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Abstract: Classification of given data sets according to a training set is one of the es-
sentials bread and butter tools in machine learning. There are several application sce-
narios, reaching from the detection of spam and non-spam mails to recognition of ma-
licious behavior, or other forensic use cases. To this end, there are several approaches
that can be used to train such classifiers. Often, scientists use machine learning suites,
such as WEKA, ELKI, or RapidMiner in order to try different classifiers that deliver
best results. The basic purpose of these suites is their easy application and extension
with new approaches. This, however, results in the property that the implementation of
the classifier is and cannot be optimized with respect to response time. This is due to
the different focus of these suites. However, we argue that especially in basic research,
systematic testing of different promising approaches is the default approach. Thus,
optimization for response time should be taken into consideration as well, especially
for large scale data sets as they are common for forensic use cases. To this end, we
discuss in this paper, in how far well-known approaches from databases can be applied
and in how far they affect the classification result of a real-world forensic use case. The
results of our analyses are points and respective approaches where such performance
optimizations are most promising. As a first step, we evaluate computation times and
model quality in a case study on separating latent fingerprint patterns.

1 Motivation

Data are drastically increased in a given time period. This is not only true for the number

of data sets (comparable to new data entries), but also with respect to dimensionality. To

get into control of this information overload, data mining techniques are used to identify

patterns within the data. Different application domains require for similar techniques and

therefore, can be improved as the general method is enhanced.

In our application scenario, we are interested in the identification of patterns in data that

are acquired from latent fingerprints. Within the acquired scanned data a two-class classi-

fication is of interest, to identify the fingerprint trace and the background noise. As point
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of origin, experts classify different cases. This supervised approach is used to learn a clas-

sification and thus, to support experts in their daily work. With a small number of scanned

data sets that the expert has to check and classify, a high number of further data sets can

be automatically classified.

Currently, the system works in a semi-automatic process and several manual steps have

to be performed. Within this paper, we investigate the influence on system response and

model quality, in terms of accuracy and precision, in the context of integrating the data and

corresponding processes in a holistic system. Although a complete integration is feasible,

different tools are currently used, which do not fully cooperate. Therefore, the efficiency

or optimization regarding computation or response time are not in the focus of this work.

With this paper, we step forward to create a cooperating and integrated environment that

performs efficient with respect to model quality.

This paper is structured as follows: In the next section, we briefly present some back-

ground regarding classification and database technologies for accessing multi-dimensional

data. In Section 3, we describe the case study that is the motivation for our analysis. Within

Section 4, we present our evaluation on the case study data regarding optimization due to

feature and data space reduction. Finally, we conclude our work in Section 5.

2 Background

In this section, we give background on classification algorithms in general. Then, we

explain one of these algorithms that we apply in the remainder of this paper in more details.

Finally, we introduce promising optimization approaches known from databases. We use

these approaches in the remainder to discuss their optimization potential with respect to

classification.

2.1 Classification Algorithms

In the context of our case study in Section 3, several classification algorithms can be uti-

lized, see, e.g., [MKH+13]. Each of those algorithms is used for supervised learning. Such

type of learning consists of a model generation based on training data, which are labeled

according to a ground-truth. The utilized classification algorithms in [MKH+13] partition

the feature space to resemble the distribution of each instance (data point) in this space.

Afterward, the quality of the model can be evaluated using an independent set of labeled

test data by comparing the decision of the classifier with the assigned label.

The utilized classification schemes from the WEKA data mining software [HFH+09] in

[MKH+13] include support vector machines, multilayer perceptrons, rule based classi-

fiers, decision trees, and ensemble classifiers. The latter ones combine multiple models in

their decision process.
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C4.5 decision tree

In this paper, we use the classifier J48, WEKA’s [HFH+09] implementation of the fast

C4.5 decision tree [Qui93], which is an improvement of the ID 3 algorithm [Qui86] and

one of the most widely known decision tree classifiers for such problems. The advantage

of decision trees is their comprehensiveness: the classifier’s decision is a leaf reached by

a path of single feature thresholds. The size of the tree is reduced by a pruning algorithm

which replaces subtrees. Furthermore, this particular implementation is able to deal with

missing values. In order to do that, the distribution of the available values for this particular

feature is taken into account.
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Figure 1: Algorithm to build a C4.5 decision tree, adapted from [Qui86]

In Figure 1, we depict the general algorithm to build a C4.5 decision tree. The argument

for the algorithm is a training set consisting of: (1) n non-categorical attributes R reaching

from r1 to rn, (2) the categorical attribute (e.g., spam or not spam), and (3) a training set

with the same schema. In Lines 8 to 15, the exception handling is depicted, for instance if

there are only spam mails (Line 11). The actual algorithm tries to find the best attribute rd
and distributes the remaining tuples in S according to their value in rd. For each subtree

that is created in that way the algorithm is called recursively.

