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Abstract: This paper deals with the problem of dynamic allocation of cores to par-
allel applications on homogeneous many-core systems such as, for example, Multi-
Processor System-on-Chips (MPSoCs). For a given number of thread-parallel appli-
cations, the goal is to find a core assignment that maximizes the average speedup.
However, the difficulty is that some applications may have a higher speedup variation
than others when assigned additional cores. This paper first presents a centralized al-
gorithm to calculate an optimal assignment for the above objective. However, as the
number of cores and the dynamics of applications will significantly increase in the fu-
ture, decentralized concepts are necessary to scale with this development. Therefore, a
decentralized (self-organizing) algorithm is developed in order to minimize the amount
of global information that has to be exchanged between applications. The experimental
results show that this approach can reach the optimal result of the centralized version
in average by 98.95%.

1 Introduction

With the growing number of cores on MPSoCs [Bor07] the sequential execution of ap-
plications results in inefficient usage of processing resources. Therefore, future systems
applications need to be able to efficiently exploit time-variant degrees of parallelism. The
efficiency of running an application on multiple cores, i.e., the speedup compared to pure
sequential execution, is depending on the degree of parallelism of an application. So, the
question arises: how to assign the available cores to applications at any point of time? In
this paper, we provide methods to determine assignments that increase the average speedup
of all applications thereby increasing the total system throughput and consequently reduc-
ing average execution times.

Carrying out such assignments can generally be performed in two ways: centralized and
decentralized. A centralized approach has the advantage of global knowledge which al-
lows us, as we will see, to find an optimal assignment. The disadvantage is, however,
that with shrinking transistor sizes the single point of failure cannot be tolerated. In ad-
dition, the steadily increasing number of cores on a chip will soon lead to unacceptable
computation, monitoring and communication overheads.

Therefore, a decentralized approach is chosen motivated by the research area of Invasive
Computing. Invasive computing [Tei08, THH+11] denotes a new programming paradigm
for massively parallel MPSoCs where each application itself may dynamically and proac-
tively quest for, occupy, and later release processors depending on the available degree
of parallelism and state of the underlying processing resources, e.g., temperature, avail-
ability, load, permissions, etc. The goal of invasive computing is to provide room for
dynamic system optimization by exploiting the knowledge of parallel algorithm and appli-
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cation designers for resource allocation as well as to realize what is called resource-aware
programming. In this paper, we consider just one particular problem of decentralized ap-
plication control, namely the problem of understanding objectives and algorithms for the
optimization of task, respectively thread allocation to processor cores.

This paper is organized as follows. In Section 2, the problem of dynamic task allocation
is defined and put into context. Section 3 proposes an algorithm to find an optimal core
assignment in quadratic time. Section 4 then introduces a new learning-based approach
to assign cores decentrally at run-time to applications. Section 5 provides experimental
results comparing the central and decentral algorithms in terms of convergence time and
average speedup. Finally, conclusions and future work are given in Section 6.

2 Problem Description

In an informal simplified way, the problem we tackle can be described by the question:
Which application allocates how many cores? Each application may have a different de-
gree of parallelism. The locality of the cores is first neglected. The goal is to find core
assignments with maximal average speedup. In the following, we motivate, then formalize
and refine this informal problem description.

2.1 Related Work

The problem of scheduling parallel tasks has received a wide interest in research in the
domain of high performance computing (HPC) [BDO08]. A reasonable amount of appli-
cations such as for example [BGT99] justify this interest. The application model including
the speedup is the same as used in this paper, which backs up that our assumptions are real-
istic. One difference to the problem described here is that in previous approaches, the num-
ber of cores allocated to each application does not change at run-time [TWY92]. The pos-
sible performance gain when using task preemption justifies this assumption [BMW+04].
However, the novelty compared to all previous work is in the goal function. All exist-
ing work tackles as objective to minimize the makespan, or latest task completion time.
As already described in the previous section, minimizing the average speedup may also
minimize the average execution time. Furthermore, with the current and foreseen growing
dynamics [Don12] and amounts of computation in HPC [AFG+10] the makespan is not
computable as applications appear dynamically. Therefore, a new objective function is
needed. Another reason for using the average speedup as objective function is that one
of the key challenges in reaching exascale performance is the energy and power challenge
[BBC+08]. This means, applications that achieve lower speedups with additional cores
run less efficient and consume more energy per performance. When fulfilling the defined
goal function all applications run most efficient. A further unique feature is the distributed
nature of the presented self-organizing algorithm that will in our opinion get more and
more important in future systems.

