
B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 601

ControVol Flex: Flexible Schema Evolution for NoSQL
Application Development

Florian Haubold1, Johannes Schildgen2, Stefanie Scherzinger3, Stefan Deßloch4

Abstract: We demonstrate ControVol Flex, an Eclipse plugin for controlled schema evolution in Java
applications backed by NoSQL document stores. The sweet spot of our tool are applications that are
deployed continuously against the same production data store: Each new release may bring about
schema changes that conflict with legacy data already stored in production. The type system internal to
the predecessor tool ControVol is able to detect common schema conflicts, and enables developers to
resolve them with the help of object-mapper annotations. Our new tool ControVol Flex lets developers
choose their schema-migration strategy, whether all legacy data is to be migrated eagerly by means
of NotaQL transformation scripts, or lazily, as declared by object-mapper annotations. Our tool is
even capable of carrying out both strategies in combination, eagerly migrating data in the background,
while lazily migrating data that is meanwhile accessed by the application. From the viewpoint of the
application, it remains transparent how legacy data is migrated: Every read access yields an entity that
matches the structure that the current application code expects. Our live demo shows how ControVol
Flex gracefully solves a broad range of common schema-evolution tasks.

Keywords: Schema evolution, NoSQL, NotaQL

1 Purging Migration Debt in Schema-Flexible NoSQL Data Stores

Schema-flexible NoSQL data stores are popular with agile development teams, especially
when software is deployed continuously: Even for small, incremental changes of the code, a
new release is deployed to production. Each new version of the application declares its own
data model or schema, usually encoded within object mapper class declarations.

NoSQL data stores like MongoDB [Mon16] can store legacy entities, i.e., entities that
adhere to the schema imposed by earlier application releases, as well as entities written
by the latest release. Object-NoSQL mappers like Morphia [Mor16] are capable of lazily
migrating legacy entities to the latest schema, whenever they are accessed by the application.
Figure 1(a) describes such a scenario for a gaming application: In the first release, each
player written to the data store has a unique id, and further information on his or her level
and health status. With the second release of the application, the schema of players changes:
Attribute level is renamed to rank. When a legacy player is now loaded, its level value is
automatically loaded as rank, due to the Morphia annotation @AlsoLoad.

Simple changes such as adding, removing, or renaming an attribute can be performed quite
gracefully with this approach. However, the third release of the application brings about a
1 Technische Universität Kaiserslautern, f_haubold12@cs.uni-kl.de
2 Technische Universität Kaiserslautern, schildgen@cs.uni-kl.de
3 OTH Regensburg, stefanie.scherzinger@oth-regensburg.de
4 Technische Universität Kaiserslautern,dessloch@cs.uni-kl.de

f_haubold12@cs.uni-kl.de
schildgen@cs.uni-kl.de
stefanie.scherzinger@oth-regensburg.de


602 Florian Haubold, Johannes Schildgen, Stefanie Scherzinger, Stefan Deßloch

nA developer 
renames level to rank…

o ControVol warns
about a schema conflict

with legacy entities…

p… and adds
lazy migration 

annotation 
@AlsoLoad.

(a) Lazily renaming level to rank using the Morphia annotation @AlsoLoad.

q changing the type of health
is also a schema conflict,

and may be resolved lazily

(b) Lazily retyping health from String to Double, writing custom code.

Fig. 1: Building up migration debt while lazily evolving the declaration of class Player.

more complex change, as shown in Figure 1(b): The players’ health is no longer recorded
as a String, but is stored as a floating point value. Lazily retyping values can be done:
Whenever a player entity is loaded, the method annotated @PostLoad is invoked. Now,
developers need to write the code to translate the legacy health value (no longer stored due to
annotation @NotSaved), to a Double (stored as healthNew). Already in this simple scenario,
we see how quickly we build up technical debt in the form of migration debt: Player classes
now carry two health attributes, to distinguish legacy values from up-to-date values. This
can be confusing to newcomers in the project. Moreover, immersing migration code in
class declarations violates the software engineering principle of separation of concerns.
Additionally, all queries issued by the application code (rather than accessing a single entity
by its key) need to consider all structural variations of legacy entities. Overall, application
development is slowed down due to the need to account for the structural heterogeneity of
legacy entities. At some point in time, eager migration of all legacy entities is called for.

Today, developers lack the tool support for systematically managing schema evolution in
settings such as these. That is, we need to provide a development environment that



ControVol Flex: Flexible Schema Evolution for NoSQL Application Development 603

(a) Migrating to schema version 2. (b) Migrating to schema version 3.

Fig. 2: NotaQL scripts to eagerly migrate legacy entities, as produced by ControVol Flex.

1. keeps track of the various schema versions that occur in the production data store,
2. warns developers about possible schema conflicts when they make changes to class

declarations that are incompatible with legacy entities,
3. automatically fixes detected schema conflicts lazily, and further
4. provides easy means so that developers may migrate legacy data eagerly as well.
5. Finally, a tool that even allows to carry out eager and lazy data migration concurrently,

which is vital for the continuous deployment of zero-downtime applications.

