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Abstract: Currently, there are two main basic approaches to data integration: Global-
as-View (GAV) and Local-as-View (LAV). However, both GAV and LAV have their
limitations. In a GAV approach, changes in information sources or adding a new infor-
mation source requires revisions of a global schema and mappings between the global
schema and source schemas. In a LAV approach, automating query reformulation has
exponential time complexity with respect to query and source schema definitions. To
resolve these problems, we offer TIQS as an alternative point of view that is neither
GAV nor LAV. The approach uses source-to-target mappings based on a predefined
conceptual target schema, which is specified ontologically and independently of any
of the sources. The proposed data integration system is easier to maintain than both
GAV and LAV, and query reformulation reduces to rule unfolding. Compared with
other data integration approaches, our approach combines the advantages of GAV and
LAV, mitigates the disadvantages, and provides an alternative for flexible and scalable
data integration.

1 Introduction

Data integration refers the problem of combining data residing at autonomous and hetero-
geneous sources, and providing users with a unified global schema [Hal01]. Two main
concepts constitute the architecture of a data integration system [Ull97]: wrappers and
mediators. Awrapperwraps an information source and models the source using asource
schema. A mediatormaintains aglobal schemaandmappingsbetween the global and
source schemas. As is usual, we focus here on data integration systems that do not ma-
terialize data in the global schema. Whenever a user poses a query in terms of relations
in the global schema, the mediator uses aquery-reformulationprocedure to translate the
query into sub-queries that can be executed in sources such that the mediator can collect
returned answers from the sources and combine them as the answer to the query.

Currently, there are two main initiatives to integrate data and answer queries without mate-
rializing a global schema: Global-as-view (GAV) [CGMH+94] and Local-as-View(LAV)
[LRO96, GKD97].[CLL01] surveys the most important query processing algorithms pro-
posed in the literature for LAV, and describes the principle GAV data integration systems
∗This material is based upon work supported by the National Science Foundation under grant IIS-0083127.
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and the form of query processing they adopt. In a GAV approach, query reformulation
reduces to simple rule unfolding (standard execution of views in ordinary databases).
However, changes in information sources or adding a new information source requires
a database administrator (DBA) to revise the global schema and the mappings between the
global schema and source schemas. Thus, GAV is not scalable for large applications. LAV
scales better, and is easier to maintain than GAV because DBAs create a global schema
independently of source schemas. Then, for a new (or changed) source schema, the DBA
only has to give (adjust) asource descriptionthat describes source relations as views of the
global schema. Automating query reformulation in LAV, however, has exponential time
complexity with respect to query and source schema definitions. Thus, LAV has low query
performance when users frequently pose complex queries.

As data explodes on the Web, E-business applications such as comparison shopping and
knowledge-gathering applications such as vacation planning raise the following issues for
approaches to data integration. (1) The number of sources to access and integrate is large.
(2) The sources are heterogeneous, autonomous, and possibly change frequently. (3) New
sources continually become available and become part of the system. (4) Users frequently
pose queries over the system to retrieve data. (5) As applications evolve, DBAs may wish
to change the global schema to include some new items of interest. To address these issues
and the problems of GAV and LAV, we present an alternative point of view, a Target-based
Integration Query System (TIQS), that is neither GAV nor LAV. It aims at combining the
best of the two basic approaches: GAV’s simple query reformulation and LAV’s scalability.

The following characteristics describe our solution.

1. Each relation in a target schema, which is our global schema, is predefined and
independent of any source schema. Moreover, we wrap sources in isolation, without
reference to the global schema.1 In contrast, in a GAV approach, DBAs revise the
global schema to include all items in sources, and in a LAV approach, DBAs adjust
the source schemas such that they contain only source relations that can be described
by views over the global schema.

