

Sustainable Software Engineering: Research Patterns and
Trends through Artifacts from a Practitioner's Perspective

Michaela Degbeon1, Markus Helfert2 and Patrick Rigot-Muller3

Abstract: This study aims to uncover trends and patterns in sustainable software engineering
research, with a particular focus on artifact-oriented outcomes and a practitioner’s perspective.
Continuous research on the topic of environmentally sustainable software engineering practices is
essential to mitigate the environmental impact of software products and advance software
processes that promote sustainability. Despite recognizing the issue, many software industry
practitioners struggle to identify sustainability requirements for software products during software
development. Many are unaware of any applied process models or other software engineering
artifacts to support sustainability in software engineering practices. This working paper intends to
map practitioner-focused outcomes and academic research in sustainable software engineering. By
adopting a practitioner's perspective, we categorize 11 types of software engineering artifacts.
These artifacts represent tangible research outcomes for software practitioners and help with
systematically analyzing academic publications on sustainable software engineering between
2001-2022. The analysis is based on a three-stage literature screening process, out of which three
intermediate datasets are analyzed. The study provides valuable insights into the trends and
patterns of research output, emphasizing the significance of artifacts and acknowledging their
contribution to the field. The aim is to promote sustainable software engineering by considering
and mapping the perspectives of both academics and practitioners. Furthermore, it opens up
opportunities for future research and development.

Keywords: environmental sustainability, software engineering, artifacts, practitioners,
frameworks, models, processes

1 Introduction

The ICT industry's increasing energy consumption is a major contributor to global
emissions and is anticipated to worsen in the future ([Fo19]). The issue of environmental
sustainability in software development has been acknowledged by the Information
Systems (IS) academic community for many years. While 91% of software industry
practitioners recognize the importance of sustainability, 92% are unable to identify
sustainability requirements during the software development process, and 96% are
unaware of any applied process models to support sustainability in Software Engineering
practices ([No22]; [Ka21]). The problem of environmental sustainability of ICT has been
recognized by the Information Systems academic community as a dynamic field of

1 School of Business, Maynooth University, Maynooth, Co. Kildare, Ireland
2 Innovation Value Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
3 School of Business, Maynooth University, Maynooth, Co. Kildare, Ireland

cba

V. Wohlgemuth, D. Kranzlmüller, M. Höb (Editors): EnviroInfo 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 121

innovation in research and in the industry [Wa10]. However, it remains a major
challenge to consider environmental sustainability as an inherent characteristic of
software products, which needs to be reflected in the software development process and
life cycle ([HA15]). In the wider discussion on defining software sustainability, [Ko15]
assert that sustainability should be regarded as a crucial component of software quality,
necessitating its integration into the design and development phases. In contrast, [Na15]
describe Sustainable Software Engineering as the approach of crafting software where its
influences on sustainable development, both positive and negative, are continuously
assessed during its entire lifecycle, with the intent of ongoing refinement. In line with
our analysis, we aim to examine artifacts while also suggesting considering the software
development lifecycle (SDLC).

This study is driven by the viewpoints of professionals in the software industry and is
conducted through an analysis of scholarly literature. Scholars often prioritize academic
rigor and theoretical contributions, while practitioners value practical insights and
actionable outcomes. Researchers may be unaware of real-world problems, while
practitioners may struggle or hesitate to adopt existing research [Ma21]. The study can
benefit both academics and software industry practitioners by focusing on research
outcomes important to the practitioners and acknowledging their perspectives. It aims to
foster knowledge sharing and make research on sustainable software engineering
hopefully more applicable in practice. We seek to create a practical reference for future
research and collaboration in the field of sustainable software engineering through this
study.

2 Methodology

We conduct the literature review that should adopt a practitioner's perspective by using a
structured approach that involves designing a concept matrix ([WW02]). Furthermore,
through this study, we have identified 11 distinct types of artifacts that revolve around
outcomes such as tools, guidelines, frameworks, models, architectures, theories, metrics,
concepts, methods, principles, and processes. The analysis is directed ([Ar11]) by its
own research question (RQ):

• RQ: What are the trends and patterns in software engineering artifact production in
academic articles on sustainable software engineering from 2001 to 2022, mapped
with a practitioner's perspective?

To conduct this study, we utilize the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines ([Pa21]). While we did not fully adhere to
them, we believe that our partial use of the guidelines ensures transparency in our
literature review, making it replicable and easily accessible.

