
MPI-ClustDB: A fast String Matching Strategy utilizing
Parallel Computing

Thomas Hamborg, Jürgen Kleffe

Institut für Molekularbiologie und Bioinformatik
Charité-Universitätsmedizin Berlin

Arnimallee 22
{thomas.hamborg,juergen.kleffe}@charite.de

Abstract: ClustDB is a tool for the identification of perfect matches in large sets of
sequences. It is faster and can handle at least 8 times more data than VMATCH, the
most memory efficient exact program currently available. Still ClustDB needs about
four hours to compare all Human ESTs. We therefore present a distributed and parallel
implementation of ClustDB to reduce the execution time. It uses a message-passing li-
brary called MPI and runs on distributed workstation clusters with significant runtime
savings. MPI-ClustDB is written in ANSI C and freely available on request from the
authors.

1 Introduction

Since many bioinformatics problems deal with the analysis of large amounts of data, par-
allel computing has proven to be an important tool to ensure computation capability and
computation in reasonable time. In addition to traditional massively parallel computers,
distributed workstation clusters play an increasing role in scientific computing. But so far,
there had been little success in using distributed computing for large scale sequence match-
ing. MUMMER [Ku04] and VMATCH [AKO04] are the most sophisticated programs
implementing suffix tree and suffix array algorithms for simultaneous sequence matching.
But due to their high memory usage these algorithms are not able to deal with datasets as
large as necessary. Moreover both algorithms are not parallelizable for distributed mem-
ory architectures. Futamura et al. [FAK98] suggested an algorithm for parallel sorting of
suffixes which performs a bucket sort of suffixes followed by parallel sorting of buckets.
Still the algorithm requires large RAM by storing all sequences and suffix positions si-
multaneously. Another drawback is that the sorting of buckets cannot be performed using
optimal algorithms. Hence, depending on the data, the method does not always improve
overall computing time. Two other attempts of using massively parallel computation are
the approaches by Iliopoulos et al. [IK02] and Kalyanaraman et al. [Ka03] which use far
more memory than is available for practical input sizes. The latter publication estimates
the demand of 512 parallel processors each with 512 MB RAM in order to compare five
million human ESTs. In contrast ClustDB [KMW06] uses a new sorting algorithm named

33

partitioned suffix array method. It permits working with at least 8 times more data than
VMATCH and MUMMER and offers several ways of efficient parallel computing. We
therefore developed the program MPI-ClustDB that significantly reduces time consump-
tion for a group of loosely coupled computers. This parallel approach allows to compare
about six million human ESTs using only 7 personal computers each equipped with a 2.6
GHz Intel Pentium 4 CPU and 2 GB RAM. MPI-ClustDB is designed as a data-parallel
approach where in certain parts of the program one has to cope with a variable number of
identical tasks and each process executes more or less the same set of commands on its
data (task). MPI, the de facto standard for distributed memory systems, is used for inter-
process communication. It supports dynamic assignment of tasks to processes and has the
advantage of running on several platforms without code alteration.

2 Algorithm

MPI-ClustDB is designed in a Master/Slave-manner where one process coordinates the
scheduling and allocates tasks to a number of slave processes. It is assumed that all pro-
cesses have access to the entire data. Therefore the master converts the input data into a
fast accessable and space saving format called DNA Stat database and distributes such-
like data across the slaves. The aim is the identification of all matching substrings of a
certain minimal length in a large set of sequences which are derived by performing two
computational steps called Start Word Sort and Substring Detection. We describe these
steps together with the associated parallelization strategies in section 2.1 and 2.2. Subse-
quently the results are converted into a user-friedly output format. The parallelization of
the conversion is described in section 2.3.

