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Abstract: The tight integration of In-Vehicle-Infotainment (IVI) applications and 
Advanced Driver Assistance Systems (ADAS) or even semi-automated driving 
functionality on the same hardware offers new chances for innovations in the 
automotive domain. One of the major challenges in this respect is to achieve a 
solution that satisfies the heterogeneous requirements from the involved 
application and operating system worlds and guarantees the necessary freedom 
from interference to attain the required safety according to ISO 26262 [ISO11]. 
This paper presents a prototypical solution and discusses the remaining challenges 
for the chosen virtualization-less approach. 

The prototype was developed for the practical use in the research project econnect 
Germany and successfully used in electric vehicles of a field study in Trier. An 
open source variant of AUTOSAR OS and Linux run together on the same 
processor of the system. Each operating system uses it own processor core. The 
chosen solution allows for the interaction between the different applications of the 
two operating systems and requires no virtualization layers thus avoiding 
additional resource demand and communication latencies. 

1 Introduction 

A huge number of innovative functions in modern vehicles utilize the combination of 
formerly separated functional domains. Since the introduction of the CAN bus into 
vehicles ever more communication links have been established in order to enable 
interaction between previously isolated functionalities. A new area of functional 
interaction with promising possibilities are In-Vehicle-Infotainment (IVI) and Advanced 
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Driver Assistance Systems (ADAS) or other safety-related vehicle functions. Apart from 
this area there are further classes of future systems that could benefit from the integration 
of open source operating systems such as Linux or Android and AUTOSAR applications 
on the same hardware. Developing such systems confronts the industry with the 
challenge of integrating a general purpose operating system and its applications with a 
real-time operating system and its safety-related applications.  

Within the econnect Germany project a prototype of a system running Linux and 
AUTOSAR on separate cores of the same processor was developed and used for a field 
study in five modified electric series cars. Although the system’s intended functionality 
was different from an ADAS the basic challenges are quite similar. In this paper we 
investigate the suitability of the chosen approach for combining IVI and ADAS 
functionality or similar cases with safety-related real-time applications and general 
purpose functionality. This is done by summarizing the general challenges in Section 3, 
describing the chosen realization and identifying remaining issues in Section 4, and 
discussing the overall concept in comparison to other solution approaches in the final 
Section. Additionally, the initial usage background of the developed prototype system is 
given in Section 2 to allow for a better understanding of the chosen design. 

2 Usage Background of the Prototype 

The current system was implemented during the project econnect Germany for a field 
study in the City of Trier. The goal of the field study is to evaluate the user acceptance of 
Grid2Vehicle (G2V) and Vehicle2Grid (V2G) technologies for electric vehicles. 
Widespread deployment of electric vehicles poses great challenges for the energy sector, 
e.g., due to high and unbalanced loads on electric power networks. However, electric 
vehicles and renewable energies provide also great synergies [KT05]. With electric 
vehicles the fluctuating generation of renewable energies can be buffered. Charging of 
the vehicles may be adapted to current production. Using V2G technology, it will for 
instance be possible to provide energy from the vehicle batteries to the grid to 
compensate for low production. 

Using V2G and G2V technologies necessitates a distributed IT architecture with an 
essential part in the vehicle itself. For instance the planning of the charge processes 
should be based on current and expected energy production, the conditions in the vehicle 
(e.g. state of charge) and the settings by the driver [NS14]. The latter requires an on-
board computer with an interface through which the driver is able to input parameters 
such as needed range and time of departure. Furthermore, this on-board computer must 
plan and execute the charge processes. Both for planning as well as for execution of the 
charge processes a direct communication with other hardware within the vehicle is 
needed. For example to execute the charge process the system must communicate with 
the battery management system. Additional requirements for the on-board computer in 
the field study originate from the aim of evaluating end user acceptance. For instance, 
GPS coordinates of all trips were recorded. 