2. A set ofmapping elementsin a source-to-target mapping maps a source schema to a
target schema. Because we wrap sources independently, source and target schemas
use different structures and vocabularies. Automatedschema matchingtechniqus
have been proven to be successful in extracting mapping elements between two
schemas. [RB01] surveys these techniques. Clio [MHH00] has an extensive tool
set to aid users semi-automatically generate mappings. [XE03a, XE03b, Xu03] pro-
vide many mappings automatically, with accuracies ranging from 92%-100%; these
mappings are not just 1-1 mappings, but include many indirect mappings discussed
later in this paper. Thus, TIQS is capable of specifying views over source schemas
that match with elements in the target schema semi-automatically.

3. When a new information source becomes available (changes), a source-to-target
mapping must be created (adjusted). With the assistance of semi-automatic mapping
tools, the maintenance requires less manual work than either GAV or LAV.

1Often these sources are structured, and we simply take the local schema without change [ETL02].
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4. Whenever a users poses queries in terms of target relations, query reformulation is
rule unfolding as in GAV by simply applying the generated source-to-target map-
pings.

5. If the target schema evolves, the mapping tool semi-automatically generates (or ad-
justs) mapping elements between the new target schema and the source schemas.
This involves less DBA effort than for either GAV or LAV.

TIQS operates in two phases: design and query processing. In the design phase, the
system synergistically automates the generation of source-to-target mappings. Mapping
elements in source-to-target mappings are expressions over source schema elements that
producevirtual target-view elements. This leads automatically to a rewriting of every
target element as a union of corresponding virtual target-view elements. In the query
processing phase, a user poses queries in terms of target relations. Query reformulation
thus reduces to rule unfolding by applying the view definition expressions for the target
relations in the same way database systems apply view definitions.

TIQS’s contributions are (1) a unique approach to data integration using source-to-target
mappings based on a predefined target schema that combines the advantages and mitigates
the limitations of GAV and LAV, and (2) an extended relational algebra to describe source-
to-target mappings, whose implementation is readily available based on schema matching
techniques described in [XE03a, XE03b]. We organize the contributions in this paper as
follows. Section 2 presents the components of TIQS. Section 3 describes an extended
relational algebra for source-to-target mappings. Section 4 discusses the solution to query
reformulation and gives theorems to prove that TIQS givessound answersto a query using
amaximally contained reformulation. Section 5 reviews the other alternatives to GAV and
LAV. In Section 6 we summarize and make concluding remarks.

2 The Data Integration System

Definition 1. A data integration system Iis a triple (T , {Si}, {Mi}), whereT is a target
schema,{Si} is a set ofn source schemas, and{Mi} is a set ofn source-to-target map-
pings, such that for each source schemaSi there is a mappingMi from Si to T , 1 ≤ i ≤ n.

We use rooted hypergraphs to represent both target and source schemas inI. A hypergraph
includes a set of object setsO and a set of relationship setsR. Therefore, a schema
element is either an object set or a relationship set. An object set either has associated data
values or has associated object identifiers (OIDs), which we respectively calllexical and
non-lexicalobject sets. The root node is a designated non-lexical object set of primary
interest. Figure 1, for example, shows two schema hypergraphs (whose roots arehouse
andHouse). In the hypergraphs, lexical object sets are dotted boxes, non-lexical object
sets are solid boxes, functional relationship sets are lines with an arrow from domain object
set to range object set, and nonfunctional relationship sets are lines without arrowheads.
For a schemaH, which is either a source schema or a target schema, we letΣH denote the
union ofO andR. For source views, we letVH denote the extension ofΣH with derived
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object and relationship sets over a sourceH.

house
location_description

address

agent basic features

location

name

fax

phone_day

phone_evening

MLS

style
beds

baths

SQFT

(a) Schema 1

House

Square_feet

Agent

Name

Fax

Phone

Address

Street City

State

Bathrooms

Bedrooms

Golf_course

Water_front

(b) Schema 2

Figure 1: Source Graphs for Schema 1 and Schema 2

A source-to-target mappingMi for a source schemaSi with respect to a target schemaT
is a functionfi(VSi) → ΣT . Intuitively, a source-to-target mappingMi represents inter-
schema correspondences between a source schemaSi and a target schemaT . If we let
Schema 1 in Figure 1(a) be the target and let Schema 2 in Figure 1(b) be the source, for
example, a source-to-target mapping between the two schemas includes a semantic corre-
spondence, which declares that the lexical object setBedroomsin the source semantically
corresponds to the lexical object setbedsin the target. If we let Schema 1 be the source
and Schema 2 be the target, a source-to-target mapping declares that the union of the two
sets of values inphonedayandphoneeveningin the source corresponds to the values for
Phonein the target.