It has to be noted that there already exists a wide range of practical approaches [CLT13,
GXWS11, CJ08]. Nevertheless, we see a gap between formal analysis and practical heuris-
tics. We contribute to close this gap by providing algorithms first for simple assumptions.
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2.2 Application and Speedup Model

For the analysis of optimal core allocation strategies, we assume that each application run-
ning on an MPSoC is a malleable program [Dow97]. This means that each application can
run in parallel on any number of cores. Moreover, for each application under considera-
tion, its speedup compared to running the application on one core is known in advance and
doesn’t change during run-time. Furthermore, we assume that all applications are known
in advance, and become available for execution at the start and run forever. These assump-
tions on applications and speedup are only used to simplify the argumentation. Later, we
will explain the consequences when loosening these assumptions.

Definition 1. Let the speedup Si(n) denote the quotient of the execution time when run-
ning application i on n cores relative to its execution time on one core:

Si(n) =
Ti(1)

Ti(n)
, (1)

where Ti(n) is the execution time of application i when executed on n cores.

The speedup function Si(n) can be gathered by code analysis or by profiling. Moreover,
cores may be only assigned to one application as whole. So, the speedup is defined for
integers n from one to infinity. For later descriptions and proofs, the following definition
is necessary.

Definition 2. Let delta speedup ∆Si(n) denote the difference in speedup when application
i runs on n cores instead of n− 1 cores:

∆Si(n) =

{
Si(n)− Si(n− 1), n > 0

0, n = 0
(2)

The speedup only considers applications on MPSoCs without hyperthreading or super-
scalar behavior. This has the following consequences: If the application is run on zero/one
core the speedup is always zero/one (Si(0) = 0/Si(1) = 1). An application that is not
parallelizable at all only achieves the minimal speedup of Si(n) = 1 for n ≥ 1. The the-
oretical maximum speedup is for applications that are fully parallelizable infinitely, thus
obtaining a speedup of Si(n) = n. In our speedup model, we assume that the speedup
does not decrease when adding cores. This means the speedup is monotonic increasing
with

0 ≤ ∆Si(n) ≤ 1. (3)

The last assumption made is that the delta speedup ∆Si(n) decreases with increasing
number of cores, what means that the following inequality is fulfilled

∆Si(n) ≥ ∆Si(n + 1). (4)

This is a realistic assumption, meaning the more cores an application gets allocated the
less efficient the application can make use of it.
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Figure 1: Example speedup characteristics generated using the Downey model.

Our speedup model is in line with state of the art models such as for example the widely
used model [KBL+11, FR98] proposed by Downey [Dow97]. Figure 1 shows six example
application speedup curves generated using the Downey model that are also used for later
experiments.

2.3 Formal Definition of the Processor Allocation Problem

Problem 3 (Core Assignment Problem). Given N applications numbered i = {1, 2, . . . , N}
and a total number of C available cores. Let each application i be assigned ai cores. As
the number of available cores is limited to C,

N∑
i=1

ai ≤ C. (5)

The assignments ai are gathered in a vector called assignment profile a = (a1, a2, . . . , aN ).
The goal is to find an assignment a that maximizes the sum of all speedups of all applica-
tions:

max

(
N∑
i=1

Si(ai)

)
. (6)

3 Central Assignment

In this section, we present an algorithm for optimally solving the assignment problem in
case global knowledge is available.