 

 

Such a system includes parts with safety requirements. Although the functionality of the 
prototype itself is not safety-relevant, the communication on the main vehicle bus must 
not be adversely influenced as this might violate safety goals of other systems. 
Moreover, communication within the vehicle often poses hard real-time constraints. For 
these reasons, it was decided to use an AUTOSAR operating system for all parts with 
safety or real-time requirements.  

Other requirements could not be immediately addressed with AUTOSAR, for instance 
the need to provide a graphical user interface with touch control and a TCP/IP based 
communication link via UMTS to the field study server and the gateway to the energy 
control center of Stadtwerke Trier and the charging infrastructure. Therefore, Linux was 
chosen as base for these functions. 

Regarding the interaction between the two worlds of applications (AUTOSAR and 
Linux) the requirement was established to have a most flexible interface allowing for 
data communication with a high bandwidth and the invocation of services across OS 
boundaries. Last but not least, the chosen approach should be scalable to other system 
classes such as the combination of ADAS and IVI functionality as considered in this 
paper.  

According to these requirements the prototype was realized as a hybrid system with 
AUTOSAR and Linux running on separate cores of the same microprocessor. The 
interaction between the system parts uses shared memory, thus allowing for the required 
flexible, high bandwidth interface.  

3 Safety Challenges 

The integration of IVI and ADAS functionality comes with challenges along more than 
one dimension. The focus of this paper is on the safety issues, therefore other aspects are 
largely ignored unless a clear relation to functional safety exists. 

One problem of integrating safety-related functionality on IVI hardware is that hardware 
of this class might not be adequately qualified for safety-relevant issues. The automotive 
industry needs to monitor this issue and find suitable solutions. It is clearly beyond the 
scope of this paper to discuss this aspect further. However, the interested reader might 
have a look into a recent position paper related to this issue, that is part of an ongoing 
discussion on the usage of consumer electronics components in automotive applications 
[ZVEI14]. 

Another issue with such hardware is that it is typically designed to allow for a good 
average case performance and neglects the fact that worst case performance is of utmost 
importance for real-time systems. Typically this makes the precise prediction of worst 
case execution and reaction times of software on these systems extremely hard [Cul10]. 
Although several special aspects regarding real-time behavior are discussed throughout 
this paper, in-depth considerations of WCET analysis or schedulability analysis are out 
of the scope. 



 

 

3.1 Observations on the ISO 26262 

Part 9 of the ISO 26262 norm [ISO11] discusses „criteria for the co-existence of 
elements“. The considered cases are „coexistence within the same element of safety-
related sub-elements with elements that have no ASIL assigned; and safety-related sub-
elements that have different ASILs assigned“. Clearly this includes the case of IVI and 
ADAS software running on the same hardware. The norm prescribes that all sub-
elements need to be developed to the highest ASIL level unless freedom from 
interference can be shown. As no Linux implementations are available that can be 
considered to satisfy ASIL A or higher, it is mandatory to show freedom from 
interference whenever ISO 26262 applies to such a combination. 

The key term “freedom from interference” is often used in the context of combining 
safety-related and non-safety-related functionalities (or regarding combination of 
functionalities with different requirement classes on safety, e.g. ASIL). There are 
sometimes misconceptions about this term. First of all „freedom from interference“ does 
not mean that there is (or has to be) no influence between different classes of 
functionality. A sensible understanding could be that no undesired influence is allowed 
to be established. At least one would expect that harmful influence cannot occur. 
Surprisingly the definition used in the ISO 26262 norm is weaker than that.  

