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Abstract: Currently, there are two main basic approaches to data integration: Global-
as-View (GAV) and Local-as-View (LAV). However, both GAV and LAV have their
limitations. In a GAV approach, changes in information sources or adding a new infor-
mation source requires revisions of a global schema and mappings between the global
schema and source schemas. In a LAV approach, automating query reformulation has
exponential time complexity with respect to query and source schema definitions. To
resolve these problems, we offer TIQS as an alternative point of view that is neither
GAV nor LAV. The approach uses source-to-target mappings based on a predefined
conceptual target schema, which is specified ontologically and independently of any
of the sources. The proposed data integration system is easier to maintain than both
GAV and LAV, and query reformulation reduces to rule unfolding. Compared with
other data integration approaches, our approach combines the advantages of GAV and
LAV, mitigates the disadvantages, and provides an alternative for flexible and scalable
data integration.

1 Introduction

Data integration refers the problem of combining data residing at autonomous and hetero-
geneous sources, and providing users with a unified global schema [Hal01]. Two main
concepts constitute the architecture of a data integration system [UlI97]: wrappers and
mediators. Awrapperwraps an information source and models the source ussogiece
schema A mediatormaintains aglobal schemaand mappingsbetween the global and
source schemas. As is usual, we focus here on data integration systems that do not ma-
terialize data in the global schema. Whenever a user poses a query in terms of relations
in the global schema, the mediator useguary-reformulatiorprocedure to translate the
query into sub-queries that can be executed in sources such that the mediator can collect
returned answers from the sources and combine them as the answer to the query.

Currently, there are two main initiatives to integrate data and answer queries without mate-
rializing a global schema: Global-as-view (GAV) [CGMIG4] and Local-as-View(LAV)
[LRO96, GKD97].[CLLO1] surveys the most important query processing algorithms pro-
posed in the literature for LAV, and describes the principle GAV data integration systems

*This material is based upon work supported by the National Science Foundation under grant 11S-0083127.
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and the form of query processing they adopt. In a GAV approach, query reformulation
reduces to simple rule unfolding (standard execution of views in ordinary databases).
However, changes in information sources or adding a new information source requires
a database administrator (DBA) to revise the global schema and the mappings between the
global schema and source schemas. Thus, GAV is not scalable for large applications. LAV
scales better, and is easier to maintain than GAV because DBAs create a global schema
independently of source schemas. Then, for a new (or changed) source schema, the DBA
only has to give (adjust) source descriptiothat describes source relations as views of the
global schema. Automating query reformulation in LAV, however, has exponential time
complexity with respect to query and source schema definitions. Thus, LAV has low query
performance when users frequently pose complex queries.

As data explodes on the Web, E-business applications such as comparison shopping and
knowledge-gathering applications such as vacation planning raise the following issues for
approaches to data integration. (1) The number of sources to access and integrate is large.
(2) The sources are heterogeneous, autonomous, and possibly change frequently. (3) New
sources continually become available and become part of the system. (4) Users frequently
pose queries over the system to retrieve data. (5) As applications evolve, DBAs may wish
to change the global schema to include some new items of interest. To address these issues
and the problems of GAV and LAV, we present an alternative point of view, a Target-based
Integration Query System (TIQS), that is neither GAV nor LAV. It aims at combining the
best of the two basic approaches: GAV's simple query reformulation and LAV's scalability.

The following characteristics describe our solution.

1. Each relation in a target schema, which is our global schema, is predefined and
independent of any source schema. Moreover, we wrap sources in isolation, without
reference to the global scherhdn contrast, in a GAV approach, DBAs revise the
global schema to include all items in sources, and in a LAV approach, DBAs adjust
the source schemas such that they contain only source relations that can be described
by views over the global schema.

2. A set ofmapping elemenis a source-to-target mapping maps a source schemato a
target schema. Because we wrap sources independently, source and target schemas
use different structures and vocabularies. Automatgtema matchingechniqus
have been proven to be successful in extracting mapping elements between two
schemas. [RBO01] surveys these techniques. Clio [MHHOO] has an extensive tool
set to aid users semi-automatically generate mappings. [XEO3a, XE03b, Xu03] pro-
vide many mappings automatically, with accuracies ranging from 92%-100%; these
mappings are not just 1-1 mappings, but include many indirect mappings discussed
later in this paper. Thus, TIQS is capable of specifying views over source schemas
that match with elements in the target schema semi-automatically.