We represent semantic correspondences between a source schemaS and a target schema
T as a set of mapping elements. A mapping element is either adirect matchwhich binds
a schema element inΣS to a schema element inΣT , or anindirect matchwhich binds a
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virtual schema element inVS to a target schema element inΣT through an appropriate
mapping expressionover ΣS . A mapping expression specifies how to derive a virtual
schema element through manipulation operations over a source schema. We denote a
mapping element as (t ∼ s ⇐ θs(ΣS)), whereθs(ΣS) is a mapping expression that
derives a source elements in VS ,2 andt is a target schema element inΣT .

As part of the mapping declarations, TIQS derives a set ofinclusion dependenciesfor each
target element based on the collected source-to-target mappings. Each mapping element
ω, (t ∼ s ⇐ θs(ΣS)), implies an inclusion dependency, which we denote asS.s ⊆ t.
This declares that the facts for schema elements ∈ VS , can be loaded into the target as
the facts for schema elementt. As is typical for integration systems with non-materialized
global schemas, we make an “open world assumption.” Thus, the facts for the source
elements in the mapping elementω are only a subset of facts for the target elementt;
and if there exists a source elements′ ∈ VS′ and another mapping elementω′, (t ∼
s′ ⇐ θs′(ΣS′)), the facts for boths ands′ can be facts fort. In general, for each target
schema elementt ∈ ΣT in the data integration systemI, we denote the set of inclusion
dependencies fort as{Si.sj ⊆ t|(t ∼ sj ⇐ θsj (ΣSi)) ∈ Mi, sj ∈ VSi , Si ∈ I, Mi ∈
I, T ∈ I}.

3 Algebra for Source-to-Target Mappings

Each object and relationship set (including virtual object and relationship sets) in the target
and source schemas are single-attribute or multiple-attribute relations. Thus, relational
algebra directly applies to the object and relationship sets in a source or target schema.
The standard operations, however, are not enough to capture the operations required to
express all the needed source-to-target mappings. Thus, we extend the relational algebra.

To motivate our use of standard and extended operators, we list the following problems we
must face in creating virtual object and relationship sets over source schemas.

• Union andSelection. The object sets,phone day andphone evening in Schema 1 of Fig-
ure 1(a) are both subsets ofPhone values in Schema 2 of Figure 1(b), and the relationship
setsagent − phone day andagent − phone evening in Schema 1 are both specializa-
tions ofAgent − Phone values in Schema 2. Thus, if Schema 2 is the target, we need the
union of the values inphone day andphone evening and the union of the relationships in
agent−phone day andagent−phone evening in Schema 1; and if Schema 1 is the target,
we should find a way to separate the day phones from the evening phones and separate the
relationships between agents and day phones from those between agents and evening phones.

• Merged and Split Values. The object sets,Street, City, andStateare separate in Schema 2
and merged asaddressof houseor locationof agentin Schema 1. Thus, we need to split the
values if Schema 2 is the target and merge the values if Schema 1 is the target.

• Object-Set Name as Value. In Schema 2 the featuresWater front andGolf course are
object-set names rather than values. The Boolean values “Yes” and “No” associated with them
are not the values but indicate whether the valuesWater front andGolf course should

2Note that the mapping expression may be degenerate so that(t ∼ s) is possible.
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be included as description values forlocation description of house in Schema 1. Thus, we
need to distribute the object-set names as values forlocation description if Schema 1 is the
target and make Boolean values forWater front andGolf course based on the values for
location description if Schema 2 is the target.