Part 1 of the norm [ISO11] defines „freedom from interference“ as: „absence of 
cascading failures between two or more elements that could lead to the violation of a 
safety requirement“. Cascading failures are defined as follows according to the ISO 
26262: „failure of an element of an item causing another element or elements of the 
same item to fail“ (cf. [ISO11], part 1). An example of a cascading failure would be, if 
one application crashes and thereby corrupts data needed by another application in a way 
that the latter also crashes. A difficulty arising from this definition is that it only captures 
situations where first one element fails and then one or more further elements also fail 
due to this first failure (failure: „termination of the ability of an element to perform a 
function as required“, cf. [ISO11], part 1).2 

Consider the following example, Linux (or any other software element) starts and 
performs all functions as required. Additionally it writes into the memory area used by 
AUTOSAR (or of any other safety-related software element). In a strict sense this would 
still be understood as „freedom from interference“ according to the definition cited 
above. Certainly, it cannot be meant that way, because the affected element (e.g. 
AUTOSAR) could fail in an arbitrary way due to a fault in the causing element, but 
without the causing element failing by itself. We suggest that the definition of freedom 
from interference should also include this case of error propagation and only be used in 
the then stronger way of understanding. In the remainder of this paper we use freedom 
from interference in the stronger sense, i.e. including freedom from error propagation 
with subsequent failure. Please note, that unless expressed otherwise the terminology 
established in [Avi04] is used throughout this paper. 

                                                           
2 The norm clearly distinguishes between “fault” and “failure” as in [Avi04]. Cascading failures according to 
the norm require one component to fail, it is not enough for the component to cause a fault. 



 

 

In other parts the norm refers to another type of failures with importance for the 
considered case of integrating IVI and ADAS functionality: common cause failures. A 
common cause failure has a single root cause and affects two or more parts of a system, 
e.g. the AUTOSAR and the Linux part. The co-location of AUTOSAR and Linux on the 
same hardware clearly increases the potential for common cause failures. Potential root 
causes can be faults of the shared parts of the hardware, i.e. almost everything except for 
the processor cores. Moreover, the software responsible for booting the system could 
become a common cause for a failing start-up of both AUTOSAR and Linux in the 
current system design. The section on implementation gives details regarding the 
currently used boot sequence. 

3.2 Relation between Safety and Security 

For the considered combination of IVI and ADAS functionality on the same hardware it 
is not sufficient to focus on non-malicious  faults, i.e. ignoring the potential actions of 
humans with the aim of causing harm. This includes the case of intruders on the Linux 
part of the system. Many solutions that are sufficient without malicious actions are 
rendered ineffective when human intruders need to be considered. Please note, that the 
current system relies on standard solutions to achieve security under Linux. This is not 
considered to be sufficient by the authors for the combination of IVI and ADAS systems. 
However, it is beyond the scope of the paper to discuss potential improvements in detail. 

4 Current Implementation 

The current prototype was previously presented in [NS13]. This section will now present 
a more detailed overview of how separation was achieved and which issues still remain 
open. The prototype was implemented on a Pandaboard ES (Revision B). The 
Pandaboard ES is an embedded development platform using the OMAP4460 SOC 
[TI14]. The OMAP4460 is based on the ARM architecture and comprises two Cortex-
A9 cores, two Cortex-M3 cores as well as some other specialized cores for image 
processing, face detection etc. For the prototype only the two Cortex-A9 cores were 
used. 

In addition to the Pandaboard, several peripheral hardware was added. To communicate 
with other ECUs, an MCP2515 CAN controller was connected via SPI. To track the 
location of the vehicle a GPS module was added, which is connected via UART. Both 
the GPS as well as the CAN module are controlled by AUTOSAR. For the user interface 
a display was connected over HDMI. This display is combined with a touch module, 
which is connected over USB. Finally, for communication a USB UMTS stick was used. 

4.1 Boot Sequence 

During start-up of a OMAP4460 the Cortex-A9 Core0 is initialized first by the ROM 
code. The ROM code fetches the boot code from non-volatile storage and starts 
executing it. The system uses Das U-Boot [De12] as a boot-loader to load an AUTOSAR 



 

 

conforming operating system from non-volatile storage. This AUTOSAR image 
currently also includes a complete Linux kernel statically linked in a separate section of 
the executable. The additional space used up by the Linux kernel within the AUTOSAR 
image increases the load time from the non-volatile storage medium. We added 
additional start-up code which configures and starts the other core. On the second core a 
short start-up routine is used to load the Linux image contained in the AUTOSAR image 
and transfer control to the Linux image. All start-up parameters needed by Linux are 
provided by the core1 start-up routine and are written to the correct locations in memory. 
These parameters also include the maxCPUs=1 option, which instructs the Linux kernel 
to run in single core mode. 