3. When a new information source becomes available (changes), a source-to-target
mapping must be created (adjusted). With the assistance of semi-automatic mapping
tools, the maintenance requires less manual work than either GAV or LAV.

10ften these sources are structured, and we simply take the local schema without change [ETLO02].
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4. Whenever a users poses queries in terms of target relations, query reformulation is
rule unfolding as in GAV by simply applying the generated source-to-target map-

pings.

5. If the target schema evolves, the mapping tool semi-automatically generates (or ad-
justs) mapping elements between the new target schema and the source schemas.
This involves less DBA effort than for either GAV or LAV.

TIQS operates in two phases: design and query processing. In the design phase, the
system synergistically automates the generation of source-to-target mappings. Mapping
elements in source-to-target mappings are expressions over source schema elements that
producevirtual target-view elementsThis leads automatically to a rewriting of every
target element as a union of corresponding virtual target-view elements. In the query
processing phase, a user poses queries in terms of target relations. Query reformulation
thus reduces to rule unfolding by applying the view definition expressions for the target
relations in the same way database systems apply view definitions.

TIQS’s contributions are (1) a unique approach to data integration using source-to-target
mappings based on a predefined target schema that combines the advantages and mitigates
the limitations of GAV and LAV, and (2) an extended relational algebra to describe source-
to-target mappings, whose implementation is readily available based on schema matching
techniques described in [XE03a, XE03b]. We organize the contributions in this paper as
follows. Section 2 presents the components of TIQS. Section 3 describes an extended
relational algebra for source-to-target mappings. Section 4 discusses the solution to query
reformulation and gives theorems to prove that TIQS gsmsd answer® a query using
amaximally contained reformulatiorsection 5 reviews the other alternatives to GAV and

LAV. In Section 6 we summarize and make concluding remarks.

2 The Data Integration System

Definition 1. A data integration systemis a triple (T, {S;}, {M;}), whereT is a target
schemajS;} is a set ofn source schemas, aqd/;} is a set ofn source-to-target map-
pings, such that for each source sche$nthere is a mapping/; from S;to7',1 < i < n.

We use rooted hypergraphs to represent both target and source schémasypergraph
includes a set of object set3 and a set of relationship sefs. Therefore, a schema
element is either an object set or a relationship set. An object set either has associated data
values or has associated object identifiers (OIDs), which we respectivelgxiatl and
non-lexicalobject sets. The root node is a designated non-lexical object set of primary
interest. Figure 1, for example, shows two schema hypergraphs (whose roats.are

and House). In the hypergraphs, lexical object sets are dotted boxes, non-lexical object
sets are solid boxes, functional relationship sets are lines with an arrow from domain object
set to range object set, and nonfunctional relationship sets are lines without arrowheads.
For a schemdl, which is either a source schema or a target schema, Wwgletenote the

union of O andR. For source views, we léfy denote the extension &fg with derived
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object and relationship sets over a soukte

Golf_course

(b) Schema 2

Figure 1: Source Graphs for Schema 1 and Schema 2

A source-to-target mappindy/; for a source schemsi; with respect to a target scherita

is a functionf;(Vs,) — . Intuitively, a source-to-target mappirdg; represents inter-
schema correspondences between a source schearad a target scheniB. If we let
Schema 1 in Figure 1(a) be the target and let Schema 2 in Figure 1(b) be the source, for
example, a source-to-target mapping between the two schemas includes a semantic corre-
spondence, which declares that the lexical objecBseroomsn the source semantically
corresponds to the lexical object setdsin the target. If we let Schema 1 be the source

and Schema 2 be the target, a source-to-target mapping declares that the union of the two
sets of values iphonedayandphoneeveningn the source corresponds to the values for
Phonein the target.

We represent semantic correspondences between a source stlama target schema
T as a set of mapping elements. A mapping element is eitdeeet matchwhich binds
a schema element g to a schema element M+, or anindirect matchwhich binds a
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virtual schema element iis to a target schema elementiiy through an appropriate
mapping expressionver ¥g. A mapping expression specifies how to derive a virtual
schema element through manipulation operations over a source schema. We denote a
mapping element ag (~ s < 0,(Xs)), whered,(Xs) is a mapping expression that
derives a source elemestn Vg,? andt is a target schema elementdiyy.

