his side that are stimulated by the sending
and receiving of messages. Events are communicated via messages. If a sends a message
of type e to b, then a observes the event of type e that he sends to b, and b would observe
this event with the label e as a message of type e that he receives from a. In the
following we will use the terms “message” and “message type” with the same meaning
as “event” and “event label”, respectively. We will sometimes say, “sending event” and
“receiving event” instead of “sent message” or “received message.” The following event
labels (=message types) are useful for the modeling of electronic voting, e.g., [VV08].
Note that they are just an example which we will take up in section 6. They are not
exhaustive. For example, message types “error” or “verify” are ignored throughout this
paper’s model.

Eventlabels = {login, requestBallot, vote, reset, cancel,
confirmBallot, castVote, feedback, logout}

Let eEventlabels then sig(e) denotes the algebraic sign of e. A negative sign of an
event label e indicates that the associated event is being sent, e.g., e = –login. A positive
sign indicates the associated event is being received, for example, e = confirmBallot.

Events are event labels associated with their sender and recipient. We denote the set of
all possible events as

MMsEventlabelEvents 

Let a,bM and eEventlabels. Events are defined as triples, but for convenience we
will use the following notation for events instead (cf. [Gr09]):

a(e:b) a receives a message e from b
a(–e:b) a sends a message e to b

Let for 1≤ k≤n πk denote the set-theoretic projection of a Cartesian product of n sets on
its k-th component. Let x = a(  e:b) be an event and πi the projection of a tuple to its i-th
element, then

π1(x) returns the event label e of x, which may carry a positive or negative sign.

π2(x) returns aM. Note that a is the sender of the message e if sig(e) is positive, and
a is the recipient if sig(e) is negative.

π3(x) returns bM. Note that b is the recipient of the message e if sig(e) is positive,
and b is the sender if sig(e) is negative.
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For the synchronization of events that are stimulated by messages between a and b, we
need a way to express that a message is observed by both sides. Let Events be the set of
all possible events, a,bM and eEventlabels. The function com is defined as in [Gr09]
and maps the sending and receiving of a message on the corresponding event on the
partner's side:

com: Events Events

com(a(e:b)) := b(–e:a)

com(a(–e:b)) := b(e:a)

We are going to collect events in ordered lists of events which allow us to operate on
sequences of events and on identified events within the list. The algebra of ordered lists
is a standard formalism used in theoretical computer science, see for example [MG08].
As usual, a list of events is understood as a finite sequence (or n-tupel) of these events. If
op is a function on lists, for example the deletion of its head element, then the k-times
repetition of the operation is denoted as ))...))((...(()( 11 LopopopLop kk

k
 .

Useful list functions are [MG08]:

 For any list L of elements of a set Q, set(L) Q denotes the (unordered) set that
consists of all elements of L.

 head(L) and tail(L) return the last element of L, and the rest of the list L without the
last element, respectively. In contrast, tail is complementary to tail and returns the
remaining list without the first element of L.

 Let qQ, then L||q appends the element q at the end of the list L.

 |L| returns the number of elements in L.

 Assume nN a natural number and qQ. L[n] returns the element at the n-th
position in the list and pos(L,q) returns the position of the last occurrence of the
element q in the list L.

 del(L,l) with lN a natural number returns the list L, from that the l-th and all
succeeding elements are removed.

 Especially for lists L of events, we define a filter function, a remove function and a
select function. For an event x and k{1,2,3}, filterk(L,x) removes all events with
event label x from the list L if k=1, or it removes all events whose first or second
actor is x from the list L if k=2,3, and then returns the remaining list. For a
communication partner a, rmv(L,a) returns the list L from which all events that
were sent or received by a are removed. The function selectk(L,x) returns the list of
events where only those events with the event label x are contained if k=1, or only
those events whose first or second actor is x are contained if k=2,3.
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4.3 Formalized “reset” and “cancel”

We are now ready to formally define the “reset” and “cancel” event and prove the
important synchronization theorem. For simplicity we assume in the following that a
communicates solely with b, while b communicates with a and other partners as well.
Thus in the model, a represents a voting client and b represents the voting server.