122 Michaela Degbeon et al.

2.1 Definition of Scope

In the field of software engineering, one popular process model is the Software
Development Lifecycle (SDLC), which provides a structured approach to creating
software ([BF14]). In this study, we conduct a thorough analysis of literature related to
sustainable software engineering, with a particular focus on how it applies to the SDLC.
To conduct our research, we have created three datasets, corresponding to the screening
stages, to analyze patterns and trends in scholarly articles, as shown in Table 1. Our goal
is to identify relevant software engineering artifacts and ultimately take on the
practitioner's viewpoint. The following steps are taken:

Identification: The initial steps involve conducting searches on four scientific databases
(AIS, ACM, Scopus, and ScienceDirect) using the keywords "Environmental
Sustainability," "SDLC," and "Software Engineering." This search process yields a total
of 771 articles.

Broad Initial Screening (Dataset A): In this step, we perform a broad initial screening of
the 771 articles based on their titles and abstracts. The objective is to exclude articles
published before 2001 or after 2022, as well as those that are irrelevant to the research
topic (such as covering different software engineering topics like cloud computing) or
duplicates. Additionally, we include 40 articles through snowballing techniques [Wo14],
which involve examining the references of relevant articles. Following this screening
process, we created Broad Initial Screening (Dataset A), comprising 177 articles.

In the first assessment of titles and abstracts, called Software Engineering-Focused
Screening (Dataset B), the articles from Broad Initial Screening (Dataset A) were
assessed to identify those potentially relevant to software engineering practices. The
emphasis is on selecting articles that align with the research objective. As a result, 72
articles were included in the Software Engineering-Focused Screening (Dataset B).

The second assessment of titles and abstracts, called Practitioner's Targeted Screening
(Dataset C), involves further reviewing the articles from Software Engineering-Focused
Screening (Dataset B). This step includes excluding opinion pieces, editorials, and
secondary studies from the dataset. Only articles that meet the criteria are included in
Practitioner's Targeted Screening (Dataset C), resulting in a total of 50 articles.

Sustainable Software Engineering 123

Tab. 1: Screening process and datasets

In the future, the research process will involve assessing the full-text articles of
Practitioner's Targeted Screening (Dataset C) to further refine the dataset analysis and
gain deeper insights into sustainable software engineering research. While this step may
not be included in the current study, it is crucial for analyzing practical-focused artifacts.

2.2 Concept-Centric Structure

To gain a better understanding of the production of software engineering artifacts within
the context of sustainable software engineering research, we conduct an analysis of the
11 artifact types identified. The identification, screening, and assessment of 177 articles
as part of the literature review process directly led to the creation of these 11 types of
software engineering artifacts in the context of sustainability.

The types of software engineering artifacts include tools that are software applications
and utilities meant to support sustainability goals. Guidelines provide best practices and
recommendations for developing environmentally sustainable software solutions.
Frameworks provide structured approaches for integrating sustainability considerations
into the software development process. Models are conceptual or mathematical
representations that help in comprehending and evaluating the sustainability impact of
software systems and designs. Architectures refer to fundamental concepts or properties

124 Michaela Degbeon et al.

of a software system in our context to optimize the environmental impact. Theories
encompass conceptual frameworks and theories that explain the relationship between
sustainability and software engineering processes and products. Metrics provide
quantifiable measures to assess the sustainability performance of software systems.
Concepts represent abstract ideas and fundamental building blocks related to
sustainability in software engineering. Methods refer to specific procedures and
approaches that can be used to incorporate sustainability elements into the software
development process. Principles comprise fundamental guidelines for developing
sustainable software solutions. Processes are interrelated activities and systematic
workflows that guide sustainable software engineering practices.

To examine the three screened datasets, we search through the titles and abstracts of all
articles to find any instances of the 11 artifact types that were previously mentioned.
Composing a concept matrix using these 11 software engineering artifact types will help
in examining patterns, trends, and potential gaps in the investigated field of research.

3 Results

In this study, we generate three datasets (Broad Initial Screening as Dataset A, Software
Engineering-Focused Screening as Dataset B, and Practitioner's Targeted Screening as
Dataset C) by utilizing the article titles and abstracts. We conduct a time series analysis
on published articles and software engineering artifacts, focusing on the period from
2001 to 2022 (see Figure 1 and Figure 2). Furthermore, we develop a concept matrix that
comprises all artifact types and articles (examples are provided in Table 2 and Table 3).
We searched the titles and abstracts of all articles in the three screened datasets to
identify instances of the 11 artifact types. The outcomes of this analysis provide insights
into the main research question, which asks for the trends and patterns in software
engineering artifact production in academic articles on sustainable software engineering
from 2001 to 2022, incorporating a practitioner's perspective.