• Path as Relationship Set. The pathhouse − basic features − beds in Schema 1 se-
mantically corresponds to the relationship setHouse − Bedrooms in Schema 2. Thus,
we need to join and project on the path if Schema 2 is the target and make a virtual ob-
ject set forbasic features and virtual relationship sets forhouse − basic features and
basic features− beds over Schema 2 if Schema 1 is the target.

We use the following operations over source relations to resolve these problems3.

• Standard Operators. Selectionσ, Union∪, Natural Join1, Projectionπ, andRenameρ.

• Compositionλ. Theλ operator has the formλ(A1,...,An),Ar where eachAi, 1 ≤ i ≤ n, is
either an attribute ofr or a string, andA is a new attribute. Applying this operation forms a
new relationr′, whereattr(r′) = attr(r) ∪ {A} and|r′| = |r|. The value ofA for tuplet
on row l in r′ is the concatenation, in the order specified, of the strings among theAi’s and
the string values for attributes among theAi’s for tuplet′ on rowl in r.

• Decompositionγ. Theγ operator has the formγR
A,A′r whereA is an attribute ofr, andA′ is

a new attribute whose values are obtained fromA values by applying a routineR. Applying
this operation forms a new relationr′, whereattr(r′) = attr(r) ∪ {A′} and|r′| = |r|. The
value ofA′ for tuplet on rowl in r′ is obtained by applying the routineR on the value ofA
for tuplet′ on rowl in r.

• Booleanβ. Theβ operator has the formβY,N
A,A′r, whereY andN are two constants represent-

ing Y es andNo values inr, A is an attribute ofr that has onlyY or N values, andA′ is a
new attribute. Applying this operation forms a new relationr′, whereattr(r′) = (attr(r)−
{A}) ∪ {A′} and|r′| = |σA=Y r|. The value ofA′ for tuplet in r′ is the literal stringA if
and only if there exists a tuplet′ in r such thatt′[attr(r)∩attr(r′)] = t[attr(r)∩attr(r′)]
andt′[A] is aY value.

• DeBoolean
β

. The
β

operator has the form
βY,N

A,A′r, whereY and N are two constants
representingY es andNo values,A is an attribute ofr, andA′ is a new attribute. Applying
this operation forms a new relationr′, whereattr(r′) = (attr(r) − {A}) ∪ {A′} and
|r′| = |πattr(r)∩attr(r′)r|. The value ofA′ for tuplet in r′ is Y if and only if there exists a
tuple t′ in r such thatt′[attr(r) ∩ attr(r′)] = t[attr(r) ∩ attr(r′)] andt′[A] is the literal
stringA′, or is N if and only if there does not exist any tuplet′ in r such thatt′[attr(r) ∩
attr(r′)] = t[attr(r) ∩ attr(r′)] andt′[A] is the literal stringA′.

• Skolemizationϕ. Theϕ operator has the formϕfA(r), wherefA is a skolem function, and
A is a new attribute. Applying this operation forms a new relationr′, whereattr(r′) =
attr(r) ∪ {A} and|r′| = |r|. The value ofA for tuple t on line l in r′ is a functional term
that computes a value by applying the skolem functionfA over tuplet′ on linel in r.4

As an example, let Schema 1 in Figure 1 be a target schemaT , and let Schema 2 be a
source schemaS. Figure 2 shows the derivation over the source schema and the source
elements in the source-to-target mapping. The shaded boxes denote virtual object sets, and

3In the notation, a relationr has a set of attributes, which corresponds to the names of lexical or non-lexical
object sets;attr(r) denotes the set of attributes inr; and|r| denotes the number of tuples inr.

4When applyingSkolemizationoperations, we introduce functional terms based only on tuple values that do
not contain functional terms. This leads to a finite evaluation.
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Figure 2: Derivation of Virtual Object and Relationship Sets from Schema 2 for Schema 1

the dashed lines denote virtual relationship sets. There are two main steps in the derivation
(see [XE03a, XE03b, Xu03] for details).
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Step 1: Use instance-level information to derive virtual object and relationship sets. The
implemented matching system applies expected-data-value techniques [XE03b] to derive
virtual object and relationship sets. Figure 2(a) shows the virtual object and relationship
sets derived after applying the following instance-level transformations.