As part of the mapping declarations, TIQS derives a sitadfision dependencidsr each

target element based on the collected source-to-target mappings. Each mapping element
w, (t ~ s < 0,(Xs)), implies an inclusion dependency, which we denot&as C ¢.

This declares that the facts for schema elemseat Vg, can be loaded into the target as

the facts for schema eleméentAs is typical for integration systems with non-materialized
global schemas, we make an “open world assumption.” Thus, the facts for the source
elements in the mapping element are only a subset of facts for the target elemgent

and if there exists a source elemefite Vs and another mapping element, (¢t ~

s’ < 64(Xg)), the facts for boths ands’ can be facts fot. In general, for each target
schema elemerit€ X1 in the data integration systefm we denote the set of inclusion
dependencies faras{S;.s; C t|(t ~ s; < 05,(Xs,)) € My,s; € Vs,,8; € I, M; €

I,T €I}

3 Algebra for Source-to-Target Mappings

Each object and relationship set (including virtual object and relationship sets) in the target
and source schemas are single-attribute or multiple-attribute relations. Thus, relational
algebra directly applies to the object and relationship sets in a source or target schema.
The standard operations, however, are not enough to capture the operations required to
express all the needed source-to-target mappings. Thus, we extend the relational algebra.

To motivate our use of standard and extended operators, we list the following problems we
must face in creating virtual object and relationship sets over source schemas.

e UnionandSelection The object setgyhone_day andphone_evening in Schema 1 of Fig-
ure 1(a) are both subsets Bfione values in Schema 2 of Figure 1(b), and the relationship
setsagent — phone_day andagent — phone_evening in Schema 1 are both specializa-
tions of Agent — Phone values in Schema 2. Thus, if Schema 2 is the target, we need the
union of the values iphone_day andphone_evening and the union of the relationships in
agent—phone_day andagent — phone_evening in Schema 1; and if Schema 1 is the target,
we should find a way to separate the day phones from the evening phones and separate the
relationships between agents and day phones from those between agents and evening phones.

e Merged and Split ValuesThe object setsStreet City, and Stateare separate in Schema 2
and merged aaddressf houseor locationof agentin Schema 1. Thus, we need to split the
values if Schema 2 is the target and merge the values if Schema 1 is the target.

e Object-Set Name as Valuén Schema 2 the featuré® ater_front andGol f _course are
object-set names rather than values. The Boolean values “Yes” and “No” associated with them
are not the values but indicate whether the valléster_front and Gol f _course should

2Note that the mapping expression may be degenerate sg:thas) is possible.
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be included as description values fotation_description of house in Schema 1. Thus, we
need to distribute the object-set names as valudefation_description if Schema 1 is the
target and make Boolean values fdtater_front andGol f _course based on the values for
location_description if Schema 2 is the target.

e Path as Relationship SetThe pathhouse — basic features — beds in Schema 1 se-
mantically corresponds to the relationship $fbuse — Bedrooms in Schema 2. Thus,
we need to join and project on the path if Schema 2 is the target and make a virtual ob-
ject set forbasic features and virtual relationship sets fdtouse — basic features and
basic features — beds over Schema 2 if Schema 1 is the target.

We use the following operations over source relations to resolve these préblems

e Standard Operators. Selectien Union U, Natural Joini}, Projections, andRename.

e Composition\. The A operator has the form 4, ... a,) a7 Where eaci;, 1 < i < n, is
either an attribute of or a string, and4 is a new attribute. Applying this operation forms a
new relationr’, whereattr(r') = attr(r) U {A} and|r’| = |r|. The value ofA for tuple¢
on row! in r’ is the concatenation, in the order specified, of the strings amongd teeand
the string values for attributes among thes for tuplet’ on rowl in r.

e Decompositiony. The~ operator has the formIAfA/r whereA is an attribute of, andA’ is
a new attribute whose values are obtained frdralues by applying a routin®. Applying
this operation forms a new relatiot, whereattr(r') = attr(r) U {A'} and|r’| = |r|. The
value of A’ for tuplet on row! in 7’ is obtained by applying the routin@ on the value ofA
for tuplet’ on row! in r.

