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Abstract: Functional requirements that were stated in cooperation with the stakehold-
ers have to be analyzed and reviewed. Deficiencies like incompleteness, contradictions
and redundancy within the requirements may lead to an extended development effort.
Identifying and resolving these deficiencies in an existing or evolving set of functional
requirements for embedded systems is of major importance. Especially, if the require-
ments describe a set of possible products. Formal methods provide a powerful way to
review the requirements automatically. This paper proposes a method adopted from the
formal verification of hardware components to uncover the deficiencies within a given
set of requirements. The basis of this approach is built by safety properties represented
as Linear Temporal Logic (LTL) formulas which are extracted from the requirements.
The presented process is evaluated by means of the specification of a car seat.

1 Introduction

Formulating requirements and analyzing them is a vital prerequisite for keeping the devel-

opment costs low. The set of requirements describing the attributes of a system is called

specification. The development process usually starts with a customer delivering a rough

specification that is then refined in talks with the contractor. A specification may change,

be extended or completed during the development process. This may become an even

bigger problem if the requirements describe a set of products, a so called product line

(PL). The developer or design team, who must implement an actual product from the PL,

relies on a consistent and complete specification. Therefore, single requirements must

not contradict each other or become contradictory due to further customer wishes that

change the requirements. The customer must define the characteristics and behavior of

the desired product carefully and clearly. Specifications need to be complete and must

not leave undesired degrees of freedom to the designer. Due to project teams working on

single products and their requirements, it may also happen that redundant requirements are

added to the set of requirements. Redundant requirements are those that are covered by one

or more requirements that are already part of the specification. They do not provide any

additional information to the system behavior.

The contribution of this paper is to provide support for requirements analysis of PLs of

Embedded Systems by methods adopted from the formal verification of hardware systems

and their components. These methods can prove the consistency of a system and deliver a
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measure of completeness of the requirements. We put our focus on functional requirements

that can be expressed as safety properties expressed in temporal logic. Non-functional

requirements are not taken into account because they usually cannot be expressed by means

of safety properties. We refer to functional requirements as requirements concerning the

observable behavior of an embedded system. They define the valid input/output behavior

the user observes when operating the system. The specification must specify the following

ingredients with respect to the behavior of the system:

• inputs (sensors, buttons, messages...)

• outputs (actors, motors, messages...)

• temporal-logical relationships between inputs and outputs

If the embedded system is modeled as a black-box with inputs and outputs, the relation

between the inputs and outputs is described by the functional requirements given by the

specification. They state how an output has to react to a specific input or to a combination

of inputs. The reaction of the output may also depend on internal states of the system.

The remainder of the paper is structured as follows: Related work is referenced in Section

2. Our running example is described in Section 3. In Section 4 an overview of the concept

is presented. The property-checking algorithm is described in Section 5 and applied to the

running-example in Section 6. In Section 7 the results are summarized and an outlook to

future work is provided.

2 Related Work

The quality of specifications with respect to the requirements included may vary strongly.

Goetz and Rupp show how specifications should be formulated to avoid contradictions

and over-specifications [GR03]. Chantree et al. analyze ambiguities in natural language to

improve the overall quality of the specification [CNdRW06]. For our approach the quality

of the specification is of major importance.

Uncovering inconsistencies in specifications is discussed by Koopman et al. in [KAP08].

Lauenroth and Pohl address the problems that occur when dealing with variability in

requirements analysis [LP08]. Both approaches relate to a model that is expressed as an

automaton. The automaton must be extracted from the specification and may become very

large for complex specifications.

In [HJL96] Heitmeyer et al. present a method to find several classes of inconsistencies

within specifications. The SCR-notation (Software Cost Reduction) is used to define

the requirements by means of condition, event and mode transition tables. Checking for

contradictions or nondeterminism works similar to our approach, but the definition of

completeness differs. Heitmeyer et al. state that a system is complete if every input event

changes the system state. Our definition of completeness is more restrictive as we state that a

system is complete if its outputs are defined for every possible input combination. Therefore,
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our check reveals unwanted degrees of freedom within a specification. Furthermore,

we normalize the property set which leads to an accurate view on contradictions and

incompleteness and allows us to measure the completeness of a specification.