3.1 Time Series Examination

The examination of the evolution in article publication in different datasets within the
context of sustainable software engineering shows that dataset A has a gradual increase
in articles over the years, with a peak of 17 articles in 2018. Datasets B and C show a
similar trend, but with lower numbers.

Sustainable Software Engineering 125

Fig. 1: Number of Articles Published in Different Datasets from 2001 to 2022

Dataset B has 11 articles in 2018 as its highest number, while dataset C reaches its peak
in 2011, 2013 and 2018 with 6 articles.

By analyzing the development of artifact types in various datasets regarding sustainable
software engineering (Figure 2), dataset A displayed a steady growth in artifact
production. Notably, in 2018, there was a significant spike with a total of 36 artifacts
produced. Dataset B and C also exhibit similar patterns, albeit with lower artifact counts.

Fig. 2: Number of Artifacts Published in Different Datasets from 2001 to 2022

The highest number of artifacts in dataset B is observed in 2018 with 28 artifacts, while
dataset C reaches its peaks in 2013 and 2018 with 15 artifacts. These findings suggest a
growing output in sustainable software engineering artifact production over the years.

A comparison of article and artifact production over the three datasets from 2001 to 2022
shows that there is a noticeable correlation between artifact and article production within
each dataset. As the number of articles increases, so does the production of artifacts. The
analysis reveals several peaks and fluctuations in artifact production, often
corresponding to specific years or periods within each dataset. In some instances, there

126 Michaela Degbeon et al.

appears to be a lag between the production of articles and the subsequent development of
artifacts.

To determine the time lag, we compare the years with the highest article production to
the subsequent years with the highest artifact/article production ratio. For example, in
dataset A, 17 articles were produced in 2018, while the peak in artifact/artifact ratio
production occurred in 2020 with a ratio of 2.3. This indicates a two-year lag between
the highest article production and the subsequent peak in artifact/article production ratio.
By examining other instances within the datasets, we can identify consistent patterns of
lag across all three data sets. These consistencies suggest a recurring pattern in the
translation of research findings into practical artifacts.

3.2 Concept Matrix Analysis

Regarding the matrix that contains all types of artifacts and articles we can observe that
the above-average artifact types in Table 2 are "Tool," "Model," "Process," "Concept,"
"Principle", and "Framework."

Sustainable Software Engineering 127

Tab. 2: Overview of the artifact types and articles within Dataset A for the years 2001 to 2010

We can compare the prevalence of different artifact types from earlier years (2001-2007)
to more recent years (2008-2010) to identify emerging artifact types or changes in
emphasis. Over 94% of the artifacts occurred in the later period.

Upon analyzing the data from 2017-2018 as shown in Table 3, we found that the
dominant artifact types in dataset A are slightly more varied than those from the
timeframe of 2001-2010.

Tab. 3: Overview of the artifact types and articles within Dataset A for the years 2017 to 2018

The list of above-average types consists of "Tool," "Concept," "Method," "Model,"
"Architecture," "Framework," and "Process," but the type "Principle" is not included.

For this preliminary analysis we have purposely chosen to focus on the time periods of
2001-2010 and 2017-18 since we observed their unique significance within the dataset

128 Michaela Degbeon et al.

and a change in pattern. The period of 2001-2010 allows us to examine the foundational
stages of research in sustainable software engineering. We can gain insights into the
initial growth of artifact occurrences during this time. On the other hand, the 2017-18
period represents a more contemporary era characterized by a substantial peak in artifact
production across all datasets. By focusing on these two distinctive time periods, we can
showcase the field's evolution from its nascent stages to its current state of heightened
research activity.

The complete concept matrix spanning from 2001-2022 for dataset A, highlights further
interesting patterns when analyzing the various types of artifacts included in the dataset.
The top three artifact types with the highest number of occurrences are "Model" (53),
"Process" (42), "Method" (41) and "Framework" (41). These types show varying trends
over time, with the "Model" type exhibiting an overall increasing trend. On the other
hand, the bottom three artifact types with the lowest number of occurrences are
"Architecture" (9), "Guideline" (8), "Metric" (13), "Principle" (14) and "Theory" (14).
These categories demonstrate relatively stable trends with sporadic peaks and dips.
Overall, the findings highlight the prominence of models, processes, and frameworks in
research, while architecture, guidelines, metrics, and theories have received
comparatively less coverage. These findings provide some initial insights into the
distribution of research efforts across different types of artifacts for sustainable software
engineering, highlighting areas of focus as well as potential gaps in the research
landscape.