2.1 Start Word Sort

Let L be the number of nucleotides of the concatenated sequence formed from all con-
sidered sequences separated by a dot character. Conventional suffix array methods store
and sort a vector of pointers of length L into the concatenated sequence. These pointers
are called suffix positions and require at least four times more memory than needed to
store the sequence. We therefore cut the vector of suffix positions into N pieces of length
L/N which are processed one by one. A word length W between 3 and 10 is fixed and
the pointers in each subvector are sorted in lexicographic order of the first W characters
the suffixes begin with (Fig.1 - Step 1). Then each of the N sorted subvectors splits into
blocks of suffix positions which start with the same word and are equally colored in Fig.
1. The parameter N is determined by the RAM size as each subvector has to fit into RAM
for efficient sorting. In the parallel approach we choose N at least as large as the number
of slave processes. The master process sends the appropriate sequence regions (two num-
bers) to the slaves and receives the sorted suffix positions. Each slave processor works in
linear time O(L/N) and requires L/3 + 4(L/N + Z) bytes of RAM in order to store the

34

Figure 1: partitioned suffix array algorithm

complete sequence in compressed form (1 byte for 3 nucleotides), L/N suffix positions
and Z = 4W different word counts. Let p be the number of available processors, then the
total runtime for this step is roughly O(L/p).

2.2 Substring Detection

In step 2 all blocks of suffix positions starting with the same word are collected from the
N subvectors formed in step 1 and merged into Z new vectors displayed horizontally in
Fig. 1 - Step 2. Z is the number of different words of length W . Each of these vectors is
individually scanned for repeats of length M . Details about the calculations are given in
[KMW06]. In case of parallel computing the master sends the Z vectors to the slaves and
the slaves calculate the positions of multiple substrings which form clusters. Contrary to
parallelization in step 1, dynamic allocation of tasks is indispensable here. Some words
occur more frequently than others and hence the Z vectors differ greatly in length. But
even if two start words occur with equal frequencies, the clusters originating from them
will usually differ in size and so will the corresponding times of computation.
This step is performed in O(M ∗ L/(p ∗W)) time requiring L/3 + 8 ∗ F bytes of RAM
for each slave process where F is the maximum frequency of all considered start words.
Assuming we have L bytes of RAM, we can use approximately 2 ∗ L/3 bytes for a table
of size 8∗F that is necessary for the iterated suffix sort algorithm described in [KMW06],
i.e. F can be as large as L/12. About every twelfth of all overlapping start words must
be the same in order to cause failure of the algorithm with L bytes of RAM. In general F
rapidly decreases by increasing word length.

35

2.3 Output Conversion

Subsequent to the partitioned suffix array algorithm each set of multiple substrings is rep-
resented by a cluster number and a set of global sequence positions in the concatenated
sequence. These positions have to be turned into sequence numbers according to the suc-
cession in the input file and local sequence positions in the respective sequences. This
task is carried out by means of a binary search algorithm. We use a scheduling strategy
called fixed-size chunking [Ha97] here. A fixed amount of positions from substring cluster
elements is sent to a slave, the sequence numbers and local positions are calculated and
sent back to the master. The computation time for this part is O(L ∗ logS/p) where S
denotes the number of sequences. Each processor requires 4 ∗S bytes of RAM in order to
store the start positions of all individual sequences.

3 Implementation

MPI-ClustDB processes DNA-sequence data in the established formats Genbank, EMBL
and FASTA or in DNA Stat database format. The latter is an inhouse binary format that
allows for fast direct access of individual sequences and playes a keyrole in fast data com-
munication. It significantly reduces runtime especially if MPI-ClustDB repeatedly runs on
the same data. Results of the substring calculation are presented in a tabular form with the
three columns cluster number, sequence number and match position. It is possible to ob-
tain the results in text file and/or DNA Stat database format. Summary results are written
to a seperate log file and several options of the program are described in [KMW06].
In order to execute MPI-ClustDB, an implementation of the Message Passing Interface
communication protocol has to be installed. A large number of implementations is freely
available. We have choosen the widely spread MPICH2 implementation that can be ob-
tained from http://www-unix.mcs.anl.gov/mpi/mpich2/. As we make use of standard MPI
commands only, it should be possible to link against any other MPI library, too. However,
it is important to use buffered and blocking MPI send/receive functions in order to avoid
deadlocks.