Bormann [Bor09] presents a technique for the analysis of property-sets. This approach

lacks of providing a measure of completeness. Furthermore, the properties need to be

written as so called transaction properties and cannot be extracted intuitively. Therefore, our

approach is based on [OSE07] by Oberkönig et al. which also relates to the completeness

of properties. We refer to a functional requirement as a system requirement to the system

that states a functional interrelationship of the observable outputs based on the inputs and

the current system state. Such an interrelationship is phrased as an LTL property rather than

as an automaton.

3 Running Example

As a running example, we use a car seat controller known from the automotive industry.

The car seat needs to fulfill the following requirements which we describe in form of an

item list:

1. The seat incorporates three motors that can move the seat up/down, left/right and can

change the angle of the backrest.

2. Each motor is controlled by a switch that can be brought in the three positions

back-stop-front.

3. The motors can only be active up to a car speed of 15 km/h. The seat must not move

over that speed due to safety reasons.

4. A seat heater is included into the seat that can reach the states off-on and is also

controlled by a switch.

5. The seat heater can only be active if the seat belt is fastened.

6. Only one motor may be activated at a time or the seat heater may be changed.

7. The seat also incorporates an automatic entry function that helps the driver to access

the car.

8. When the door is opened the seat moves back and the driver can enter.

9. When the door is closed the seat moves forward until it reaches the initial position.

3.1 Feature Models

Feature models (FM) are frequently used to describe variabilities and commonalities in a

PL. A feature model is an acyclic graph consisting of features representing the properties
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Figure 1: Feature Model of the car seat SPL

of the PL. A Boolean representation of an FM can be obtained according to [CW07]. We

need a variability model that can be represented as a Boolean formula in order to add

the information provided by the model to the LTL formulas. According to [HST+08] the

purposes of a feature model are the following:

• describing common and variable features

• depicting dependencies and constraints between features

• determining which feature combinations are permitted and which are forbidden

• describing all possible products of the SPL

To satisfy these purposes, notations have been defined allowing to describe optional and

mandatory features as well as groups of features from which exactly one feature (alternative-

group) or at least one feature has to be selected (or-group). The hierarchical as well as

cross-tree dependencies such as require and exclude decide which feature combinations

are permitted. In [KCH+90] feature models are initially introduced as part of FODA. Fig.

1 depicts the feature model of our running example. The model and the names of the

features is one possible representation for the variability incorporated within the PL. The

feature model is no canonical representation. There are also other equivalent feature model

representations that describe the same PL.

4 Concept

We extract formal properties from the functional requirements. Formal properties provide

an unambiguous way to express functional relations between the inputs and outputs of

a system. Usually, temporal logics, like Linear Temporal Logic (LTL) [Pnu77], express

formal properties. We transform those formal properties into a normal form, and we then

check if the properties suffer of one of the following deficiencies:

Contradiction: A contradiction within a set of requirements leads to an inconsistency that

cannot be resolved by the system designer. Two or more requirements can contradict each
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other by directly stating contradictory behavior, which leads to an over-specified output

behavior. Moreover, contradictions may exist that cannot be identified at the first glance

due to their indirect dependency on several requirements. A contradiction exists if two

possible ways are specified in which the system can behave given the same set of inputs

and the same system state.

Incompleteness: The set of requirements may be incomplete. We define that a set of

requirements is complete if it describes the output behavior of every actor for every possible

combination of inputs. If it is intended that the output behavior is unspecified in certain

situations then this don’t-care situation can also become part of the resulting property-set.

Redundancy: Two or more requirements are redundant if they state equal behavior of an

output. Thus, they are specified in a non-contradictory way. This may trivially happen

if several copies of a requirement exist or if a requirement can be deduced from other

requirements. If the algorithm identifies these redundant properties, the set of requirements

can be reduced without losing information about the system behavior.

Our approach starts with the initial specification, which may be given as plain text only. A

state chart, activity diagram, or use-case may also serve as a specification of the system

behavior. Functional requirements are extracted from the specification and arranged as a

list. The list represents the specification in a semi-formal structure facilitating the extraction

of properties. We also build an FM representing the commonalities and variability of the

PL. The list of requirements must then be traced to the FM. For every requirement the

respective feature or feature combination that causes the requirement to become part of a

derived product from the PL must be known. The concept is closely related to the concept

presented in [MO10] that aimed at the generation of test oracles from formal properties.