4 Discussion

4.1 Time series examination - Initial Presumptions of Practitioners

As in some instances, there appears to be a lag between the production of articles and the
subsequent artifact/article production ratio, there are possibly several reasons for the
observed lag time in artifact/article production ratio compared to articles. Firstly, the
process of converting research findings into tangible artifacts could often involve
additional stages such as testing, and evaluation. These stages require time and
resources, possibly leading to a delay in the production of artifacts. From a practitioner’s
perspective, practitioners may worry that the lag in artifact production hinders their
ability to stay updated with the latest advancements. They might feel that by the time
artifacts are developed and made available, newer technologies have already emerged,
making the artifacts less relevant or outdated. They might argue that the perceived
lengthy process of transforming research findings into artifacts delays the incorporation
of practical solutions into real-world software development scenarios and they may feel
that the artifacts produced do not adequately address their specific industry challenges
and requirements.

Sustainable Software Engineering 129

4.2 Concept Matrix - Initial Presumptions of Practitioners

Based on the data provided in the concept matrix 2001-2022 for dataset A there could be
several concerns from the perspective of practitioners: With only 8 contributions for the
"Guideline" type, practitioners may express concerns about the limited availability of
guidelines. They might argue that having a small number of guidelines create a barrier to
their ability to access best practices within their industry.

The relatively low "Theory" type (14 contributions) as well as the "Architecture" type (9
contributions), might lead practitioners to concerns about the limited availability of
theoretical research relevant to their field. They may argue that this small number of
contributions restricts their access to the latest theoretical advancements and
architectures that could positively inform their system designs.

In summary, we formulate the hypothesis that software industry practitioners may feel
that the lengthy process of turning research findings into practical solutions for real-
world software development delays their incorporation. In the field of sustainable
software engineering, they may also feel impacted by the lack of guidelines, theories,
and architectures emerging from the research realm, which limits their access to these
resources. We expect to test the hypothesis in future research, and practitioner interviews
may be included to provide additional insights. This will not only evaluate the variances
in adopting these artifacts but also improve our current study's assumptions.

5 Conclusion

This paper connects practitioner’s-focused outcomes and academic research in
sustainable software engineering. By adopting a practitioner's perspective, we categorize
11 types of software engineering artifacts. The analysis involves comparing the
production of articles and artifacts across three datasets spanning from 2001 to 2022.
The correlation between artifact and article production becomes evident, as an increase
in articles is paralleled by an increase in artifact creation within each dataset. Throughout
this period, there are distinct peaks and fluctuations in artifact production, often aligning
with specific years or intervals within the datasets. Notably, at times, there appears to be
a delay between article production and the subsequent generation of artifacts. Among the
various artifact types, the top ones with the highest occurrence counts are "Model" (53),
"Process" (42), "Method" (41) and "Framework" (41). While each type exhibits distinct
temporal trends, the "Model" category shows a consistent upward trajectory. Conversely,
the least common artifact types are "Guideline" (8), "Architecture" (9), "Metric" (13),
"Principle" (14) and "Theory" (14), which demonstrate relatively stable patterns with
occasional spikes and declines.

Overall, these findings underscore the prevalence of models, processes, methods and
frameworks in research, while guidelines, architecture, metrics, principles and theories

130 Michaela Degbeon et al.

receive comparatively less attention. This insight offers a preliminary understanding of
how research efforts are distributed among different artifact types in sustainable software
engineering. The analysis allows us to formulate the hypothesis that software industry
practitioners might challenge the lag in artifact/article production. Furthermore, the
findings guide us to hypothesize that practitioners may express concerns over the
restricted availability of guidelines, theoretical research, and architectural insights. This
may lead us to infer that the delay in translating research into practical artifacts and the
relatively low numbers of artifacts such as guidelines, theories, metrics, principles, and
architectures could potentially present challenges for practitioners engaged in sustainable
software engineering endeavors.

6 Further Research Direction

To continue our study, we will be utilizing the Design Science Research methodology
(DSRM). This methodology is known for its systematic approach, emphasis on
innovative artifact creation, rigorous testing, and established track record in the field
([He04]) By following the clear steps for iterative design enhancement and evaluation,
with a focus on creating practical solutions and conducting rigorous testing,
experimentation ([Os14]) and addressing real-world problems, we believe it will be a
good fit with the objectives of this study. As we move forward with our research, we
plan to assess suggested artifacts in relation to their practical relevance. We will further
expand the dataset analysis to determine if there are any indications of the practical
usage and real-world evaluation of the exposed artifacts. We plan to use the current
dataset in our expanded research in the future and therefore don’t intend to release the
dataset publicly until then. To enhance our understanding, we will directly seek feedback
from software industry practitioners on the different artifact types, aiming to evaluate
their potential adoption and usage. This valuable input will further inform and refine the
practitioners' presumptions suggested in the study. The findings of this study are being
used in ongoing research on the topic of Environmental Sustainability driven by
Software Engineering with a focus on artifact design.