There are some possibilities to further reduce the start-up times of AUTOSAR that were 
not currently taken. First, the load time of the AUTOSAR image with the added Linux 
image could be improved by adding a driver for the non-volatile storage and loading 
Linux on the second core. In this case, the load time for AUTOSAR would only be 
increased because of the added size due to the driver. Furthermore, Das U-Boot 
initialized several hardware modules that are not used by AUTOSAR, such as for 
example USB. Some of these hardware modules are later used without further re-
initialization from within Linux, so that the initialization routines within Das U-Boot 
could not be removed. However, these initialization routines could be moved to the 
second core, so that the start-up of AUTOSAR is not delayed further by these hardware 
initializations. This additional initialization code could also be read from non-volatile 
storage on the second core, as not to increase the size of the AUTOSAR image. 

4.2 Hardware Assignment 

To reduce the possibility for interference between safety levels the hardware was 
assigned statically to one of the two cores, if possible. For shared hardware, it was 
necessary to protect all configurations made by AUTOSAR from changes through Linux 
and vice versa. Therefore, shared hardware was either initialized by the boot loader prior 
to starting AUTOSAR (e.g. main memory, interconnects) or the configuration routines in 
Linux were disabled or protected. Protection was implemented using the hardware 
locking mechanism provided by the OMAP4460 architecture [TI14]. The hardware 
assignment is shown in Table 1. 

Hardware Assigned to 
Screen Linux 
Touch-pad Linux 
UMTS module Linux 
USB subsystem Linux 
Non-volatile memory (SD-Card) Linux 
Main Memory (DRAM) Linux/AUTOSAR (configured by 

u-boot) 
L1 Caches One per Core (only activated in 

Linux) 
L2 Cache Linux 



 

 

L3 OCM RAM (SRAM) AUTOSAR 
CAN module AUTOSAR 
SPI interface AUTOSAR 
UART interface AUTOSAR 
L3 and L4 interconnects Linux/AUTOSAR (configured by 

u-boot) 
Interrupt Distributor Linux/AUTOAR (protected using 

HW spinlocks) 
Interrupt CPU Interfaces One per OS 
Hardware spinlocks Linux/AUTOSAR (configured by 

AUTOSAR) 
Clock Tree Linux/AUTOSAR (configured by 

u-boot and managed by Linux) 

Table 1: Hardware Assignment (taken with additions from [NS13]). 

4.3 Memory 

The used platform provides several types of memory, which were used: Non-volatile 
memory (SD-Card), 1GB of DRAM, 1Mb L2 cache shared between cores, 32kB L1 data 
cache per core, 32kB L1 instruction cache per core and 56kB SRAM. The non-volatile 
RAM was fully assigned to and managed by Linux.  

Within DRAM a special area was reserved for AUTOSAR. The physical address range 
used for this area was reserved within Linux using the mem= kernel command line 
parameter. Using this parameter the reserved range is by default excluded from any 
mappings in the MMU. However, additional mappings to this memory region can be 
added manually within the kernel. Furthermore, this memory may be accessed using the 
/dev/mem device node with root privileges. Therefore, the AUTOSAR memory 
region was protected from unintended accesses using the MMU. Security flaws within 
Linux that provide elevated privileges or access to kernel space may still be abused to 
tamper with the AUTOSAR memory region. The reserved memory region is also used 
for communication facilities. For this a part of the memory region is mapped from a 
kernel module as IO memory. This shared memory can be used to implement the data 
structures necessary for communication. For AUTOSAR the reserved section of the 
DRAM was used for code and global data. 