Definition 4. Let aopt = (aopt1 , aopt2 , ..., aoptN ) denote an optimal assignment profile if and
only if the following proposition is fulfilled:

N∑
i=1

Si(ai) ≤
N∑
i=1

Si(a
opt
i ), ∀a = (a1, a2, . . . , aN ).
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Theorem 5. There exists an optimal assignment profile aopt with

N∑
i=1

aopti = C (7)

Proof. Due to the restriction in Equation (5), no more than C cores can be occupied, and

the optimal assignment profile must obviously satisfy
N∑
i=1

aopti ≤ C. Of course, there might

exist optimal assignments with
N∑
i=1

ãopti < C. However, as the speedup is monotonously

increasing, we can conclude there will always exist an optimal assignment aopt for which
N∑
i=1

aopt
′

i = C holds.

According to Theorem 5, it is sufficient to examine only those assignment profiles a with
N∑
i=1

ai = C. This reduces the number of combinations that have to be tested for optimality

from (C + 1)N to
C+1∑

iN−3=1

(· · ·
i3∑

i2=1

(

i2∑
i1=1

(

i1∑
i0=1

i0)) . . . ).

Even with this reduced complexity, it is not feasible to test all combinations at run-time.
Therefore, an algorithm to construct an optimal assignment profile is presented. With

Definition 2, the problem of maximizing
N∑
i=1

Si(ai) can be reformulated as follows:

Si(j) = ∆Si(j) + Si(j − 1)
= ∆Si(j) + ∆Si(j − 1) + Si(j − 2)
= ∆Si(j) + ∆Si(j − 1) + · · ·+ ∆Si(1) + 0

=

j∑
x=1

∆Si(x)

We then can reformulate:

∑
ai∈a

Si(ai) =
∑
ai∈a

(
ai∑

x=1

∆Si(x)

)
(8)

Theorem 6. Algorithm 1 denotes a central algorithm for determining an optimal assign-
ment profile aopt according to Definition 4.

Proof. Given the set of delta speedups:

sall = {∆Si(x)|x ∈ N ∧ i = {1, 2, . . . , N}}.
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The sum of a subset sassigned of these delta speedups with C elements is greatest, when
the smallest element of this subset sassigned is greater than the largest element of the
remaining set sremaining = sall\sassigned. Such an assignment profile is constructed by
taking always the greatest element of the set sremaining and inserting it into sassigned. It
is only then a valid assignment if only delta speedups of ∆Si(x) are included in sassigned,
when all ∆Si(y) with y < x are already in sassigned. This is indirectly met by the
following argument. The greatest element of the set sall is found by looking only at the
N speedups with smallest x, because of Equation (4). This construction is carried out by
Algorithm 1.

Algorithm 1 Constructive algorithm for determining the optimal assignment ai of core
numbers to applications i = 1, ..., N .

1: for i = 1 to N do
2: ai = 0
3: end for
4: for k = 1 to C do
5: i = arg max

j=1,...,N
(∆Sj(aj + 1))

6: ai = ai + 1
7: end for

The worst-case execution time of the algorithm is O(N ·C), as C-times N elements have
to be accessed and compared.

4 Decentralized Core Assignment

Based on the previous analysis, we present a decentralized core allocation strategy called
probabilistic delta speedup learning (PDSL). It follows the principle of the constructive
algorithm described in Algorithm 1.

4.1 Algorithm

Each application itself increases or reduces the number of allocated cores in rounds, i.e.,
they claim cores. The idea is to increase the number of claimed cores with higher proba-
bility the higher the speedup gain is. Only increasing the number of assigned cores leads
unavoidable to over-utilization. In this case, the applications with the least loss in speedup
reduce the number of claimed cores with highest probability. The working principle is
as follows: In each round, each application changes the number of claimed cores with a
probability depending on ∆Si(n), for which 0 ≤ ∆Si(n) ≤ 1 holds. If an over-utilization
occurs in the last round, each application reduces the number of claimed cores by one with
probability p− = 1−∆Si(ai). If no over-utilization occurred, the number of claimed cores
is incremented by one (an additional core is requested) with probability p+ = ∆Si(ai+1).