Definition 5 (Reset)

Let a,bM and Xi be the list of events on the side of communication partner a , i.e.,
axXx i  )(: 2 . Furthermore, let Yj denote the list of events on the side of

communication partner b. Let sent(Xi) denote the list of events that contains the send-
events of Xi only, and let received(Yj) denote the list of events that contains the receive-
events of Yj only, then we define:









)}((|max{,),(

))((
:):( 0

ini

i
i XsentsetxNnlwhereelselXdel

XsentsetifX
bresetaX








elseaYfilter

CifaYtailrmvkYdelaresetbY
j

j

k

j
j ),(

)),((||),(:):(
3

2

where C2 is )))},(((|max{:0 3 aYfilterreceivedsetyNnkk jn 

Explanation: If a communication partner aM executes a “reset” then the last event
xlXi which is sent by a and all successive events to xl are deleted. If there is no event in
Xi that is sent by a (i.e., Xi is empty or contains only received events), then Xi is set to its
initial state.

If a communication partner bM receives a “reset” then the last event ykYj that is
received by b from a is deleted as well as all successive events to yk, which are sent to or
received from a by b. Remark that all events successive to yk, which are exchanged with
other communication partners, are preserved in the state of communication partner b. If
there is no event in Yj that is received from a by b (i.e., Yj is empty, doesn't contain any
events exchanged with a or contains only events sent to a), then all messages sent by b to
a are deleted from the list Yj, i.e., b is set to initial state with respect to a. All events that
are exchanged with different communication partners are preserved.
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General Assumptions:

The reset and cancel functions are to be synchronized between voters and server. They
wouldn’t work properly if the system is interrupted. Therefore, availability is a security
requirement for all communication functions. For the purpose of our security
considerations, we assume that our systems are available and work correctly. Therefore,
we assume secure communication channels in the following sense:

(A1) )()(:0)(:0 ji YsetxcomjXsetxi 
If a communication partner a exchanges a message x with b then there exists a
state such that this message is observable on the partner's side.

(A2)  ),(),(:))((,:0 miniimn xXposxXposXsentsetxxi
))(,())(,(: mjnj xcomYposxcomYposij 

If a communication partner a sends two messages in a particular order then the
communication partner b receives them in exactly that order.

Theorem (Synchronization property of “reset”)

In a secure communication environment (i.e., A1, and A2 hold) the sending and
receiving of “reset” events are well synchronized. Formally: com(head(sent(Xi ||a(-
reset:b)))) = head(received(select3(Yj|| b(reset:a),a))).
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Proof:

Given the two assumptions (A1) and (A2). Furthermore, we denote C1: set(sent(Xi))≠ ,
i.e., a hasn’t sent anything so far and C2: set(received(filter3(Yj,a)))≠ , i.e., b hasn’t
received any message from a. According to definition 5 of “reset,” the following four
possibilities exist:

1. Neither C1 nor C2 holds.

Then Xi ||a(-reset:b)=  and select3(Yj||b(reset:a)) = select3(filter3(Yj,a))=  .
Obviously, Theorem 1 is true.

2. C1 does not hold, but C2 holds.

This directly contradicts assumption (A1). If there was no message sent by
communication partner a, then there can't be any message received from a by b.

3. C1 hold and C2 does not hold.

This is a direct contradiction to assumption (A1) as well. If there was no
message received by b from a, then there can't be any message sent from a to b.

4. C1 and C2 hold.

Let xl be the last event sent by a before executing reset. Due to premise (A2),
head(received(select3(Yj,a)))=com(xl) holds. On the side of communication partner a, the
event xl and all successive events to xl are eliminated during the execution of reset. On
the side of communication partner b, the event com(xl) and all successive events to
com(xl) that are exchanged with the communication partner a are eliminated during the
execution of reset. All events successive to event xl that are exchanged with different
communication partners are preserved.

If set(sent(Xi ||a(-reset:b)))=  holds, then due to premise (A1) set(received(select3(Yj ||
b(reset:a),a)))=  holds as well. Thus Theorem 1 holds.

Assume sent(Xi ||a(-reset:b))≠ and let xm=head(sent(Xi ||a(-reset:b)) be the last sent
event after the execution of “reset.” Given precondition (A1) there exists a state on the
partner's side such that com(xm)Yj || b(reset:a). Furthermore, in accordance to premise
(A2) com(head(sent(Xi||a(-reset:b)))= head(received(select3(Yj||b(reset:a),a))) holds.



102

Definition 6 (“Cancel”)

Let a,bM and Xi be the list of events on the side of communication partner a, i.e.,
axXx i  )(: 2 . And let Yj be the list of events on the side of communication

partner b, respectively. Then we define:

0:):( XbcancelaX i 

),(:):( 3 aYfilteracancelbY jj 

Explanation: If a communication partner a executes a “cancel”, then he is set back to his
initial state with an empty event list X0. If a communication partner b receives a “cancel”
from communication partner a, then all events sent to or received from a by b are
eliminated from his event list.