In earlier work, we have presented ControVol, an Eclipse plugin that meets desiderata (1)
through (3) [CCS15; SCC15]. In this demo, we introduce its successor ControVol Flex, the
first tool that meets all five desiderata: ControVol Flex generates NotaQL [SD15; SLD16]
scripts for eager data migration, upon the push of a button. The only requirement that
ControVol Flex imposes is that all object mapper class declarations carry a dedicated
attribute schemaVersion (c.f. Figure 1), maintained by ControVol Flex. This is a reasonable
requirement: Empirical analysis of open source projects shows that maintaining timestamps
or versions in persisted entities is common practice in the developer community [RSB16].

Regarding our example, the script in Figure 2(a) transforms all legacy entities written before
version 2 of the application code (c.f. line 1) by an update in place: The NotaQL commands
are read from right-to-left, where the right side matches parts of the input entity (IN),
and the left side declares the change to the output entity (OUT). The identifying property
id (mapped to the MongoDB-internal identifier _id by Morphia) is preserved (line 3), as
are all properties other than the level and schemaVersion (lines 4). In fact, the value of a
level-property is renamed to rank (line 5). In line 2, the dedicated property schemaVersion
is upgraded to 2. Analogously, the NotaQL script in Figure 2(b) recasts health attributes. By
applying both scripts, all legacy entities are eagerly upgraded to schema version 3, and thus
the structure expected by the current application code.

A major advantage of NotaQL is that this transformation language is independent of a
particular data store and even data model: This provides a convenient level of abstraction
compared to system-specific APIs or aggregation pipelines. Further, developers may edit
the generated NotaQL scripts, to unleash the full power of this transformation language
in eager migration: NotaQL supports complex changes such as nesting and unnesting of
hierarchical data, as well as arrays and aggregation operations. As such, it is a powerful tool
at the hands of developers for conveniently purging migration debt from NoSQL backends.



604 Florian Haubold, Johannes Schildgen, Stefanie Scherzinger, Stefan Deßloch

2 Demonstration Outline

Our demo scenario describes the agile software-development process of an online role-
playing game. The general outline for our interactive demo is this:

1. We introduce a generic development setup using the Eclipse IDE, the Java pro-
gramming language, the NoSQL data store MongoDB, and the Morphia object
mapper.

2. We demonstrate how schema conflicts can occur due to continuous deployment.
We provoke serious problems, such as data loss by renaming attributes, type errors
by changing attribute types, and missing default values by adding new attributes.
ControVol Flex detects these conflicts and proposes appropriate quickfixes in Eclipse.

3. We then show how ControVol Flex helps to migrate the NoSQL schema lazily by
adding Morphia annotations to our code. We also show how ControVol Flex generates
NotaQL scripts to eagerly migrate legacy entities. We point out how user-friendly our
plugin is by generating one script for all or even just selected schema conflicts.

4. We demo the two hybrid modi operandi of ControVol Flex: (1) First kicking o� eager
migration in the background, while migrating legacy entities lazily, if the application
requests access and eager migration has not reached them yet. Alternatively, (2)
starting out with lazy migration, and then cleaning up the remaining legacy entities to
bring the data instance into a consistent state. We show that application development
remains unimpaired by the mode chosen.

5. Furthermore, we demonstrate the automatic version-numbering mechanism for the
di�erent stages of our schema evolution process.

Acknowledgements: The authors are grateful to the extended team who has built the predecessor
ControVol: Eduardo Cunha de Almeida and Pedro Holanda from UFPR Brazil, Thomas Cerqueus
from University of Lyon, and Dennis Schmidt from OTH Regensburg.

References

[CCS15] Cerqueus, T.; Cunha de Almeida, E.; Scherzinger, S.: Safely Managing Data
Variety in Big Data Software Development. In: Proc. BIGDSE’15. 2015.

[Mon16] MongoDB, http://www.mongodb.org/, 2016.
[Mor16] Morphia, https://github.com/mongodb/morphia/, 2016.
[RSB16] Ringlstetter, A.; Scherzinger, S.; Bissyandé, T. F.: Data Model Evolution using

Object-NoSQL Mappers: Folklore or State-of-the-Art? In: Proc. BIGDSE. 2016.
[SCC15] Scherzinger, S.; Cunha de Almeida, E.; Cerqueus, T.: ControVol: A Framework

for Controlled Schema Evolution in NoSQL Application Development. In: Proc.
ICDE’15, demo paper. 2015.

[SD15] Schildgen, J.; Deßloch, S.: NotaQL Is Not a Query Language! It’s for Data
Transformation on Wide-Column Stores. In: Proc. BICOD’15. 2015.

[SLD16] Schildgen, J.; Lottermann, T.; Deßloch, S.: Cross-system NoSQL data transfor-
mations with NotaQL. In: Proc. BeyondMR’16. 2016.

http://www.mongodb.org/
https://github.com/mongodb/morphia/