Afterwards, we derive LTL formulas from the previously formatted set of functional

requirements according to Section 5. We then add the Boolean representation of the FM to

the LTL formulas. The tracing of the features to a respective requirement is done by adding

the single features to the LTL formula. The method presented in Section 5 then checks the

formal properties automatically. For this check we do not need any further model because

the properties incorporate all necessary information about the system behavior. Deficiencies

are then detected and given to the user.

As long as deficiencies are found within the property-set, the deficiencies need to be

analyzed and resolved in the list of functional requirements. Resolving the deficiencies

must be done manually with the help of the results of the checking algorithm. Afterwards,

the property-set must be modified due to the changes made within the list of functional

requirements. This procedure is repeated until there are no more unwanted deficiencies in

the formal properties. As a consequence, the underlying set of functional requirements is

free from unwanted deficiencies, too. Since we added the information of the FM to the

properties, we can also assure that there are no deficiencies left for every derivable product.

A major advantage of this procedure is that small changes of the functional requirements

can be mapped to the existing set of formal properties easily, once the formal properties

have been elicited. Using formal properties for requirement representation, newly added,

removed, or changed requirements can be checked for adding unwanted deficiencies on

the fly. For this procedure no implementation or further model is taken into account. The
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properties are checked with respect to themselves. This procedure works with all types of

temporal logics which incorporate the expressiveness necessary to describe the behavior of

embedded systems. We use LTL since it is an established and well-known temporal logic.

5 Formal Analysis of Requirements

We focus on functional requirements that can be expressed by implications. A functional

requirement can describe everything that represents the functionality of a system or a

device. Statements like: ”When the driver enters, the information to fasten the seatbelt

must be displayed” can be seen as a global requirement. It omits the necessary implemen-

tation and leaves that to the design team. However, it can also be seen as an implication

(driver enters → information displayed).

A requirement that is extracted from a specification is called property in the area of formal

hardware verification. Thus, the set of all requirements is called property-set. In order to

describe a system formally, the properties may have to be extracted from a non-formal

specification. We will explain the procedure by a small example taken from the running

example:

...The seat heater may only be activated if the seat belt is fastened...

This excerpt leads to the following implication in LTL:

G(¬seat belt → X(¬seat heater)) (1)

If the seat belt is not fastened, the seat heater must not be active in the next cycle. As the

requirement is modeled as a safety property the LTL formula begins with the Globally

operator G. The Next operator X expresses the temporal relation between the left and right

side of the implication.

Since we take a PL into account, a conjunction of the features that trigger the requirement
must become part of the LTL formula. All mandatory features may be omitted because they
are always part of the PL and, therefore, always true.

G(heater ∧ ¬seat belt → X(¬seat heater)) (2)

This formula is only checked if the seat heater (heater) is part of the derived product.

Fig. 2a shows a path which is defined by the left side of an LTL formula. The next state of

this path is undefined because none of the requirements defines a value for a certain output

on the right side of the implication. Fig. 2b shows a path which has two concurrent next

states. Two left sides of implications are valid on the same path but lead to two different

next states defining contradictory values for the same output with their right sides. Fig. 2c

shows a scenario describing redundancy. A specification consists of three requirements

R1, R2 and R3. All the behavior which is defined by R3 has already been defined by R1

and R2. Thus, the requirement R3 is redundant. Considerable attention has been given

to the problem of completeness-checking of test suites in the past few years A number of

so-called “coverage tests” have been developed which examine different aspects of a test

suite. Those tests usually deal with code coverage or control flow analysis [Lig02]. In the
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Figure 2: Possible Deficiencies

area of hardware simulation it has been state-of-the-art to use coverage metrics in order to

evaluate the completeness of the simulation environment for more than ten years [CK93].

In contrast to that, our approach does not ask the question “Which part of the system is

covered” but “Do the requirements incorporate all relevant functionality?”.

In the field of formal verification of hardware systems (model checking with formal prop-

erties), a procedure was developed that is capable to analyze a specification consisting of

properties with respect to its completeness [OSE07]. The completeness analysis calculates

the degree of determination of all outputs within a specification. Checking the completeness

of formal requirements may result in a gap. An output is called fully determined if it is set

to a defined value for every combination of inputs and internal states.

We assume that inputs and outputs of embedded systems can only be set to the values ’0’

and ’1’ as known from digital hardware. Thus, other data types like integers or complex

data types must be first transformed into an equivalent representation using bit vectors. Its

size must be sufficient to cover the range of all possible values that the system can assign to

the integer value.

