
Discovery and Description of Software Evolution Services
Jan Jelschen

Carl von Ossietzky Universität, Oldenburg, Germany

jelschen@se.uni-oldenburg.de

Abstract

A catalog of software evolution services is a prerequi-
site for the creation of an integration framework to en-
hance software evolution tool interoperability. The cat-
alog acts as the framework’s inventory of basic blocks
for toolchain building. There is no comprehensive sur-
vey of established techniques spanning all areas of the
field of software evolution. Existing techniques and
tools are described in scientific publications in vary-
ing form and detail, and are not expressed in terms of
services. This paper presents an approach to discover
services from literature, and extract information about
them along a description model.

1 Introduction

Software evolution projects depend heavily on
proper tool support. Each project requires its own,
individual workbench supporting its tasks and activi-
ties. Existing tools usually only implement single tech-
niques, and often lack sufficient means for interoper-
ability. Software evolution practitioners therefore have
to create the required integration logic manually, a
repetitive and error-prone task, yielding inflexible and
non-reusable toolchains.

Building a component-based integration framework
to address these issues requires existing techniques
and tools, documented in scientific publications, to
be compiled. A service-oriented view is taken, to
keep concrete implementations (tools wrapped into
framework-compatible components) decoupled from
provided functionality (services), maximizing flexibil-
ity and reusability. The discovery and description pro-
cess described here is aimed at producing a catalog of
software evolution services [3].

There are no surveys of techniques covering the en-
tire field of software evolution, only specific sub-areas
or groups of techniques. Naturally, neither are such
surveys tailored towards service identification, nor do
publications on specific techniques describe them in
terms of services.

Services have to be described in a concise and con-
sistent way, providing information to make it easy to
find appropriate services given a specific problem, and
to allow them to be combined with other services au-
tomatically in an integration framework.

A systematic literature review [8] will be conducted,
to achieve the following four goals: 1) Find publications
likely to describe techniques or tools to identify service
candidates, 2) confirm candidates to be proper, rele-
vant services, 3) extract all information necessary to
completely describe confirmed services, and 4) classify
services to ease finding those suitable for a given task.

This paper provides an overview over the review
setup and process of service discovery (Section 2) and
description (Section 3). A summary is given in Sec-
tion 4, with a brief discussion of ongoing work.

2 Service Discovery

The publication database DBLP [4] serves as basis
for the literature review. It currently contains over 2.1
million computing science publications. The following
process has been followed to achieve Goal 1 and re-
duce this huge data set to a more manageable-sized set
of publications likely to contain descriptions of tools
and techniques: 1. Only publications from conference
proceedings of CSMR, ICPC, ICSM, IWPSE, SCAM,
WCRE, and the Journal of Software: Evolution and
Process were selected (3 366 in total). 2. Abstracts
of those publications were fetched, to have more in-
formation to base decisions regarding their relevance
on. 3. Publications were clustered using the Lingo [7]
algorithm on TF-IDF statistics calculated from titles
and abstracts. This produced 177 overlapping clusters
of papers with common topics, identified by a phrase
assigned as the cluster’s name. One cluster of 448 pa-
pers likely describing techniques was selected. 4. Sub-
clusters were created to group papers describing simi-
lar techniques. For a first manual sampling, the cluster
Refactoring Techniques (20 papers) was selected. To
find phrases identifying potential services, papers were
skimmed for keywords hinting at techniques or tools
(e.g. using, applying, technique, etc.).

As an ongoing example, Refactoring Identification,
discovered this way from Prete et al. [6], will be used.

For candidate validation (Goal 2), the definition
given in source publications is checked to actually de-
scribe a functionality useful to software evolution activ-
ities. To ensure relevance, services are required to have
been the topic of at least five publications, by authors
not directly affiliated with each other. Papers in the
same cluster, cited related work, and publications cit-
ing the source are considered. The threshold of five has
been set randomly, and will have to be adapted further
along the identification process, to find the right bal-
ance between excluding obscure services, and including
required ones. Industry relevance is recognized as an-
other important factor, but might not be evident from
scientific literature. Lacking a proper measurement, it
is currently not evaluated.

Example: Prete et al. define refactoring identifi-
cation as a technique for “Automatically identifying
which refactorings happened between two program ver-
sions [. . . ]”. They dedicate a large section to related
work, easily exceeding the relevance threshold.

Softwaretechnik-Trends 33:2, Mai 2013 59



Figure 1: Class diagram of the service discovery and description model.