4 Results

We investigate the speedup of MPI-ClustDB compared to the serial ClustDB implemen-
tation for a 100 MBit/s and 1000 MBit/s ethernet network connection. If T0 denotes the
runtime of the serial solution and Tp denotes the runtime of the parallel solution with p
processes, speedup is defined as Sp = T0/Tp. All computations were performed on a test
cluster consisting of seven standard personal computers. Each of them has a 2.6 GHz Intel
Pentium 4 CPU and 2 GB of RAM running the operating system Mandriva Linux 2006.
We report application to the set of all 6,054,053 human ESTs stored in Genbank of date

36

100 MBit/s 1000 MBit/s
slaves complete runtime speedup complete runtime speedup
0 (serial) 13360 sec 1 13360 1

2 7738 sec 1.73 6352 2.10
3 6264 sec 2.13 5011 2.57
4 5263 sec 2.54 4215 3.17
5 4785 sec 2.79 3741 3.57
6 4392 sec 3.04 3410 3.92

Table 1: Runtime and speedup for MPI-ClustDB results of detecting all common substrings of length
M = 50 in all human ESTs considering two network velocities.

2005-04-06. The task is the identification of all common substrings of length 50 in the
test set. The serial ClustDB programm needs a total of 3 hours and 42 minutes to solve
the problem of detecting all 7,059,622 substring clusters of match length 50 for all hu-
man ESTs. Table 1 shows how the runtime of MPI-ClustDB alters for employing different
numbers of CPUs. The complete runtime decreases for any addition of a CPU in the clus-
ter leading to an overall runtime of 1 hours and 15 minutes for 7 personal computers and
a 100 MBit/s network. Using the gigabit connection the runtime decreases to 56 min-
utes. Thus we are approximately four times faster with MPI-ClustDB than with the serial
ClustDB software. Figure 2 analyses the reasons of the performance gains. The bisecting
line presents the optimal speedup. Ideally parallel computing using p processors should
be p times faster than the serial program. The left plot displays the achieved speedup for a
100 MBit/s network. Employing only one slave increases time of computation. But for at
least two slaves we see a sound speedup for the parallelization of the Substring Detection
step (square symbol). The other two parallel steps Start Word Sort (diamond) and Output
Conversion (triangle) do not scale well. This results from an excessive amount of overhead
that is due to communication among the processes. The amount of data that has to be dis-
tributed in these parts is comparatively large and the period for sending the data to another
process is out of scale compared to the calculations performed on the data. The right plot
in Fig. 2 shows the results for a 1000 MBit/s network connection. A significant speedup
for each step is achieved resulting in a greater overall speedup. Compared to the slower
network, the speedup for step 1 increases best while the speedup for step 2, that already
scaled well for 100 Mbit/s, improves just slightly. The reason is that the time consumption
for step 2 is mainly due to computation and not communication.
To account for diverse network velocities, our program optionally utilizes parallel com-
puting for Substring Detection only (overall speedup 1) or with all three parts being par-
allelized (overall speedup 2). The two resulting speedups are displayed in Fig. 2. For the
slower network connection overall speedup 1 is superior to overall speedup 2. Although
step 1 and 3 scale poorly for the slower network, overall speedup 1 is just slightly better.
This results from the fact that the Substring Detection step takes about 83% of the overall
CPU time. By contrast omitting the parallelization of part 1 and 3 leads to a notedly larger
runtime for the 1000 MBit/s ethernet.

37

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Number CPUs

Sp
ee
du
p

●● ●●

●●

●●

●●

●●

●●

●
●

●

●

●

●

●

●●

●

Overall Speedup 1
Overall Speedup 2
Speedup Start Word Sort
Speedup Substring Detection
Speedup Output Conversion

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Number CPUs

S
pe

ed
up

●●
●●

●●

●●

●●

●●

●●

● ●

●

●

●

●

●

●●

●

Overall Speedup 1
Overall Speedup 2
Speedup Start Word Sort
Speedup Substring Detection
Speedup Output Conversion

Figure 2: Speedup, as a function of the number of processors, for a 100 (left) and a 1000 (right)
MBit/s network connection. The task is detecting all common substrings of length M = 50 in
all human ESTs. Speedup 1 displays results for only Substring Detection being parallelized and
speedup 2 displays results with parallel computation of all three algorithmic steps.