2.2 Approaches for Efficient Data Access

Data within databases have to be organized in such a way that they are efficiently ac-

cessed. In the case of multi-dimensional data, an intuitive order does not exist. This is

even more apparent for the identification of unknown patterns, where an ordering in a

multi-dimensional space always dominates some dimensions. For these reasons, differ-
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ent approaches have been proposed. They can be differentiated into storage and index

structures.

Typical storage improvements within the domain of Data Warehousing [KSS14a] are

column-oriented storage [AMH08], Iceberg-Cube [FSGM+98], and Data Dwarf [SDRK02].

Whereas the Iceberg-Cube reduces computational effort, column-oriented storage improves

the I/O with respect to the application scenario, where operations are performed in a

column-oriented way. The Data Dwarf heavily reduces the stored data volume without

loss of information. It combines computational effort and I/O cost for improving effi-

ciency.

Furthermore, there exist many different index structures for specialized purposes [GBS+12].

Very well-known index structures for multi-dimensional purposes are the kd-Tree [Ben75]

and R-Tree [Gut84]. Both mentioned indexes are candidates, which suffer especially from

the curse of dimensionality. The curse of dimensionality is a property of large and sparsely

populated high-dimensional spaces, which results in the effect that for tree-based indexes

often large parts have to be taken into consideration for a query (e.g., because of node

overlaps). To this end, several index structures, as the Pyramid technique [BBK98] or im-

proved sequential scans, such as the VA-File [WB97] are proposed. In the following, we

briefly explain some well-known indexes that, according to prior evaluations [SGS+13],

result in a significant performance increase. A broader overview on index structures can be

found in [GG98] or [BBK01]. Challenges regarding parameterization of index structures

as well as implementation issues are discussed in [AKZ08, KSS14b, SGS+13].

2.2.1 Column vs. Row Stores

Traditionally, database systems store their data row-wise. That means that each tuple with

all its attributes is stored and then the next tuple follows. By contrast, columnar storage

means that all values of a column are stored sequentially and then the next column follows.

Dependent on the access pattern of a classification algorithm, the traditional row-based

storage should be replaced if, for instance, one dimension (column) is analyzed to find an

optimal split in this dimension. In this case, we expect a significant performance benefit.

2.2.2 Data Dwarf

The basic idea of the Data Dwarf storage structure is to use prefix and suffix redundancies

for multi-dimensional points to compress the data. For instance, the three dimensional

points A(1, 2, 3) and B(1, 2, 4) share the same pre-fix (1, 2, ). As a result, the Dwarf

has two interesting effects that are able to speed-up classifications. Firstly, due to the

compression, we achieve an increased caching performance. Secondly, the access path is

stable, which means that we require exactly the number of dimension look-ups to find a

point (e.g., three look-ups for three dimensional points).

24



2.2.3 kd-Tree

A kd-Tree index is a multi-dimensional adaption of the well-known B-Tree cycling through

the available dimensions. Per tree level, this index distributes the remaining points in the

current subtree into two groups. One group in the left subtree where the points have a

value smaller or equal than the separator value in the current dimension, while the remain-

ing points belong to the right sub tree. The basic goal is to achieve logarithmic effort for

exact match queries. In summary, this index structure can be used to efficiently access and

analyze single dimensions in order to separate two classes.

2.2.4 VA-File

Tree-based index structures suffer from the curse of dimensionality. This may result in

the effect that they are slower than a sequential scan. To this end, improvements of the

sequential scan are proposed. The basic idea of the Vector Approximation File is to use

a compressed approximation of the existing data set that fits into the main memory (or

caches). On this compressed data an initial filter step is performed in order to minimize

actual point look-ups. In how far this technique can be applied to speed-up classifications

is currently unknown.