• Derivation oflocation description′ andHouse− location description′.

House− location description′ ⇐
ρGolf course′←location description′βGolf course,Golf course′

Y es,No(House−Golf course)

∪ ρWater front′←location description′β
Y es”,No
Water front,Water front′ (House−Water front)

location description′ ⇐ πlocation description′ (House− location description′)

• Derivation ofAddress′ andAddress−Address′.

Address−Address′ ⇐πAddress,Address′λ(Street,“, ”,City,“, ”,State),Address′ (
Address− Street 1 Address− City 1 Address− State)

Address′ ⇐ πAddress′ (Address−Address′)

• Derivation ofphone day′, Agent − phone day′, phone evening′, andAgent −
phone evening′.5

Agent− phone day′ ⇐ ρPhone←phone day′σKEY WORD(day)(Agent− Phone)
phone day′ ⇐ πphone day′ (Agent− phone day′)
Agent− phone evening′ ⇐ ρPhone←phone evening′σKEY WORD(evening)(Agent− Phone)
phone evening′ ⇐ πphone evening′ (Agent− phone evening′)

Step 2: Use schema-level information to derive virtual object and relationship sets. The
matching techniques apply source and target schema structural characteristics to derive
virtual object and relationship sets. Figure 2(b) shows the object and relationship sets in
VS after applying the following schema-level transformations.

• Derivation ofAgent− location′, location′, House− address′, andaddress′.

House− address′ ⇐ρAddress′←address′πHouse,Address′ (House−Address
1 Address−Address′)

Agent− location′ ⇐ρAddress′←location′πAgent,Address′ (Agent−Address
1 Address−Address′)

address′ ⇐ πaddress′ (House− address′)
location′ ⇐ πlocation′ (Agent− location′)

• Derivation of basic features′, House − basic features′, basic features′ −
Square feet, basic features′−Bedrooms, andbasic features′−Bathrooms.6

5We may be able to recognize keywords such asday-time, day, work phone, evening, or home associated
with each listed phone in the source. If so, we can apply the selection operator to sort out which phones belong
in which set (if not, a human expert may not be able to sort these out either). We implement theKEY WORD
predicate by applying data-extraction techniques described in [ECJ+99].

6When applying the Skolemization operator to derive the virtual object setbasic features′, the sys-
tem makesbasic features′ functionally dependent onHouse to match the functional dependency between
basic features andhouse in the target schema.
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House− basic features′ ⇐ ϕfbasic features′ (House)

basic features′ −Bathrooms ⇐πbasic features′,Bathrooms(House− basic features′
1 House−Bathrooms)

basic features′ −Bedrooms ⇐πbasic features′,Bedrooms(House− basic features′
1 House−Bedrooms)

basic features′ − Square feet ⇐πbasic features′,Square feet(House− basic features′
1 House− Square feet)

• Specializations ofAgent− phone day′ andAgent− phone evening′.7

Agent− phone day′ ⇐ σCOMPATIBLE(agent−phone day)(Agent− phone day′)
Agent− phone evening′ ⇐ σCOMPATIBLE(agent−phone evening)(Agent− phone evening′)

At this point, the object and relationship sets in Figure 2(c) correspond exactly to the
source elements in the mapping elements betweenT and S. For example,(house ∼
House), (address ∼ address′), (house−address ∼ House−address′), and so forth.

4 Query Reformulation

The data integration systemI collects the information in the design phase. In the query-
processing phase, the system reformulates user queries in polynomial time.