e Booleans. Theg operator has the forr;ﬂX’]X/r, whereY andN are two constants represent-

ing Yes and No values inr, A is an attribute of- that has onlyy” or N values, andd’ is a
new attribute. Applying this operation forms a new relatibpwhereattr(r’) = (attr(r) —
{A}) U {A'} and|r’| = |oa=yr|. The value ofd’ for tuplet in ' is the literal stringA if
and only if there exists a tupléin r such that'[attr(r) Nattr(r’')] = t[attr(r) Nattr(r’)]
andt'[A] is aY value.

e DeBooleany. The Q operator has the forﬁ%g’ﬁ,r, whereY and N are two constants
representing’ es and No values,A is an attribute of, and A’ is a new attribute. Applying
this operation forms a new relatiod, whereattr(r’') = (attr(r) — {A}) U {A’} and
[7'] = |Tattr(mnatereyr]. The value ofd’ for tuplet in v’ is Y if and only if there exists a
tuplet’ in r such that'[attr(r) N attr(r')] = tlattr(r) N attr(r')] andt’'[A] is the literal
string A’, or is N if and only if there does not exist any tupfein r such that’[attr(r) N
attr(r')] = tlattr(r) N attr(r’)] andt’[A] is the literal stringA’.

e Skolemizatiorp. They operator has the form, (r), wheref, is a skolem function, and
A is a new attribute. Applying this operation forms a new relationwhereattr(r’') =
attr(r) U {A} and|r’| = |r|. The value ofA for tuplet on linel in v’ is a functional term
that computes a value by applying the skolem funcifarover tuplet’ on linel in r.4

As an example, let Schema 1 in Figure 1 be a target sctién@and let Schema 2 be a
source schem&. Figure 2 shows the derivation over the source schema and the source
elements in the source-to-target mapping. The shaded boxes denote virtual object sets, and

3In the notation, a relation has a set of attributes, which corresponds to the names of lexical or non-lexical
object setsattr(r) denotes the set of attributesinand|r| denotes the number of tuplessin

4When applyingSkolemizatiomperations, we introduce functional terms based only on tuple values that do
not contain functional terms. This leads to a finite evaluation.
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Figure 2: Derivation of Virtual Object and Relationship Sets from Schema 2 for Schema 1

the dashed lines denote virtual relationship sets. There are two main steps in the derivation

(see [XEO3a, XEO3b, Xu03] for details).
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Step 1 Use instance-level information to derive virtual object and relationship Séie
implemented matching system applies expected-data-value techniques [XEO3b] to derive
virtual object and relationship sets. Figure 2(a) shows the virtual object and relationship
sets derived after applying the following instance-level transformations.

e Derivation oflocation_description’ and House — location_description’.

House — location_description’ <

Yes,No
PGol f _course’ —location_description’ ﬁGol{/,aourse,Golf,course/ ’ (HO’LLSE - Golf,cou'rse)

es”,No
u PW ater_front’ «—location_description’ ﬂWate’T,front,Wﬂ.tﬁr,front’ (House — Water*front)

location_description’ <= Tjocation_description’ (House — location_description’)
e Derivation of Address’ and Address — Address’.

Address — Address’ <:7TAdd'ress,Address’)‘(Street,“, 7, Clity,“, ”,State),Address'(
Address — Street X Address — City X Address — State)
Address’ <= T pqqress (Address — Address’)

e Derivation ofphone_day’, Agent — phone_day’, phone_evening’, and Agent —
phone_evening' 5

Agent - phone,day’ <~ PPhone«—phone_day’ O KEY WORD(day) (Agent - PhOTLB)
phone.day’ <= Tphone_day’ (Agent — phone_day’)

N /
Agent — phone_evening’ < PPhone«phone_evening’ O KEY WORD (evening) (Agent - Phone)
phone_evening’ <= Tphone_cvening’ (Agent — phone_evening’)

Step 2 Use schema-level information to derive virtual object and relationship Séte
matching techniques apply source and target schema structural characteristics to derive
virtual object and relationship sets. Figure 2(b) shows the object and relationship sets in
Vs after applying the following schema-level transformations.

e Derivation of Agent — location’, location’, House — address’, andaddress’.