Remark:

According to definition 6 the following holds: Let k:= |sent(Xi)|+1 be one more than the
number of all sending events in the list of events on the side of a, and let
l:= |received(filter(Yj,a))|+1 be one more than all events that b has received from a, then

0):(||):( XbresetaXbcancelaX
k

ii 

),():(||):( 3 aYfilteraresetbYacancelbY j
l

jj 

The execution of “cancel” by a communication partner a can be expressed by means of
the event “reset”. Communication partner a executes a(–reset:b) for each event sent by
him, until there are no events left or only events that are received by a. By executing an
additional a(–reset:b), a is set to its initial state with empty event list X0.

The execution of “cancel” on the partner's side can be specified by the means of the
event “reset” as well. Communication partner b receives b(reset:a) for each event
received from a. The remaining events are all either sent from b to a or are messages
exchanged with other communication partners different than a. The remaining events
sent to a are deleted by the execution of an additional b(reset:a).

In the next step we must make sure that “reset” cannot produce insecure states, i.e., we
have to specify a transition rule for “reset”.
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4.4 Transition rule for “reset”

A state transition from state Si to state Si+1 stimulated by event ti+1=a(–reset:b) is
permitted,  11

 

i
t

i SSpermitted i , if the following rule holds:

[Rule 3] Let Ti be the list of events observed by a before the execution of “reset,”
and let Ti+1 be the list of events observed by a after the execution of reset,
and let l := |Ti+1| be the length of list Ti+1. Furthermore, let T:= )( i

l
Ttail be the

list of reverted events. Then ti+1=a(–reset:b) is permitted iff

(aWiWi+1)  (1j|T|:  1][
  jl

jT
jl SSpermitted )

Explanation: According to [Rule 3], a state transition from state Si to state Si+1 stimulated
by event ti+1 = a(-reset:b) is an allowed state transition if the voter is eligible and has not
yet cast his vote, both, before and after, the execution of “reset” (aWiWi+1) and all
reverted state transitions were permitted (  jl

jT
jl SSpermitted   ][
1 ).

Figure 4.1: Relation between the list of events before and after the execution of “reset.”

Remark: [Rule 3] is compatible with both rules, [Rule 1] and [Rule 2], because it resets
only permitted transitions. [Rule 3] conforms to [Rule 1] because by the reverted state
transitions no vote had been cast into the ballot box. [Rule 3] is compatible with [Rule 2]
because the resetting voter would not be one of those voters who had cast votes into the
ballot box. Due to the definition of the “reset” function (the filter function in definition 5
makes sure that actions of other participants remain untouched!), the ballots of the other
voters would not be reverted, of course.

0 l l+jTi+1

Ti

T
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5 The extended model

In this section, we show that [Rule 3] complies with the security properties (ap.1) and
(ap.2) which are equivalent to definition 4.

The specification of an IT security model requires first the specification of secure system
states and of permitted state transitions [Gr08]. As a definition for secure system states,
we use the definition 4 of section 3.3 above in the version with the two properties (ap.1)
and (ap.2), namely that “voter is an injective function” (ap.1) and that
“Wtotal=Wi+voter(Vi)” (ap.2).

Extended security theorem
Permitted state transitions according to [Rule 1] and [Rule 2] of definition 3 as well as
according to [Rule 3] from section 4 carry secure states into secure states according to
definition 4. Formally, if a state Si is secure and  11

 
i

t
i SSpermitted i , then Si+1 is also

a secure state.

Proof of the security theorem: For [Rule 1] and [Rule 2] we have proven the security
theorem already in section 3. We have only to prove the security theorem with respect to
[Rule 3] of secure “resets.” To simplify the proof, we first prove the following lemma:

Lemma 1: If a state Si is secure and  it
i SSpermitted i1 , then Si-1 was a secure state.

Proof of Lemma 1: If Si is a secure state and ti was a permitted state transition, then the
state transition ti was performed according to [Rule 1] or by [Rule2]:

[Rule 1]: Then Vi= Vi -1 andWi= Wi-1 hold. Since Si is secure, Si-1 was secure as well.