A pseudocode description of PDSL is shown in Algorithm 2. The algorithms starts by
initializing the number of claimed cores to zero. Note that this algorithm would also work
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Algorithm 2 Probabilistic delta speedup learning (PDSL) of application i which dynami-
cally increases or reduces the number of cores ai claimed by this application.

1: ai = 0
2: while (next step) do
3: if (over-utilization) then
4: if (∆Si(ai) ≤ newRandom([0; 1[)) then
5: ai = ai − 1
6: end if
7: else
8: if (∆Si(ai + 1) > newRandom([0; 1[)) then
9: ai = ai + 1

10: end if
11: end if
12: end while

when starting with any other initial core assignment. The number of claimed cores is
monotonously increased in each round as long as no over-utilization has occurred. This
phase is called attack time. Then, the assignment may oscillate between over-utilization
and under-utilization (oscillation time). Both during an increase and decrease of claimed
cores it is ensured that with highest probability the largest delta speedups are chosen.
Therefore, with highest probability, the optimal assignment according to Definition 4 is
chosen. The greater the difference between the optimal and the second best assignment,
the greater is the probability to reach and stay at the optimal assignment.

The constant oscillation ensures that the applications immediately react to changes in the
system load. In this paper, we assume the overhead required for claiming and releasing
cores is negligible. Depending on the underlying architecture, this overhead can be consid-
erably high and a constant oscillation is not desirable. In this case, it is possible to stop the
oscillation by simply not allowing applications to release cores. Then, after the attack time,
the core assignment only changes when applications finish and, therefore, release cores.
This behavior can be implemented by omitting lines 4 - 6 in Algorithm 2. This strategy
has the drawback that it potentially leads to lower average speedups as disadvantageous
claims cannot be reversed as quantified in Section 5.

4.2 Decentralized Detection of Over-utilization by Invasive Computing Mechanisms

Applications programmed by applying the Invasive Computing [Tei08, THH+11] princi-
ple, may use three operations. The invade operation explores and reserves cores available
in the local neighborhood of the initial program. There exist techniques to extend custom
MPSoCs by dedicated hardware modules, called invasion controllers [LNHT11], which
perform this resource exploration. After having determined a proper set of cores, the
program code is loaded onto the claimed resources through a so-called infect operation.
Moreover, previously occupied resources can be freed by performing a release operation
called retreat. The state of over-utilization can now be simply detected during the invade
phase by the hardware controllers, and the invade operation terminates by indicating to
the application that it was not able to claim successfully a number of requested processor
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cores. The application can then communicate this over-utilization to the other applications
in the system. This could be done by a multicast communication scheme, resulting in a
communication overhead with a complexity ofO(N). However, only a single bit needs to
be communicated that is a small effort when implemented in dedicated hardware.

If using PDSL without release, no communication is necessary. In this case, the over-
utilization information is not required and increasing of claimed cores will simply not be
possible.

5 Experiments and Results

In this section, we compare quantitatively the mentioned assignment strategies. For the
self-tuning decentralized approach in Algorithm 2 the following results are obtained by
using a round-based simulation written in Java. The speedup used in the experiments is
generated by the freely available job generator from [wwg]. The C program generates ran-
domized speedups according to the Downey model. The resulting parameters imitate typ-
ical workloads similar to the SDSC Paragon logs and the CTC SP2 log. As already stated
in Section 2.3, we do not consider arrivals other than at the beginning, thus, the arrival
times are discarded. The case of over-utilization is handled as follows. Considering the
scenario where applications dynamically claim cores in a distributed way, over-utilization
can never occur, because the application trying to claim more cores than available will fail
doing so. The experiments represent this behavior by using the results of the last valid
assignment before the over-utilization.