3 Service Description

Figure 1 shows a class diagram of the data model
used to document services. For the process itself, it is
important to be able to trace back services and tools
to the publications which provided the relevant infor-
mation. For services, the model allows to further spec-
ify the kind of reference, e.g. whether the publication
serves as basic definition, or a case for academic rele-
vance. The model’s main goals are service description
(Goal 3) and classification (Goal 4).

Description. Input and output datatypes are cen-
tral information for an integration framework. They
are identified by a name, only, to be defined rigorously
in a separate step. Related work is considered to iden-
tify alternative datatypes; all possibilities are recorded
for later consolidation, at which point further pre- or
post-processing services might be identified. Since ser-
vices only represent an abstract description of a tech-
nique, concrete tools implementing them have to be
documented as well. Services define capabilities con-
sisting of capability items, of which implementations
may provide only a subset.

Example: Refactoring identification reads ASTs or
source code, and might accept a similarity threshold.
The output consists of code position pointers paired
with refactoring names, and possibly confidence val-
ues. REF-FINDER [6] and Refactoring Crawler [2]
are examples of implementing tools. Capabilities are
the programming language implementations can han-
dle, and the refactorings which can be identified.

Classification. Next to a primary name, a service
can have aliases. A service has a textual (non-formal)
definition describing what the service does and can be
used for. Classification is possible along two lines: ac-
cording to a taxonomy being built alongside the dis-
covery and description process, e.g. from clustering
information. Mens et al. [5] propose a comprehensive,
multi-dimensional taxonomy scheme, which might be
applied in the future, but for these first experiments
this has not been realized. Services further have roles,
a subset of a general-purpose service taxonomy by Co-
hen [1]. It distinguishes services according to their us-
age, e.g. services only used by other services (Capa-
bility), or services providing results with inherent soft-
ware evolution use (Activity). Services can be related
to each other, e.g. providing similar functionality.

Example: Refactoring identification is an activity
service, and was classified using clustering information
(e.g. refactoring, program comprehension), and as code

pattern detection, a class representing commonalities
with the similar service clone detection.

4 Summary and Next Steps

This paper presented an approach to discover, de-
scribe, and catalog software evolution services. Its ap-
plication to the body of scientific publications in soft-
ware evolution will yield a comprehensive survey of the
entire field. Its contained service descriptions will serve
as basis and guidance for the creation of an integration
framework, and the catalog as a reference for tool im-
plementors and framework users.

Execution of the discovery and description process is
currently ongoing. To find undiscovered services within
sets of yet unscreened papers, they will be classified bit
by bit into the created taxonomy, using automatic clas-
sification. Publications with low-confidence classifica-
tions will be analyzed for new services and classes. This
will be iterated until all relevant literature is classified
with sufficient confidence. Furthermore, data struc-
tures are currently only identified by name. These will
have to be described in rigorous detail in a separate
work step, as this information is essential for an inte-
gration framework.

References

[1] S. Cohen. Ontology and Taxonomy of Services in a
Service-Oriented Architecture. The Architecture Jour-
nal (Online Publication), 11, 2007.

[2] D. Dig, C. Comertoglu, D. Marinov, R. E. Johnson.
Automated Detection of Refactorings in Evolving Com-
ponents. In ECOOP, pp. 404–428, 2006. Springer.

[3] J. Jelschen, A. Winter. Towards a Catalogue of Soft-
ware Evolution Services. ST-Trends, 31(2), 2011.

[4] M. Ley. DBLP - Some Lessons Learned. PVLDB,
2(2):1493–1500, 2009.

[5] T. Mens, J. Buckley, M. Zenger, A. Rashid. Towards
a taxonomy of software evolution. Proc. Workshop on
Unanticipated Software Evolution, 2003.

[6] K. Prete, N. Rachatasumrit, N. Sudan, M. Kim.
Template-based reconstruction of complex refactorings.
In International Conference on Software Maintenance,
pp. 1–10. IEEE, 2010.

[7] O. Stanislaw, J. Stefanowski, D. Weiss. Lingo: Search
results clustering algorithm based on singular value
decomposition. InIntelligent Information Processing
and Web Mining: Proceedings of the International IIS:
IIPWM 04 Conference, pp. 359–368. Springer, 2004.

[8] C. Wohlin, P. Runeson, M. Höst, M. C. Ohisson,
B. Regnell, A. Wesslen. Experimentation in software
engineering. Springer, 2012.

60 Softwaretechnik-Trends 33:2, Mai 2013


	Discovery and Description of Software Evolution Services
	Abstract
	1 Introduction
	2 Service Discovery
	3 Service Description
	4 Summary and Next Steps
	References