3 Case Study

As described in [HKDV14], the classification of contact-less scans of latent fingerprints

is performed using a block based approach. The following subsections summarize the

application scenario, the data gathering process, and a description of the feature space. We

depict this process in Fig. 2. We describe the steps in the following in more detail.
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Figure 2: Data acquisition process, processing, and classification
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3.1 Application scenario

The application scenario for this case study is the contact-less, non-invasive acquisition of

latent fingerprints. The primary challenge of this technique is the inevitable acquisition

of the substrate characteristics superimposing the fingerprint pattern. Depending on the

substrate, the fingerprint can be rendered invisible. In order to allow for a forensic analysis

of the fingerprint, it is necessary to differentiate between areas of the surface without

fingerprint residue and others covered with fingerprint residue (fingerprint segmentation).

For this first evaluation, we solely rely on white furniture surface, because it provides a

rather large difference between the substrate and the fingerprint. The achieved classifi-

cation accuracy in a two-fold cross-validation based on 10 fingerprint samples is 93.1%

for the J48 decision tree in [HKDV14]. The number of 10 fingerprints is sufficient for

our evaluation, because we do not perform a biometric analysis. Due to the block-based

classification, 1,003,000 feature vectors are extracted. For our extended 600 dimensional

feature space (see Section 3.3), we achieve a classification accuracy of 90.008% based on

501,500 data sets for each of the two classes ”fingerprint” and ”substrate”.

3.2 Data Gathering Process

The data gathering process utilizes a FRT CWL600 [Fri14] sensor mounted to a FRT

MicroProf200 surface measurement device. This particular sensor exploits the effect of

chromatic aberration of lenses to measure the distance and the intensity of the reflected

light simultaneously. Due to this effect, the focal length of different wavelength is differ-

ent. Thus, only one wavelength from the source of white light is focused at a time. This

particular wavelength yields the highest intensity in the reflected light. So, it can be easily

detected using a spectrometer by locating the maximum within the spectrum.

The intensity value is derived from the amplitude of this peak within the value range

[1; 4, 095]. The wavelength of the peak can be translated into a distance between the sensor

and the measured object using a calibration table. The achieved resolution for this distance

is 20 nm. The data itself are stored within a 16 bit integer array which can be afterward

converted to a floating point distance value. The CWL600 is a point sensor which acquires

the sample point-by-point while the sample is moved underneath. Thus, it is possible to

select arbitrary lateral resolutions for the acquisition of the sample.

In our case study, we use a lateral dot distance of 10 µm which results in a resolution five

times as high as the commonly used resolution of 500 ppi in biometric systems.

3.3 Data Description

The feature space in [HKDV14] contains statistical, structural, and fingerprint semantic

features. The final feature space is extracted from the intensity and topography data (see
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Section 3.2) and preprocessed versions of these data sets. Table 1 summarizes the 50

features which are extracted from each data set.

Feature Set Features

Statistical Features Minimum value; maximum value; span; mean value;

median value; variance; skewness; kurtosis; mean

squared error; entropy; globally and locally normal-

ized values of absolute min, max, median; globally

and locally normalized values of relative min, max,

span, median; globally normalized absolute and rela-

tive mean value of B

Structural Features Covariance of upper and lower half of a block B; co-

variance of left and right half of the block B; line

variance of a block B; column variance of a block

B; most significant digit frequency derived from Ben-

ford’s Law [Ben38] (9 features); Hu moments [Hu62]

(7 features)

Fingerprint Semantic Fea-

tures

Maximum standard deviation in Bε after Gabor filter-

ing; mean value of the block B for the highest Gabor

response

Table 1: Overview of the extracted features

All features are extracted from blocks with a size of 5×5 pixels with the exception of

the fingerprint semantic feature of the maximum standard deviation in Bε after Gabor

filtering. The fingerprint semantic features are motivated by the fingerprint enhancement,

e.g. [HWJ98], which utilize Gabor filters for emphasizing the fingerprint pattern after

determining the local ridge orientation and frequency. Since this filtering relies on a ridge

valley pattern, it requires larger blocks. In particular, we use a block size of 1.55 by

1.55 mm (155×155 pixels) as suggested in [HKDV14].

The features are extracted from the original and pre-processed data. In particular, the

intensity and topography data are pre-processed using Sobel operators in first and second

order in X and Y direction combined, Sobel operators in first order in X, as well as Y

direction separately, and unsharp masking (subtraction of a blurred version of the data).

In result, we get a 600-dimensional feature space. However, some of the features cannot

be determined, e.g., due to a division by zero in case of the relative statistical features.