To ensure predictability the MMU was deactivated by AUTOSAR for its own core. By 
deactivating the MMU, unpredictable delays from unexpected TLB refills were avoided 
[Sch12b]. Also, for OMAP4460 SOCs disabling the MMU also disables all caches for 
memory used by that core. This way interferences between Linux and AUTOSAR from 
sharing the L2 cache and cache coherency protocols are avoided. However, disabling the 
caches also greatly reduces the performance of the system. As a first step to mitigate this 
problem, the SRAM section was completely assigned to AUTOSAR and disabled in 
Linux. In our final implementation, all stacks were moved to the SRAM to increase 



 

 

speed3. While this method provides some speed improvements, future modifications can 
further improve the usage of SRAM for speedup. Also instead of statically assigning 
parts of the system to SRAM it may be possible to use the SRAM as a scratchpad 
memory managed by the OS or the compiler [ABS01]. Furthermore, freedom from 
interference only requires disabling the shared L2 cache. Depending on the architecture, 
it may be possible to only enable the unshared L1 cache [ARM11a]. Assigning the 
SRAM section to AUTOSAR, as in the current implementation, requires that the SRAM 
is not used by Linux. Currently SRAM may be accessed within Linux using a kernel 
module. To test if the memory could be safely assigned, this module was instrumented 
with log outputs. These outputs showed that SRAM was not used by the Linux portion. 

The current solution leaves two main issues. First, using the mem= parameter the address 
space of AUTOSAR is excluded from the memory mapping used by Linux. However, 
there is no restriction within Linux preventing it from changing this memory mapping. 
Erroneous code within the kernel or with root privileges could in principle still map any 
part of the AUTOSAR address space, hence impairing safety requirements. For this 
reason all parts of the user interface were run without root privileges if possible. 
Secondly, disabling the caches within AUTOSAR will greatly decrease the speed. While 
assigning the SRAM to AUTOSAR may mitigate this problem somewhat, this only 
partially solves the issues. A better solution would be to enable L1 caches globally and 
also analyze for which portions of the code or data the L2 caches could be activated as 
well.  

4.4 Interrupts 

The OMAP4460 SOC uses an ARM generic interrupt controller (GIC) [ARM11b] to 
configure and deliver interrupts to the cores. The GIC is composed of a single shared 
interrupt distributor and one CPU interface per core. The interrupt distributor receives 
interrupt signals and distributes them to the CPU interfaces for handling by the core. 
Interrupt signals can be distributed to one or more cores [ARM11b]. 

In the current state of the system, interrupts are statically assigned to one of the two 
cores. During start-up AUTOSAR configures all interrupt signals required by itself to be 
targeted to the core on which it is running. The initialization routine for the GIC within 
Linux has been changed not to reassign any interrupts targeted for the AUTOSAR core. 
Additional care has been taken to avoid race conditions. For the ARM GIC used by the 
OMAP4460 architecture interrupt targets are configured by using memory mapped 
registers. For these registers one processor word is used to manage the targets for four 
different interrupts. In Linux the mapped words are written using a read-modify-write 
pattern. To avoid races with AUTOSAR these registers are protected using a HW lock4. 

                                                           
3 For the version of the system presented in [NS13] all data portions were put into SRAM. Later changes to the 
system however caused the bss section to grow beyond 56kB so that this section was removed from SRAM. 
4 The ARM GIC specification [ARM11b] indicates that these registers are also byte accessible. However the 
Linux kernel currently does not use this method to set the targets, so that races are possible if both AUTOSAR 
and Linux try to modify the same register and no additional locking is used. 



 

 

If it can be guaranteed that all interrupts are completely initialized within AUTOSAR 
prior to starting Linux these locks are not needed. In that case, it can also be guaranteed 
that the shared hardware does not introduce any additional delays. Similarly, interrupt 
priorities are managed by using one word to store the priorities of four different 
interrupts. Again, these registers must be protected using HW locks shared between 
AUTOSAR and Linux or it must be ensured that all priorities are set by AUTOSAR 
prior to loading Linux and are not changed while the system is running. 