To specify the semantics ofI, we start with a valid interpretationDSi
of a source schema

Si ∈ I, 1 ≤ i ≤ n. For an interpretation of a schemaH to bevalid, each tuple inDH must
satisfy the constraints specified forH. In our running example, assume we have a valid
interpretation for Schema 2 in Figure 1. A target interpretationDSiT with respect toDSi

in I (1) is a valid interpretation ofT , and (2) satisfies the mappingMi betweenSi andT
with respect toDSi

. Assume that the mapping function forMi is fi. If fi matchessk with
tj , c is a tuple fortj in DSiT if and only if c is a tuple forsk derived through applying
the mapping expressionθsk

(ΣSi
) overDSi

. The semantics ofI, denoted assem(I), are
defined as follows:sem(I) = {DSiT | DSiT is a target interpretation with respect to
DSi

, Si ∈ I}. We are able to prove that if a source has a valid interpretation, then we can
load data from the source into the target such that the part of the target populated from the
source will necessarily have a valid interpretation [BE03].8

Assume that a query language used to express user queries is relational algebra. Here, the
queries are Select-Project-Join queries over elements inΣT . Let q be a user query andqI

denote the result of evaluatingq onsem(I).

When evaluating query answersqI for q, the data integration system transparently refor-
mulatesq asqExt, a query over the source schemas inI. Let a queryq beπ(X)σP (r1 1

7The system specializes the relationship sets in the source so that they are compatible with the functional
dependencies in the corresponding relationship sets in the target. The predicateCOMPATIBLE defaults to
the first one or allows a user to decide how the selection should work. See [BE03] for a full explanation about
source-target constraint incompatibilities.

8The theorem in [BE03] is for individual sources. When sources share objects, both the object-identification
problem and the data-merge problem need a resolution. (Note that neither this paper nor other papers that focus on
GAV/LAV resolve these problems. The focus of GAV/LAV is on mediation, mappings, and query reformulation.)
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r2 1 . . . 1 rN ), where for1 ≤ i ≤ N , attr(q) = X, attr(ri) = Xi ∪ Yi, Xi ⊆ X,
Yi ∩ X = ∅, Y = ∪N

i=1(Yi), andP is a predicate overX ∪ Y . The data integration
system reformulatesq on I to obtainqExt based on inclusion dependencies collected for
each target element in the design phase. Sinceq is in terms of elements inΣT , each target
relationri in q corresponds to a set of inclusion dependenciesIDi, 1 ≤ i ≤ N , collected
in the design phase. Each member inIDi has the formSj .eS ⊆ ri, whereeS ∈ VSj ,
1 ≤ j ≤ n, andn is the number of sources. Then, to obtainqExt, we substitute eachri in q
by

⋃
(Sj .eS⊆ri)∈IDi

(Sj .eS). Note that a source elementeS may be virtual, derived by ap-

plying the mapping expressionθeS
(ΣSj ).

9 Thus, when sending a sub-query decomposed
from qExt to the information sourceSj , the system also sends the mapping expression
θeS (ΣSj ) such that the sourceSj correctly derives source facts forri in the target.

With query reformulation in place, we can now prove that query answers aresound—every
answer to a user query is a fact according to the source(s)—and that query answers contain
all the facts the sources have to offer—maximalfor the query reformulation.

Theorem 1.LetI = (T, {Si}, {Mi}) be a data integration system. LetD = {DSi |Si ∈ I}
be the set of valid interpretations of source schemas inI and letqExt

D be the query answers
obtained by evaluatingqExt overD. Given a user queryq in terms of target relations, a
tuple< a1, a2, . . . , aM > in qExt

D is a sound answer inqI for q.

Proof. (See Appendix A.)

Theorem 2. Let I = (T, {Si}, {Mi}) be a data integration system. IfqExt is a reformu-
lated query inI for a queryq in terms of target relations,qExt is a maximally contained
reformulation forq with respect toI.

Proof. (See Appendix B.)