Thus, either the classifier must be able to deal with missing values, or those features need

to be excluded. To this end, we apply the J48 classifier, because it handles missing data.

4 Evaluation

In this section, we present the evaluation of the classification according to the J48 al-

gorithm. We restrict this study to performance measurements of computation time for
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Condition positive Condition negative

Test outcome positive True Positive (TP) False Positive (FP)

Test outcome negative False Negative (FN) True Negatives (TN)

Table 2: Contingency table

building the model and for the evaluation of the model. As influences on the performance,

we identify according to Section 2.2 cardinality of the dimensions and involved features.

Therefore, we investigate the model quality with respect to precision and recall. First,

we present our evaluation setup. This is followed by the result presentation. Finally, we

discuss our findings.

4.1 Setup

Our data are preprocessed as described in Section 3. We use the implementation of

C4.5 [Qui93] in WEKA, which is called J48. For the identification of relationships be-

tween included feature dimensions and feature cardinality and model build time and model

evaluation time, we use different performance measurements regarding the model. We

briefly describe the model performance measurements in the following.

In classification, the candidates can be classified correctly or incorrectly. Compared to the

test population four cases are possible, as presented in Table 2.

In the following we define measures that can be derived from the contingency table. The

recall (also called sensitivity or true positive rate) represents the correctly identified posi-

tive elements compared to all identified positive elements. This measure is defined as:

Recall =
TP

TP + FN
(1)

Accuracy describes all correctly classified positive and negative elements compared to all

elements. This measure assumes a non-skewed distribution of classes within the learning

as well as training data. It is defined as:

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

Precision is also called positive prediction rate and measures all correctly identified posi-

tives compared to all positives in the ground truth. It is defined as:

Precision =
TP

TP + FP
(3)

Specificity is also called true negative rate and is a ratio comparing the correctly classified

negative elements to all negative classified elements. It is defined as:

Specificity =
TN

FP + TN
(4)
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The measure Balanced Accuracy is applied in the case that the classes are not equally

distributed. This takes non-symmetric distributions into account. The balance is achieved

by computing the arithmetic mean of Recall and Specificity and it is defined as:

Balanced Accuracy =
Recall + Specificity

2
=

1

2
·

(

TP

TP + FN
+

FN

FP + TN

)

(5)

The F-Measure is the harmonic mean of precision and recall to deal with both interacting

indicators at the same time. This results in:

F-Measure =
2 · TP

2 · TP + FP + FN
(6)

Depending on the application scenario, a performance measure can be used for optimiza-

tion. In Fig. 3, we depict all above stated performance measurements according to a filter-

ing of our data set.
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Figure 3: Performance Measures for different filters of the test case

In our evaluation, we investigate two different performance influences. On the one side,

we are interested in filtering out correlated data columns. At the other side, we measure

performance for a restricted data space domain. This is applied by a data discretization.

Evaluation is based on three important aspects:

• Building the model in terms of computation time,

• Testing the model in terms of computation time, and

• Quality of the model measured in model performance indicators.
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From Fig. 3 it can be identified, that the computed models have a higher specificity than

recall. This results also in a lower F-Measure. Furthermore, it can be seen that the training

data are not imbalanced and accuracy is very close to balanced accuracy. However, all

values are close and at an acceptable range. Therefore, we use for the remainder of our

result presentation the F-Measure as model performance measure.

For reducing the dimensional space, we secondly discretize each feature. This is computed

in such a way that the variance within a feature is retained as best as possible. Currently,

there are no data structures within the WEKA environment, that use restricted data spaces

efficiently. Therefore, we assume that model creation and model evaluation times are not

significantly influenced. However, as a database system can be used in future, the ques-

tion arises, which quality influence on model performance is achieved by discretization.

Therefore, we conduct an evaluation series with discretized feature dimensions, where all

feature dimensions are restricted to the following cardinalities:

• 8 values,

• 16 values,

• 32 values,

• 64 values,

• 128 values,

• 256 values,

• 512 values,

• 1,024 values,

• 2,048 values, and

• full cardinality.

4.2 Result Presentation

As a first investigation of our evaluation scenario, we present results regarding the elimi-

nation of features. For the feature elimination we decide for an statistical approach, where

correlated data columns are eliminated from the data set.

In Fig. 4, we present the dimensions that are included in the data set. At the x-axis, we

present the correlation criteria that are used for elimination. For instance, a correlation

criteria of 99% means that all data columns are eliminated from the data set that have a

correlation of 0.99 to another feature within the data set. Note, we compare every feature

column with every other and at an elimination decision; we left the first in the data set.