Masking interrupts can be done in multiple ways using the ARM GIC. First, all 
interrupts can be disabled for a single core using the cpsid instruction. Second, some 
portion of the interrupts can be masked for a single core using priority masking in the 
CPU interface for that core. Third, single interrupts can be globally masked using the 
distributor. Currently within the used AUTOSAR implementation interrupts are only 
disabled via the cpsid instruction. No masking of single interrupts or groups of 
interrupts is done. However, these functionalities could easily be used. Masking based 
on interrupt priorities can be done using the CPU interface, so that no shared hardware is 
needed. Also, the registers of the distributor for masking/unmasking of single interrupts 
are implemented race-free by using separate set and clear registers. This means no 
additional locks are needed for performing masking of interrupts independently on both 
systems. 

Using the current solution there is no guarantee that Linux will not deactivate any 
interrupts targeted towards AUTOSAR either by masking them or by setting another 
target core. However like any hardware, the GIC registers are protected within Linux by 
the MMU. The code which maps these registers to configure the GIC is very small and 
could be easily verified. If this code is instrumented so that it will not change any 
interrupts targeted towards AUTOSAR it would be possible to ensure that this portion of 
the Linux kernel does not cause any failures of safety-related functions. This, however, 
still leaves the possibilities of other parts of the Linux kernel mapping the GIC registers 
and changing the configuration of the interrupts. This could either be done by an attacker 
or because of severe bugs in the Kernel. One possibility to mitigate this issue would be 
to secure any access to the MMU, so that no additional mappings to the GIC registers 
can be introduced. 

4.5 Interconnects 

The OMAP 4460 SOC uses several types of interconnects for communication between 
hardware components. Both Cortex-A9 cores are connected to most other SOC hardware 
by a local interconnect. This local interconnect further connects to the L3 interconnect 
and the L4_ABE interconnect. The L4_ABE interconnect serves hardware, which is part 
of the audio backend. Other hardware, which is used (UART, SPI, some timers) is 
served by the L4_PER interconnect, which in turn is connected to the L3 interconnect 
[TI14]. 

Since the system only provides a single set of interconnects for both cores, these 
interconnects have to be shared between Linux and AUTOSAR. This also means, that 



 

 

requests to configure or service hardware from Linux may delay requests from 
AUTOSAR. The L3 interconnect uses a leaky bucket algorithm [Tu86] for bandwidth 
regulation [TI14]. Using this algorithm the bandwidth for each master on the 
interconnect is limited and data can be processed at a higher priority as long as the 
maximum configured bandwidth is not exceeded. However, since both cores in the 
Cortex-A9 dual processor are connected to the L3 interconnect using the same local 
processor interconnect, the bandwidth for both cores can only be set together. Still, this 
method may be used to protect accesses to safety relevant hardware by the processor, to 
guarantee freedom from interference from other hardware. 

Memory is connected directly to the cache and memory controllers, which are part of the 
dual core Cortex-A9 subsytem [TI14]. Thus, memory read or write accesses from the 
core that is running AUTOSAR only need to be arbitrated with other memory accesses. 
No arbitration is needed for accesses to memory and accesses to other hardware from 
Linux. 

Currently AUTOSAR also uses two timers, which are connected using the L3 and 
L4_PER interconnects. These timers are used for system ticks and timeouts of the UART 
module. In case of heavy congestion on one of the two interconnects, configuration 
updates to these timers could be delayed. As a possible solution timers which are part of 
the ABE module could also be used. These timers are fully accessible from the Cortex-
A9 cores using the L4_ABE interconnect only. If these timers are used and the ABE is 
disabled within Linux, no congestion can appear on the L4_ABE interconnect. 

As discussed congestion may be an issue, which can influence real-time behavior. 
However, most important hardware, e.g. memory, is connected separately to the cores 
thus limiting the potential effects. Furthermore, depending on the hardware it may be 
possible to use reserved interconnects to avoid any congestion. For example, in case of 
the OMAP4460 SOC timers within the ABE backend could be used [TI14]. While this 
may require deactivating some part of the hardware, this may be easily replaceable for 
example using a soundcard connected via USB. 