5 Related Work—Other Alternatives to GAV and LAV

[FLM99] proposed aGlobal-Local-as-View(GLAV) approach, which combines expres-
sive powers of both LAV and GAV. In a GLAV approach, the independence of a global
schema, the maintenance to accommodate new sources, and the complexity to reformulate
queries are the same as in LAV. However, instead using a restricted form of first-order
logical sentences as in LAV and GAV to define view definitions, GLAV uses flexible first-
order sentences such that it allows a view over source relations to be a view over global
relations in source descriptions. Thus, GLAV can derive data using views over source re-
lations, which is beyond the expressive ability of LAV, and it allows conjunctions of global
relations, which is beyond the expressive ability of GAV. Our solution, TIQS, also has the
ability to derive views over source schemas. The sets of view-creation operators, however,
are incompatible—in TIQS we do not have a recursive operator, and GLAV has nothing
comparable to merge/split or Boolean operators. Moreover, GLAV claims no ability to
semi-automate the specification of source descriptions.

9We keep non-lexical objects in different sources separate by consistently introducing new OIDs for target
objects.
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[CCGL02] proposed a translation algorithm to turn LAV into GAV such that it can keep
LAV’s scalability and obtain GAV’s simple query reformulation. The translation results in
a logic program that can be used to answer queries using rule unfolding. However, even
though the translation to obtain the logic program is in polynomial time, the evaluation of
the logic program could produce an exponential number of facts because of recomputing
source relations over all source data. In contrast, TIQS encapsulates views for source re-
lations in mapping elements. Since the view definitions are immediately available, query
processing in TIQS has better query performance than the translation approach. As in
[FLM99], [CCGL02] claims no ability to semi-automate the specification of source de-
scriptions.

6 Conclusion

This paper describes TIQS, an approach to data integration based on a predefined target
schema, which combines the advantages and avoids the limitations of both GAV and LAV.
This solution has polynomial-time query reformulation and is scalable for large applica-
tions. DBAs create the target schema and wrap source schemas independently, so that
neither the target schema nor the source schemas are contingent respectively on the source
schemas or the target schema. Moreover, we have an implementation that either creates
or helps create the needed mappings. Thus, TIQS increases both scalability and usability
over previously proposed approaches.
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A Theorem 1.

Let I = (T, {Si}, {Mi}) be a data integration system. LetD = {DSi |Si ∈ I} be the set
of valid interpretations of source schemas inI and letqExt

D be the query answers obtained
by evaluatingqExt over D. Given a user queryq in terms of target relations, a tuple
< a1, a2, . . . , aM > in qExt

D is a sound answer inqI for q.

Proof (sketch).Let a queryq beπ(X)σP (r1 1 r2 1 . . . 1 rN ), where for1 ≤ i ≤ N , ri is

a target relation,attr(q) = X, attr(ri) = Xi ∪ Yi, Xi ⊆ X, Yi ∩X = ∅, Y = ∪N
i=1(Yi),

andP is a predicate overX ∪ Y . Assume that a tuplea = < a1, a2, . . . , aM > is a
tuple in qExt

D anda is not a tuple inqI . In I, the query reformulation procedure trans-
latesq into qExt asπ(X)σP (∪(Sj .eS⊆r1)∈ID1(Sj .eS) 1 ∪(Sj .eS⊆r2)∈ID2(Sj .eS) 1 . . . 1

∪(Sj .eS⊆rN )∈IDN
(Sj .eS)), where for1 ≤ i ≤ N , IDi is a set of inclusion dependen-

cies collected forri in the design phase ofI, and for1 ≤ j ≤ n, Sj is a source schema
collected from one of then sources inI and eS in Sj .eS is a source element inVSj .
Thus, sincea ∈ qExt

D , there must existN source relations,s1, s2, . . . , andsN , and
N tuples,c1, c2, . . . , andcN , such thatci ∈ si and a = π(X)σP (c1 1 . . . 1 cN ),
wheresi ∈ VSj

, Sj .si ⊆ ri, 1 ≤ i ≤ N , andSj ∈ I. SinceSj .si ⊆ ri in IDi,
based on the derivation of an inclusion dependency, there must exist a mapping element
(ri ∼ si ⇐ θsi