House — address’ <=psqdress’ —address' THouse, Address' (House — Address
X Address — Address’)

Agent — location’ <=PAddress’ —location’ TAgent,Address’ (Agent — Address
X Address — Address’)

address’ <= Tyq4ress' (House — address’)

location’ < Toeqation’ (Agent — location’)

e Derivation of basic features’, House — basic features’, basic features’ —
Square_feet, basic features' — Bedrooms, andbasic features' — Bathrooms.®

5We may be able to recognize keywords sucllag-time day, work phone evening, or home associated
with each listed phone in the source. If so, we can apply the selection operator to sort out which phones belong
in which set (if not, a human expert may not be able to sort these out either). We implemé&nkiél’ O RD
predicate by applying data-extraction techniques described intfE@}J

SWhen applying the Skolemization operator to derive the virtual objecbseic features’, the sys-
tem makeshasic features’ functionally dependent ol ouse to match the functional dependency between
basic features andhouse in the target schema.
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— 3 /
House — basic features’ < ¢y, = eatures! (House)

basic features’ — Bathrooms <myggic features’,Bathrooms(House — basic features’
X House — Bathrooms)
basic features’ — Bedrooms <mTyasic features’, Bedrooms(House — basic features’
X House — Bedrooms)
basic features’ — Square_feet <myqsic features’,Square-feet (House — basic features’
X House — Square_feet)

e Specializations ofigent — phone_day’ and Agent — phone_evening'.”

Agent — phone,day’ < OCOMPATIBLE(agent—phone_day) (Agent - phone,day')
Agent — phone,evening’ <= 0COMPATIBLE(agent—phone_evening) (Agent - phone,evem'ng’)

At this point, the object and relationship sets in Figure 2(c) correspond exactly to the
source elements in the mapping elements betwBemd S. For example(house ~
House), (address ~ address’), (house — address ~ House — address’), and so forth.

4 Query Reformulation

The data integration systeincollects the information in the design phase. In the query-
processing phase, the system reformulates user queries in polynomial time.

To specify the semantics @f we start with a valid interpretatiols, of a source schema

S; € 1,1 < i < n. Foran interpretation of a schem&to bevalid, each tuple inD g must
satisfy the constraints specified féf. In our running example, assume we have a valid
interpretation for Schema 2 in Figure 1. A target interpretafiggy, with respect taDg,

in I (1) is a valid interpretation df’, and (2) satisfies the mappirdd; betweenS; andT'

with respect taDg, . Assume that the mapping function fdf; is f;. If f; matches with

t;, cis a tuple fort; in Dg,r if and only if ¢ is a tuple fors;, derived through applying

the mapping expressiah, (Xs,) over Dg,. The semantics of, denoted asem(I), are
defined as followssem(I) = {Dg,r | Ds,r is a target interpretation with respect to
Dg,,S; € I}t. We are able to prove that if a source has a valid interpretation, then we can
load data from the source into the target such that the part of the target populated from the
source will necessarily have a valid interpretation [BED3].

Assume that a query language used to express user queries is relational algebra. Here, the
gueries are Select-Project-Join queries over elementg-in_et ¢ be a user query ang
denote the result of evaluatiggon sem(I).

When evaluating query answeys for ¢, the data integration system transparently refor-
mulatesg asq”*t, a query over the source schemad iri_et a queryy be?T(Y)O'P(Tl X

"The system specializes the relationship sets in the source so that they are compatible with the functional
dependencies in the corresponding relationship sets in the target. The prédiedfd® AT I BLE defaults to
the first one or allows a user to decide how the selection should work. See [BEO03] for a full explanation about
source-target constraint incompatibilities.

8The theorem in [BEO3] is for individual sources. When sources share objects, both the object-identification
problem and the data-merge problem need a resolution. (Note that neither this paper nor other papers that focus on
GAV/LAV resolve these problems. The focus of GAV/LAV is on mediation, mappings, and query reformulation.)
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ro M ... X ry), where forl < i < N, attr(q) = X, attr(r;)) = X; UY;, X; C X,
Y,NX =0,Y = UY,(Y;), and P is a predicate oveX U Y. The data integration
system reformulateg on I to obtaing®** based on inclusion dependencies collected for
each target element in the design phase. Sjrisén terms of elements ik, each target
relationr; in ¢ corresponds to a set of inclusion dependentiesg 1 < ¢ < N, collected

in the design phase. Each memberi; has the formS;.es C r;, wherees € Vs,

1 < j < n, andn is the number of sources. Then, to obtgfttt, we substitute each in g

by Us, .escriern; (Si-es). Note that a source elemery may be virtual, derived by ap-
plying the mapping expressicﬁ;}gs(zsj).9 Thus, when sending a sub-query decomposed
from ¢¥** to the information sourcé;, the system also sends the mapping expression
0.5 (Xs,) such that the sourcg; correctly derives source facts foyin the target.