4.6 Clock-Tree and Power Management 

Currently clock-tree and power management are performed by Linux. The complete 
clock-tree is initialized during start-up by U-boot and later managed by Linux. 
Experiments on the hardware platform showed a risk of overheating during full load, if 
the speed is not throttled. If code on the Linux side can cause the SOC to fail due to 
overheating, this could also severely impact safety-related functions. Hence, a thermal 
management is needed for reliability. This thermal management is currently provided by 
the Linux kernel. Unfortunately, the CPU speed can only be set for both cores together, 
so that Linux will also control the speed of AUTOSAR. To ensure that all deadlines are 
met, timing analysis on AUTOSAR was done at the lowest possible rate. However, the 
uncontrolled change of clock speed can cause serious problems in real-time software, 
even if scheduling and timing anomalies could be avoided. Therefore, the control of the 
clock speed should be given to the safety-related real-time part, i.e. AUTOSAR in the 
case of combining IVI and ADAS functionality. Moreover the current implementation 



 

 

limits the processing capacity that can be used for safety-related functions to the capacity 
provided by the chip at the lowest frequency. A closer analysis which frequencies do not 
cause thermal issues could also allow running the system at a higher speed. In that case 
all lower frequencies should be disabled within Linux. 

It would be possible to implement the thermal management within AUTOSAR. With 
such an implementation, either power management could be done by AUTOSAR 
independently without regards for Linux. If the Linux programs can run at arbitrary 
speed, this is the simplest solution. On the other hand, it would still be possible to use the 
normal power management infrastructure within Linux and forward the decision of the 
installed CPUfreq governor to AUTOSAR. AUTOSAR could then use this additional 
information to provide the needed CPU speed to Linux. 

Power management is a severe issue for any system using multiple operating systems. 
Throttling the CPU is only possible in cooperation with both systems. Instead of 
throttling the usual solution is to temporarily completely halt cores when possible 
[Chi08]. This method is also employed by the current prototype. Both Linux and 
AUTOSAR perform a wfi instruction in their idle tasks, which reduces the power 
consumption of the current core. Still thermal issues may require more sophisticated 
solutions to the problem of power management. Without any thermal management 
depending on the hardware an additional point of failure or attack would be opened. For 
example, an attacker could just run a program which burns CPU cycles, thus increasing 
the heat, which may lead to a failure of both cores. Such an attack might also be run 
without any elevated privileges. Similarly, faulty code could also burn CPU cycles and 
increase the heat on the die. This means that any solution in which safety-related 
functions are combined with non-safety-related ones on the same hardware requires a 
thermal management which can be verified not to lead to any failures. This also applies 
to solutions in which there is a partitioning hypervisor. 

4.7 Communication 

To share data between AUTOSAR and Linux real-time communication facilities were 
added. For stream transmissions a non-blocking ring buffer implementation was used. 
Multiple ring buffers are provided for multiple data streams. Using these ring buffers 
AUTOSAR tasks can send data packets to Linux, which are then received in a kernel 
thread (bouncer thread). This kernel thread takes the packet and copies it to a lookaside 
cache, which is created using the kmem_cache_create() method [CKR05]. 
Lookaside caches are frequently used within Linux to flush buffers used by hardware, 
e.g. network cards, to internal kernel buffers. The kmem_cache_create() provides 
a pool allocator for blocks of fixed size. Blocks which are freed are not directly returned 
to the free memory managed by the kernel, but rather to the pool for quick re-use. Pools 
for blocks of equal size can be shared. The bouncer thread is scheduled every 100ms and 
removes all packets from the ring buffer to the lookaside cache so that the ring buffer 
itself remains usable from within AUTOSAR, even if the packets are not picked up by a 
user-space process. All packets are stored in a linked list, which can be retrieved using a 
device node. In AUTOSAR multiple tasks sending data simultaneously through the same 



 

 

ring buffer must be synchronized with each other. For this the real-time resource sharing 
mechanisms within AUTOSAR are used, so that real time capabilities are not impaired. 
The structure of the communication facilities is presented in Figure 1. 