Bibliography

[Ar11] R. Armstrong, B. J. Hall, J. Doyle, and E. Waters, “‘Scoping the scope’ of a cochrane
review,” Journal of Public Health, vol. 33, no. 1, pp. 147–150, Mar. 2011, doi:
10.1093/pubmed/fdr015.

[BF14] P. Bourque and R. E. Fairley, SWEBOK: guide to the software engineering body of
knowledge. IEEE Computer Society, 2014.

[Fo19] A. Fonseca, R. Kazman, and P. Lago, “A Manifesto for Energy-Aware Software,”
IEEE Software, vol. 36, no. 6, pp. 79–82, Nov. 2019, doi: 10.1109/MS.2019.2924498.

[He04] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information

Sustainable Software Engineering 131

Systems Research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004, doi:
10.2307/25148625.

[HA15] L. M. Hilty and B. Aebischer, “ICT for Sustainability: An Emerging Research Field,”
in ICT Innovations for Sustainability, L. M. Hilty and B. Aebischer, Eds., in Advances
in Intelligent Systems and Computing. Cham: Springer International Publishing, 2015,
pp. 3–36. doi: 10.1007/978-3-319-09228-7_1.

[Ka21] L. Karita, I. Machado, L. Soares, L. Martins, and B. Mourão, “Software industry
awareness on sustainable software engineering: a Brazilian perspective,” Journal of
Software Engineering Research and Development, vol. 9, p. 2:1, Feb. 2021, doi:
10.5753/jserd.2021.742.

[Ko15] S. A. Koçak, G. I. Alptekin, and A. B. Bener, “Integrating Environmental
Sustainability in Software Product Quality.,” in RE4SuSy@ RE, 2015, pp. 17–24.

[Ma21] D. Marijan, T. Zimmermann, M. Ham, and B. Selic, “Bridging Software Engineering
Research and Industrial Practice,” SIGSOFT Softw. Eng. Notes, vol. 46, no. 1, pp. 30–
32, Feb. 2021, doi: 10.1145/3437479.3437488.

[Na15] S. Naumann, E. Kern, M. Dick, and T. Johann, “Sustainable Software Engineering:
Process and Quality Models, Life Cycle, and Social Aspects,” in Advances in
Intelligent Systems and Computing, 2015. doi: 10.1007/978-3-319-09228-7_11.

[No23] H. Noman, N. A. Mahoto, S. Bhatti, H. A. Abosaq, M. S. A. Reshan, and A. Shaikh,
“An Exploratory Study of Software Sustainability at Early Stages of Software
Development,” MDPI AG, 2022. Accessed: May 28, 2023. [Online]. Available:
https://doaj.org/article/d0d1fe143dc34c59a6c4ade7d89dcbf4

[Os23] L. Ostrowski, “Dеsign аnd evаluаtion of activitiеs аnd rеfеrеncе modеl for thе mеtа-
dеsign phаsе of dеsign sciеncе - dеmonstrаtеd on businеss procеss modеl artеfаcts,”
doctoral, Dublin City University, 2014. Accessed: May 28, 2023. [Online]. Available:
https://doras.dcu.ie/19713/

[Pa20] M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews,” BMJ, vol. 372, p. n71, Mar. 2021, doi: 10.1136/bmj.n71.

[Wa10] R. T. Watson, M.-C. Boudreau, and A. J. Chen, “Information Systems and
Environmentally Sustainable Development: Energy Informatics and New Directions
for the IS Community,” MIS Quarterly, vol. 34, no. 1, pp. 23–38, 2010, doi:
10.2307/20721413.

[Wo14] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, in EASE ’14.
New York, NY, USA: Association for Computing Machinery, Mai 2014, pp. 1–10.
doi: 10.1145/2601248.2601268.

[WW02] J. Webster and R. T. Watson, “Analyzing the Past to Prepare for the Future: Writing a
Literature Review,” MIS Quarterly, vol. 26, no. 2, pp. xiii–xxiii, 2002.

132 Michaela Degbeon et al.