With query reformulation in place, we can now prove that query answesoare—every
answer to a user query is a fact according to the source(s)—and that query answers contain
all the facts the sources have to offemaximalfor the query reformulation.

Theorem 1.Let] = (T,{S;}, {M;}) be adataintegration system. LBt= { Dg,|S; € I}
be the set of valid interpretations of source schemdsand letg5*! be the query answers
obtained by evaluating®** over D. Given a user query in terms of target relations, a
tuple < ay, as, . ..,ap > in ¢5%tis a sound answer ip; for g.

Proof. (See Appendix A.)

Theorem 2. LetI = (T, {S;},{M;}) be a data integration system. df** is a reformu-
lated query inl for a queryq in terms of target relations;#** is a maximally contained
reformulation forg with respect td.

Proof. (See Appendix B.)

5 Related Work—Other Alternatives to GAV and LAV

[FLM99] proposed aGlobal-Local-as-ViewWGLAV) approach, which combines expres-
sive powers of both LAV and GAV. In a GLAV approach, the independence of a global
schema, the maintenance to accommodate new sources, and the complexity to reformulate
gueries are the same as in LAV. However, instead using a restricted form of first-order
logical sentences as in LAV and GAV to define view definitions, GLAV uses flexible first-
order sentences such that it allows a view over source relations to be a view over global
relations in source descriptions. Thus, GLAV can derive data using views over source re-
lations, which is beyond the expressive ability of LAV, and it allows conjunctions of global
relations, which is beyond the expressive ability of GAV. Our solution, TIQS, also has the
ability to derive views over source schemas. The sets of view-creation operators, however,
are incompatible—in TIQS we do not have a recursive operator, and GLAV has nothing
comparable to merge/split or Boolean operators. Moreover, GLAV claims no ability to
semi-automate the specification of source descriptions.

9We keep non-lexical objects in different sources separate by consistently introducing new OIDs for target
objects.

132



[CCGLO02] proposed a translation algorithm to turn LAV into GAV such that it can keep
LAV’s scalability and obtain GAV's simple query reformulation. The translation results in

a logic program that can be used to answer queries using rule unfolding. However, even
though the translation to obtain the logic program is in polynomial time, the evaluation of
the logic program could produce an exponential number of facts because of recomputing
source relations over all source data. In contrast, TIQS encapsulates views for source re-
lations in mapping elements. Since the view definitions are immediately available, query
processing in TIQS has better query performance than the translation approach. As in
[FLM99], [CCGLO02] claims no ability to semi-automate the specification of source de-
scriptions.

6 Conclusion

This paper describes TIQS, an approach to data integration based on a predefined target
schema, which combines the advantages and avoids the limitations of both GAV and LAV.
This solution has polynomial-time query reformulation and is scalable for large applica-
tions. DBAs create the target schema and wrap source schemas independently, so that
neither the target schema nor the source schemas are contingent respectively on the source
schemas or the target schema. Moreover, we have an implementation that either creates
or helps create the needed mappings. Thus, TIQS increases both scalability and usability
over previously proposed approaches.
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A Theorem 1.

Let] = (T,{S;},{M;}) be a data integration system. LBt= {Dg,|S; € I} be the set
of valid interpretations of source schemadiand letq5*! be the query answers obtained
by evaluatingg®®* over D. Given a user query in terms of target relations, a tuple
< ai,az,...,ay >in ¢E* is a sound answer ig; for q.