AUTOSAR SWC Linux_comm

Ring Buffer

(Channel 0)

Bouncer 

Thread

Ring Buffer

(Channel 1)

...
Ring Buffer

(Channel N)

Lookaside 

Cache
Device Node

Userspace 

Process

 

Figure 1: The structure of the communication facilities from AUTOSAR to Linux 

In case the lookaside cache grows beyond a configurable limit, no further packets are 
retrieved from the ring buffers by the bouncer thread. In this case the ring buffers may 
overflow if further packets are written on the AUTOSAR side. Similarly, if the kernel 
bouncer thread is not regularly scheduled, this may also cause congestion in one of the 
ring buffers. If a ring buffer overflows the packet is dropped within AUTOSAR to 
enforce the non-blocking behavior. This may result in loss of data on the side of Linux, 
but not in any missed deadlines on the AUTOSAR side. As Linux is not supposed to 
perform any safety relevant functions, the missed data does not impair the overall safety 
of the system. 

To ensure no delays during communication from caches or cache coherency protocols, 
caching for the shared memory areas is disabled in Linux. Caches are deactivated by 
mapping the memory area as IO memory within the kernel. No caches are used within 
AUTOSAR. To keep the pointers indicating begin and end of the ring buffer consistent, 
data is first written to the buffer within AUTOSAR, then a memory fence is issued and 
after the fence the pointer is updated. Similarly in Linux first the data is read and then 
after a memory fence the pointer is updated. 

Although this ring buffer mechanism is only used to send data from AUTOSAR to 
Linux, the opposite direction could be supported as easily. As a secondary 
communication mechanism for state data (as opposed to stream data), atomic writes to 
reserved memory words are used. This communication mechanism is currently only used 
to communicate data from Linux to AUTOSAR. 

While the current communication structure could still be improved, for example to 
decrease the risk of lost data, it does not pose any risks to safety-related functions. If any 
of the buffers overflow data may be lost. However, since this data is accepted by Linux, 
this transmission must not be part of any safety-related functions. Similarly, the data that 
is received from Linux must be treated as unreliable by all safety-related functions. 
Hence, even if the communication mechanism misbehaves in any way, the safety-related 
functions cannot be impaired in any way. 

 



 

 

5 Competing Solutions 

The usual solution to ensure freedom from interference is to use separate hardware for 
safety-related and non-safety-related functions. However, separating the hardware 
increases the cost of the system. Also, separating the hardware requires additional 
communication facilities such as dedicated busses. Moreover, the required flexible and 
high bandwidth communication channel is not available in such a setting. This impedes 
innovations that utilize a close coupling of IVI and ADAS functionality. 

Another possibility is to develop the complete system according to the highest ASIL. 
However, this requires extensive verification and testing of non-safety-related functions, 
which may not be feasible. This would also have to encompass the complete Linux 
kernel, if a Linux portion is used. While some soft real-time adaptations of the Linux 
kernel exists [RH07] these have not been developed according to ISO 26262 and hence 
cannot be employed for safety-related functions. Using different operating systems than 
Linux typically prevents short development cycles and increases development costs. 

A third possibility is to use a hypervisor to virtualize the two systems [ISM09]. 
However, the additional software layer will have an impact on performance 
[Bru10,Sch12a] that may not be acceptable in all cases. Also, to use a hypervisor for 
partitioning of safety-related and non-safety-related functions, it is necessary to verify 
the hypervisor at the level required by the safety-related functions. Furthermore, it must 
be possible to guarantee that the scheduling of the hypervisor can ensure real-time 
performance for the safety-related system parts. This may for example require additional 
idle time allocated to the real time portions. This further reduces the possible 
performance. 
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