Figure 2a shows the behavior of PDSL for six applications and 36 available cores. The
simulation starts with one core per application. The applications that have the highest max-
imal speedup claim the highest number of cores. Until round 16, the number of claimed
cores is increased (attack time), then the claimed cores oscillate around the optimum. This
behavior is brought out very nicely by Figure 2b, where the speedup of the individual
applications and the sum of the speedup is plotted over time.

In the following, we will compare the speedup results of a) PDSL, b) the globally optimal
value according to Section 3 and c) random assignments. The random assignments are
generated by assigning one core to one application with equal probability until all available
cores are assigned. The sum of speedups at the end of the attack time represent the result
for using PDSL without releasing cores.

Figure 3 shows the sum of speedups for all three strategies for a system with C = 36 avail-
able cores and different numbers of applications. Until N = 3 applications, each applica-
tion gets enough cores to exploit maximal parallelism by all three assignment strategies.
For more applications, the assignment is not trivial and PDSL and the random assignment
deviate from the optimal assignment. However, Figure 3 clearly indicates that the assign-
ment generated by PDSL is very close to the optimal value. Even the results for using
PDSL without release show a significant improvement over a random assignment.

We also conducted experiments with C = 1024. They show that the speedup value
achieved by PDSL is very close to the optimal value with a relative error between PDSL
and the optimum in average of 1.05%. In comparison, the average relative error between
the random assignments and the optimum is 15.72% and this error increases with increas-

97



0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

rounds

c
la

im
e
d
 c

o
re

s
 a

i

(a)

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

rounds

s
p
e
e
d
u
p
 S

i

 

 

sum of speedup (optimum)

sum of speedup (PDSL)

S
1
(a

1
)

S
2
(a

2
)

:

.

(b)

Figure 2: Number of claimed cores and speedup for number of applications N = 6 and
available cores C = 36 over time using PDSL.
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Figure 3: Sum of speedups for different number of applications running on an MPSoc with
available cores N = 36.

ing number of cores. Using PDSL without release lies with 4,58% relative error in between
the two.

To show the adaptability of PDSL also to changing applications, we ran the following
experiment depicted in Figure 4: The first 500 rounds are the same as in simulation shown
in Figure 2b. At round 500, ten additional applications are to be scheduled. From the
experiments, we can clearly see that PDSL helps the applications to self-organize the core
assignment in a close to optimal way even under changing applications. This property
allows the algorithm to also work under changing speedup functions of the application.
Therefore, the application can measure locally its actual speedup at run-time and improve
accuracy of the speedup function.

6 Conclusions and Future Work

In this paper, we addressed the question of how cores can be assigned to malleable ap-
plications that have a defined speedup curve when running on more than one core. The
restrictions on the speedup are in line with real systems, which is shown by an example.
First, it is shown that for defined speedup functions, the assignment problem can be solved
optimally using a centralized algorithm with global knowledge in O(N · C). Second, the
decentralized self-organizing algorithm PDSL is presented. There, the applications them-
selves learn how many cores to claim in order to maximize the overall average speedup. In
contrast to the central approach, no direct communication is necessary between the appli-
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Figure 4: Speedup for N = 6 until round 500 then N = 16 and available cores C = 36
over time using PDSL.

cations, respectively applications. The only requisite is that the cores are aware of a global
overload situation. Experimental results over up to C = 1000 cores and up to N = 1000
applications show that the average speedup obtained is in average 98.95% of the optimum.

The goal of future work will be to lower the abstraction level and consider the above ap-
proach on real machines that allow run-time assignment of cores. This will help answer-
ing the following open questions: (1) How high is the overhead for claiming and releasing
cores? With this information it is possible to judge the penalty for oscillation. (2) What are
the communication costs? Depending on the communication costs it might be necessary to
find solutions not using the global information of over-utilization. Additionally, it is pos-
sible to make a comparison between a centralized and decentralized approach. (3) How
accurate is the precalculated speedup and can we use run-time information to improve the
accuracy?
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