[Rule 2]: Then there exists exactly one vote v'' that has been put into the ballot box
during state transition ti such that Vi-1 = Vi \{v''} and Wi-1= Wi {voter(v'')}. It has to be
proven that the properties (ap.1) and (ap.2) hold for Si-1.

(ap.1) Firstly, voter is injective on Vi-1 because Vi-1 = Vi \{v''} Vi, and voter is assumed
to be injective on the full Vi already.

(ap.2) Secondly, it must be shown thatWi-1+voter(Vi-1)=Wtotal:

(i) Wi-1voter(Vi-1) = Wtotal holds because voter is injective, and therefore
Wi-1voter(Vi-1) = Wi {voter(v'')}  voter(Vi\{v''}) =
Wi{voter(v'')}  (voter(Vi)\{voter(v'')}) = Wivoter(Vi) = Wtotal. The last
equality holds because Si is assumed to be secure.
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(ii) Wi-1voter(Vi-1) =  is true because:
Wi-1voter(Vi-1) = (Wi{voter(v'')})  voter(Vi\{v''}). Since Si is a secure state
such that Wivoter(Vi)= holds, it is sufficient to prove that {voter(v'')} 
voter(Vi \{v''}) =  holds. And this is true because voter is injective.

This completes the proof of Lemma 1.

Given the Lemma 1 above, the proof of the security theorem with respect to [Rule 3] is
trivial: If ti+1 follows [Rule 3] and Si was secure, then all reverted state transitions were
permitted according to [Rule 3], and hence Si+1 is a secure state according to our Lemma
1 above. �

6 Transition rules in a voting process

In the previous sections we have specified conditions for allowed state transitions. In this
section we show, at which points in a voting process these rules are to be applied. There
are several variants conceivable for each voter's polling process [VV08]. Since we are
not going to discuss process designs, we have chosen one process variant with login at
start of the voting process.

Figure 6.1: Mapping of transition rules on a (simple version of a) voting process

A sequence of transitions of the polling process is exemplarily shown in figure 6.1 where
only the client side of the electronic voting process is considered. The voter identifies
and authenticates himself by sending his data to the voting server (-login). If the voter is
unmistakably identified and authenticated on the server’s side, the voter is able to
request the ballot form (-requestBallot). The ballot form is displayed on the voter’s client
and the voter makes his voting decision (-vote). The voter has to confirm his ballot (-
confirmBallot) to protect against errors by haste. Afterwards he casts a vote into the
ballot box (-castVote), where the casting of the vote follows [Rule 2]. The voter is
allowed to correct his vote (-reset) or abort (-cancel) his voting process any time prior to
the final casting of the vote, where “reset” and “cancel” follow [Rule 1] and [Rule 3].

-confirmBallot X6X1 X2 X3 X4 X5X0
-requestBallot -vote -castVote -logout

-cancel
-cancel
-cancel

-cancel

-reset -reset -reset -reset

[Rule 1]
-login

[Rule 1] [Rule 1] [Rule 1][Rule 1] [Rule 2]

[Rule 1&3] [Rule 1&3] [Rule 1&3] [Rule 1&3]

[Rule 1&3]
[Rule 1&3]

[Rule 1&3]
[Rule 1&3]
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Figure 6.2: Example of an illegal placing of “reset” in the voting process

But the voter should not be allowed to correct or abort his vote after the final casting of
his vote, as shown in figure 6.2. If he could do that, he would obtain the possibility to
cast a vote into the ballot box for a second time. Note that our recommendation for the
placement of “reset” and “cancel” complies with the security transition [Rule 3] which
states that the voter is eligible, both, before and after the execution of “reset” and that all
reverted state transitions were permitted.

7 Conclusion

In this paper an IT security model formalizes some basic security requirements for
electronic voting: one voter one vote, eligible voters, the correction of a vote, and the
abortion of a voting process. The corresponding security properties are specified as
secure system states. The voting functions are controlled by state transition rules. We
prove mathematically that a function following the rules would transfer a secure state
into a secure state.

This contribution demonstrates how security requirements for electronic voting can be
formalized and how an existing IT security model can be extended by adding gradually
security objectives. However, we have not yet included anonymity or verifiability in our
model. For a complete formalization of the security requirements for electronic voting,
the IT security model presented in this paper needs to be extended by the remaining
security objectives defined in the Protection Profile [VV08] and [GH09] step-by-step.
Our next research step is to incorporate voter anonymity.

-confirmBallot
X6X1 X2 X3 X4 X5X0

-login -requestBallot -vote -castVote -logout

-reset
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