Proof (sketch)Let a queryy beﬂ'(y)a'p(’f’l Xre X ... Xry), whereforl <i < N,r;is
atarget relationgttr(q) = X, attr(r;) = X, UY;, X; C X, Y, NnX =0,Y = U, (V2),
and P is a predicate oveX U Y. Assume that a tuple = < ai,ag,...,ay > iS a
tuple in g5 anda is not a tuple ing;. In I, the query reformulation procedure trans-
latesq into qut aSTr(Y)UP(U(Sj.esgrl)EIDl (Sj.@s) X U(S’j‘esgrg)elDz (Sj.es) MX... X
U(s;.esCry)elDy (S5-€5)), where forl < i < N, ID; is a set of inclusion dependen-
cies collected for; in the design phase df, and forl < j < n, S; is a source schema
collected from one of the: sources in/ andeg in S;.es is a source element i, .
Thus, sincea € ¢E*t, there must existV source relationss;, sz, ..., andsy, and
N tuples,ci, co, ..., andcy, such thate; € s; anda = W(Y)Up(cl X ... X en),
wheres; € Vs, Sj.si € 1, 1 <@ < N, andS; € I. SinceS;.s; C r; in ID;,
based on the derivation of an inclusion dependency, there must exist a mapping element
(ri ~ 8 <= 05,(Xs,)) € M;, where)M; is a source-to-target mapping betwegnand
Tin I. Sincec; € s; and(r; ~ s; <= 05,(Xs;)) € M;, based on the semantics of a
mapping element; € r; and the tuple:; is derived fromDy; by evaluatingds, (Xs;).
Sincec; € r; and(r; ~ s; <= 05,(Xs;)) € M; andc; is derived by evaluating,, (s, )

on Dg,, based on the definition of a target interpretation with respettdq c¢; € Dg; .
Sincec; € Dg,r, based on the definition akm(I), ¢; € sem(I). Sincec; € sem(I),

a = W(Y)O'P(Cl X...Xecn),ande; € 1, 1 < i < N, thereforen € ¢;. This is contrary
to the assumption thatis not a tuple ing;.
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B Theorem 2.

LetI = (T,{S:}, {M;}) be a data integration system. ¢f** is a reformulated query i for a
querygq in terms of target relationg;®*¢ is a maximally contained reformulation fgrwith respect
tol.

Proof (sketch).Let a queryg beﬂ'(})UP(Tl Mg M ... X ry), whereforl < i< N,r;isa
target relationattr(q) = X, attr(r;) = X; UY;, X; C X, Y, NnX =0, Y = U ,(¥;), and
P is a predicate oveK UY. Assume that a tuple = < a1, as,...,an > is a tuple ingr anda
is not a tuple ingE**. Sincea is a tuple ing;, there must exist at leas{ tuplesci, ¢z, ...,cn in
sem(I) such that; € r;, 1 < i < N, anda = 75 0p(c1 M cz X ... X cy). Therefore, since
ci € sem(I),1 < i < N, based on the definition ofern (1), a target interpretatio® s+ with
respect toDs; must exist such that; € Ds;r, whereS; € I andDg; is a valid interpretation
of S; andT € I. Sincec; € Ds;r ande; € r;, 1 < i < N, based on the definition dbs; r,
there must exist a mapping elememt ~ s; < 05,(Xs;)) € M;, whereM; € I and M;
is a source-to-target mapping betwegnand 7. Since(r; ~ si < 0s,(3s;)) ande; € 74,
1 <4 < N, based on the semantics of a mapping element, s; andc; is derived by evaluating
the mapping expressiah; (Xs;) over D;. Moreover, sincdr; ~ s; <= 05,(Xs,)), 1 <i < N,
there must exist an inclusion dependeii§y.s; C r;) € ID;, wherelD; is the set of inclusion
dependencies collected for in the design phase df. Therefore, when the query reformulation
procedure translateginto g7, S;.s; is amember in the union set that replaegi ¢, 1 <i < N,
andS; € I. Thus, the query answer tq?)UP(S1 M ... sy) overD is a subset of5”*. When
evaluatingw(y)ap(sl M ... M sn), sincea = mx op(cn M ... X en) ande; € s; ande;
is derived by applying the mapping expressiin(¥s;) over D;, whereS; € I andD; € D,
1 <4 < N, thereforea is a tuple of the query answer {QY)O'P(Sl X ... X sy)overD. Since

the query answer t@(i)ap(sl M ... M sy) over D is a subset of5** anda is a tuple of query

answer tOﬂ'(?)Up(Sl X ... X sy)overD, a € ¢5%t. This is contrary to the assumption thais

not a tuple ing 5t
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