5 Discussion and Summary

Nowadays Bioinformatics in general and sequence comparison in particular is faced with
very large datasets. ClustDB, our tool for finding common substrings in DNA-sequences,
is able to work on a greater amount of data than the competing programs. Additionally we
achieved to significantly reduce the runtime via our parallel implementation MPI-ClustDB
using a relatively inexpensive PC cluster. We parallelized the three most time consuming
parts of the programm, but for a 100 MBit/s network connection only one part shows
a speedup and is therefore used in it‘s parallel implementation. Increasing the network
speed to 1000 MBit/s yields significant speedups for all parallelized parts and cleary an
ascending overall speedup.
The parallel computation of each of the three parts is a problem of allocating independant
tasks to processors. The goal is to execute the tasks as quickly as possible. In the Output
Conversion step the fixed size chunking strategie is used that is theoretically preferable
compared to the others. But due to sundry constraints fixed size chunking is not applicable
in steps one and two. For example in the first parallel part N could be enlarged to reduce
processor idle time. But that would lead to a larger number of files to be read from in the
next step and overall runtime was observed to increase. Nevertheless more sophisticated
scheduling strategies may be possible and will be analysed in further developements.
We will investigate and optimize the scaleability of MPI-ClustDB next by running it with
a greater number of processors. Furthermore we will try to parallelize additional parts of
ClustDB. First aims are the calculation of sequence clusters (a subset of sequences having
no substring of length M in common with any sequence outside the subset) derived from
the substring clusters and extending pairs of matching substrings with errors. Based on

38

MPI-ClustDB a parallel solution for 64 bit shared memory systems is intended afterwards.

Acknowledgment

This project was supported by the BMBF Germany under contract number 0312705A. The
authors would like to thank Friedrich Möller for technical assistance.

References

[AKO04] M.I. Abouelhoda, S. Kurtz, E. Ohlebusch. ”Replacing Suffix Trees with Enhanced Suffix
Arrays” Journal of Diskrete Algorithms, No. 2, 53-86, 2004.

[De02] A.L. Delcher, A. Philippy, J. Carlton, S.L. Salzberg. ”Fast algorithms for large scale
genome alignment and comparison”, Nucleic. Acids Research, Vol. 30, No. 11, 2002.

[FAK98] N. Futamura, S. Alura, S. Kurtz. ”Parallel Suffix Sorting”, Proc. 9th International Con-
ference on Advanced Computing and Communications, 76-81, 2001.

[GSN98] W. Gropp, M. Snir, B. Nitzberg, ”MPI: The Complete Reference”, 2nd edn, MIT Press,
Cambridge, MA, 1998.

[GTL01] W. Gropp, R. Thakur, E. Lusk. ”Using MPI-2”, MIT Press, Cambridge, MA, 2001.

[Ha97] T. Hagerup. ”Allocating independent tasks to parallel processors: an experimental
study”, J. Parallel Comput., Vol. 47, 185-197, 1997.

[IK02] C. S. Iliopoulos, M. Korda. ”Massively Parallel Suffix Array Construction”, Proc. 25th
Conference on Current Trends in Theory and Practice of Informatics, 371 - 380, 1998.

[Ka03] A. Kalyanaraman, S. Alura, S. Kothari, V. Brendel. ”Efficient clustering of large EST
data sets on parallel computers”, Nucleic Acid Research, Vol. 31, No. 11, 2963-2974,
2003.

[KMW06] J. Kleffe, F. Möller, B. Wittig. ”ClustDB: A high performance tool for large scale se-
quence matching”, Proceedings DEXA 2006.

[Ku04] S. Kurtz, A. Philippy, A.L. Delcher, M. Smoot, M. Shumway, C. Antonescu, S.L.
Salzberg. ”Versantile and Open Software for Comparing Large Genomes”, Genome Bi-
ology, 5 (R12), 2004.

39