Properties are subdivided into two groups: One limits an output in a specified case to ’0’

and the other one to ’1’. The disjunction of all properties’ left sides that force the output to

become ’0’ define the so-called off-set (v0). Accordingly, the disjunction of all properties’

left sides forcing the output to become ’1’ defines the on-set (v1).

We define the determination function and the consistency function from v0 and v1:

Determination function := v0 ∨ v1 (3)

Consistency function := v0 ∧ v1 (4)

If the determination function equals ’1’ the output is fully determined (complete). In all

other cases it is partly or completely undetermined.. Therefore, an output is fully determined

if the disjunction of the values forcing it to ’0’ or ’1’ represents the complete set of inputs

in all combinations. The output is then driven to a specific value on all possible input

combinations without leaving any degrees of freedom. The counterpart of the determination
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function characterizes all situations in which the output is not determined.

The consistency function must always be equal to ’0’. Otherwise, the specification is

inconsistent. If the conjunction of (v0) and (v1) becomes true, there must be at least one

property that forces the respective output to ’0’ and ’1’ at the same time. The consistency

function defines all situations in which the properties are inconsistent. These situations

must be corrected within the requirements.

Definition: If the determination function of an output equals ’1’, the output is fully
determined. In all other cases the following metric defines the percentage of the determined
situations:

degree of determination =
#minterms

2n
(5)

where n is the number of variables of the determination function and #minterms corresponds

to the number of satisfied assignments in all Boolean variables of the function. A satisfied

assignment in all Boolean variables corresponds to a single 1 in a Karnaugh map.

If there are, for instance, the following requirements for the output c given (as Boolean
expression)

a → c

¬a ∧ b → ¬c

the Karnaugh maps in Fig. 3 result. The diagrams represent the off-set, on-set and deter-

mination function of c, respectively. The Karnaugh maps depend on the two inputs a and

b. In this example, the off-set is not the inverted on-set because the two properties do not

fully determine the output c. Therefore, the degree of determination is 75 % since three

minterms of a total of four are specified by the Boolean requirements.
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Figure 3: Karnaugh Maps of the Off- and On-Set

If the consistency function does not equal ’0’, inconsistencies have been found which

represent contradictions within the specification. A metric for the degree of consistency

is obsolete. For the algorithm that is capable of transforming properties into an off- and

on-set please refer to [OSE07].

6 Exemplary Workflow

In the following we will present an exemplary workflow based on the running example from

section 3. We will first write a complete and non-contradictory set of LTL properties using

the procedure explained in section 4. Afterwards, we will demonstrate how contradictory

and incomplete situations are detected.
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6.1 Preparation

First of all, we formulate the requirements as LTL properties. Afterwards, we apply the

procedure presented in section 5 to normalize the property-set and create microproperties.

The algorithm uses the microproperties to analyze the requirements considering consistency

and completeness. A degree of determination of 100 % is shown and it is proven formally

that the properties are free from contradictions. The following two paragraphs show the

main problems of the consistency analysis aided by slightly modified properties. Tab. 1

shows the number of generated microproperties, the total degree of determination, and the

runtime. All results were produced on a Core2Duo system with 3 GHz using a single core.

Table 1: Results of the Car Seat Example

experiment microproperties determination degree time

initial properties 40.282 100 % 35 s

with gap 40.274 97 % with 2 gaps 55 s

with contradiction 40.354 100 % with 250 contradicitions 34 s

6.2 Discovering Incompleteness

We modified a property for the seat heater according to equation (6) in order to create an
incomplete property set. Equation (6) describes the behavior of the seat heater extracted
from the requirements at the first glance. The completeness check detects a specification
gap and returns a degree of determination for the seat heater (Heat output) of 50%. The
gap is depicted in Fig. 4 as a path. The diagram reveals the non-determined output due
to the specification gap and the history leading to its non-determinism. The user is then
requested to complete the path by adding the property that defines the output in the next
state. In the example the behavior of the seat heater was not specified in the situation when
the seat belt is not fastened.