(ΣSj
)) ∈ Mj , whereMj is a source-to-target mapping betweenSj and

T in I. Sinceci ∈ si and(ri ∼ si ⇐ θsi
(ΣSj

)) ∈ Mj , based on the semantics of a
mapping element,ci ∈ ri and the tupleci is derived fromDSj

by evaluatingθsi
(ΣSj

).
Sinceci ∈ ri and(ri ∼ si ⇐ θsi

(ΣSj
)) ∈ Mj andci is derived by evaluatingθsi

(ΣSj
)

onDSj
, based on the definition of a target interpretation with respect toDSj

, ci ∈ DSjT .
Sinceci ∈ DSjT , based on the definition ofsem(I), ci ∈ sem(I). Sinceci ∈ sem(I),
a = π(X)σP (c1 1 . . . 1 cN ), andci ∈ ri, 1 ≤ i ≤ N , thereforea ∈ qI . This is contrary
to the assumption thata is not a tuple inqI .
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B Theorem 2.

Let I = (T, {Si}, {Mi}) be a data integration system. IfqExt is a reformulated query inI for a
queryq in terms of target relations,qExt is a maximally contained reformulation forq with respect
to I.

Proof (sketch).Let a queryq be π
(X)

σP (r1 1 r2 1 . . . 1 rN ), where for1 ≤ i ≤ N , ri is a

target relation,attr(q) = X, attr(ri) = Xi ∪ Yi, Xi ⊆ X, Yi ∩ X = ∅, Y = ∪N
i=1(Yi), and

P is a predicate overX ∪ Y . Assume that a tuplea = < a1, a2, . . . , aM > is a tuple inqI anda
is not a tuple inqExt

D . Sincea is a tuple inqI , there must exist at leastN tuplesc1, c2, . . . , cN in
sem(I) such thatci ∈ ri, 1 ≤ i ≤ N , anda = π(X)σP (c1 1 c2 1 . . . 1 cN ). Therefore, since
ci ∈ sem(I), 1 ≤ i ≤ N , based on the definition ofsem(I), a target interpretationDSjT with
respect toDSj must exist such thatci ∈ DSjT , whereSj ∈ I andDSj is a valid interpretation
of Sj andT ∈ I. Sinceci ∈ DSjT andci ∈ ri, 1 ≤ i ≤ N , based on the definition ofDSjT ,
there must exist a mapping element(ri ∼ si ⇐ θsi(ΣSj )) ∈ Mj , whereMj ∈ I and Mj

is a source-to-target mapping betweenSj and T . Since(ri ∼ si ⇐ θsi(ΣSj )) and ci ∈ ri,
1 ≤ i ≤ N , based on the semantics of a mapping element,ci ∈ si andci is derived by evaluating
the mapping expressionθsi(ΣSj ) overDj . Moreover, since(ri ∼ si ⇐ θsi(ΣSj )), 1 ≤ i ≤ N ,
there must exist an inclusion dependency(Sj .si ⊆ ri) ∈ IDi, whereIDi is the set of inclusion
dependencies collected forri in the design phase ofI. Therefore, when the query reformulation
procedure translatesq into qExt, Sj .si is a member in the union set that replacesri in q, 1 ≤ i ≤ N ,
andSj ∈ I. Thus, the query answer toπ(X)σP (s1 1 . . . 1 sN ) overD is a subset ofqExt

D . When
evaluatingπ(X)σP (s1 1 . . . 1 sN ), sincea = π(X)σP (c1 1 . . . 1 cN ) andci ∈ si andci

is derived by applying the mapping expressionθsi(ΣSj ) over Dj , whereSj ∈ I andDj ∈ D,
1 ≤ i ≤ N , thereforea is a tuple of the query answer toπ(X)σP (s1 1 . . . 1 sN ) overD. Since

the query answer toπ(X)σP (s1 1 . . . 1 sN ) overD is a subset ofqExt
D anda is a tuple of query

answer toπ(X)σP (s1 1 . . . 1 sN ) overD, a ∈ qExt
D . This is contrary to the assumption thata is

not a tuple inqExt
D .
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