G(Seatbelt ∧Heat request → X(Heat output)) (6)

Therefore, equation (6) needs to be changed as follows:

Heat_output=?Seatbelt=0

Figure 4: Path Representation of the Specification Gap

G((Seatbelt ∧Heat request → X(Heat output))∨

(¬Seatbelt → X(¬Heat output))∨

(Seatbelt ∧ ¬Heat request → X(¬Heat output)))

(7)

Equation (7) defines Heat output in all possible combinations of the inputs Seatbelt and

Heat request and leaves no further gaps. According to the gap free formal LTL specification
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the initial set of requirements can be revised. The functional requirement (5) from section 3

should be written in a clearer way as follows:

• If the seatbelt is not fastened the heater must not be active.

• If the seatbelt is fastened the heater must be active if it receives a request from the

corresponding switch and must be inactive otherwise.

These formulations lead to only one possible way in which the seat heater may operate and

leave no degrees of freedom to the designer.

6.3 Discovering Contradictions

To force the specification to be contradictory we use the properties in Equation (11) to (14).
Equations (11) to (13) describe the behavior of one of the engines with three properties. To
ensure the readability of the resulting LTL expressions we substituted parts of the properties
with corresponding macros (M1; M2; M3).

M1 :(Engine2 request = 0)∧

(Engine3 request = 0) ∧ (Speed Sensor < 16) (8)

M2 :(Engine1 request = 1) ∧ (Seat Back > 0) (9)

M3 :(Engine1 request = 2) ∧ (Seat Back < 50) (10)

G((M1 ∧M2) → X(Engine1 output = 1)) (11)

G((M1 ∧M3) → X(Engine1 output = 2)) (12)

G((M1 ∧ ¬M2 ∧ ¬M3) → X(Engine1 output = 0)) (13)

Equation (14) is a small excerpt of the LTL property leading to the contradiction. It defines
the output behavior due to bus conflicts of one or more accesses to the bus simultaneously.

G(((Heat request �= 0) ∧ (Engine1 request �= 0)) →

X((Engine1 output = 0) ∧ (Invalid Inputs = 1)))
(14)

The four properties have reached a size which does not allow the stakeholder to uncover the

contradiction at the first glance. The formal analysis discovers a contradiction which can be

represented as a path (Fig. 5). The path depicts the contradiction within the specification of

the output of the motor by having two contradicting next states. It occurs when two devices

try to access the bus simultaneously. Within this example an assumption of the property

belonging to the motor was not stated that excludes the seat heater to be active together

with the motor.

To resolve the contradiction M1 needs to be changed as shown in Equation (15).

M1 :(Engine2 request = 0) ∧ (Engine3 request = 0)

∧ (Speed Sensor < 16) ∧ (Heat request = 0)
(15)
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Engine1_request=2

Engine2_request=0

Engine3_request=0

Speed_Sensor<16

Heat_request=1

Engine1_output=2

Engine1_output=0

Figure 5: Path Representation of the Contradiction Discovered

Due to this change Engine1 output can only be active if no other device is accessing the

bus simultaneously. In the initial set of properties the heater was omitted which lead to the

contradiction.

Redundant properties can be discovered by leaving them from the property set. If the degree

of determination remains unchanged the property is redundant.

7 Conclusion and Future Work

The later the stakeholder identifies deficiencies in a specification or in a set of requirements,

the more time and effort is needed to redefine the affected parts of the system. Within the

scope of this paper it could be shown that requirements can be tested for incompleteness,

contradictions and redundancy with formal methods taken from the hardware verification.

The challenge of this approach is to formulate the requirements by means of the property

specification language LTL. Our approach is suitable to review specifications which were

formulated by a stakeholder. Since the resulting property-sets can easily and intuitively be

modified and extended, our approach can be used in the field of requirements engineering.

When extending the LTL property set with the boolean representation of the FM, we can

also check requirements of PLs. Especially, when reviewing evolving specifications the

approach is capable to help maintaining the consistency.

As a next step, we need to review the kind of requirements that can be modeled with

property specification languages. Up to now, we used the algorithm exclusively for systems

that can be described by a set of safety properties. We also need to determine how errors

in the extraction process of properties from the specification impact the completeness and

if they can be identified. The maximum problem size that can be handled must also be

evaluated.

LTL is used in many different domains to specify system behavior. Therefore, we need to

figure out whether our approach can handle specifications from other areas, like business

processes. In principle the approach should be suitable for any specification that can be

expressed as safety properties.

Finally, we will try to adopt the method presented in [Bor09] to tackle the completeness

problem. We need to evaluate the differences with respect to the drawbacks and advantages

of both methods.
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