Therefore, we prefer the first data columns within the data set. Furthermore, we also

tested the feature reduction for discretized data sets. With a small cardinality, the feature

reduction due to correlation is lower, which means that the dimensional space is higher

compared to the others.

We evaluate in the following the reduction of the feature space in terms of computational

effort. We differentiate at this point two cases for this effort: On the one side the model

building time represents computational performance for creating (learning) the model. As

the amount of data tuples for learning the model we use 501,500 elements. As a second

measurement, we present evaluation times where 501,500 further elements are used in a

testing phase of the model. This additionally leads to the quality indicators of the model

presented in Section 4.1. We present this information afterward.

In Fig. 5, we present the model creation times for different data sets. With a decrease of the

feature space, the computation time reduces, too. However, there are some saltus identifi-
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Figure 4: Feature Reduction by Correlation

able. These are related to the fact, that the algorithm has a dynamic model complexity. This

means that the number of nodes within the model is not restricted and therefore, smaller

models can have a faster generation time. Nevertheless, we do not focus on optimization

for our case study, but we derive a general relationship. From our data, we can derive that

a decrease is reduced for data that are not more than 85% correlated. This leads to a slower

reduction in computation time. However, with this elimination of 85% correlated values,

the computational effort is reduced to approximately one third. An important result from

the model generation: a restrictive discretization (cases 8 and 16) does negatively influ-

ences the model building time. Note, we do not use in our evaluation an optimized data

structure, which has a significant influence on the computational performance, see also

Section 2.2. Although the underlying data structure is general, a restriction of the feature

cardinalities improves model building times for the cases cardinality 32 and higher.

For evaluation times of the model a similar behavior is identifiable. In Fig. 6, we present

the evaluation times for the same data sets. Two major differences can be easily seen: On

the one side, the difference between the test cases is smaller and the slopes are smoother.

On the other side, a reduction of the evaluation time is optimal for cardinalities of 32

and 64. An increase of the cardinalities leads to a higher computational effort. This is

respected to the fact that the sequential searches within the data are quite important for the

testing phase of a model. A usage of efficient data structures should therefore be in focus

of future studies.

With both above presented evaluations, we only have computation time in the focus. How-

ever, we have to respect the quality of the model at the same time. Within classification

applications, an increased information usage (in terms of data attributes) can increase the

model quality. A reduction of the information space might lead to a lower model quality.
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Figure 5: Model Build Time
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Figure 6: Model Evaluation Times

In Fig. 7, we show the relationship between erased correlations and the F-Measure. Note,

that an increase in the F-Measure is also for a reduced data space possible (e.g., in the

case of full cardinality). With a reduced cardinality in the information space, a lower F-

Measure is achieved. This is especially true for low cardinalities (e.g., 8 or 16). However,

in the case that the cardinality is reduced from a correlation of 0.95 to 0.9 within the data

set a higher decrease in the F-Measure is identifiable. A second significant reduction of

the F-measure is at the 0.7 correlation elimination level.

In Fig. 8, we present the relationship between model build times and the model quality.

Although a negative dependency is assumed, this trend is only applicable to some parts

of the evaluation space. As an optimization of model quality and computation time, the

first high decrease model quality is at an elimination of 0.95 correlated values. Further

eliminations do not influence the model build times in a similar decrease.

Overall, we have to state that our reduction of the data space is quite high compared to the

reduction of the model quality in terms of the F-measure. Note, other model performance

measures are quite similar.

4.3 Discussion

With our evaluation, we focus on the influences of the data space to model performance

in terms of quality and computation times. Therefore, we reduce the information space in

two ways. On the one hand, we restrict dimensionality by applying a feature reduction by

correlation. This is also called canonical correlation analysis. It can be computed in a very

efficient way and therefore, it is much faster than other feature reduction techniques, e.g.,

principal component analysis or linear discriminant analysis. Furthermore, we restrict the

cardinality of the feature spaces, too. We discretize the feature space and are interested in
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Figure 7: Model Quality and Reduction
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Figure 8: Model Quality and Build Times

the influence on model quality. An influence for the model build times are not assumed,

due to the fact that the underlying data structures are not optimized.

We focus this in future work, cf. [BDKM14]. Due to the column-wise data processing of

the classifiers, we assume that a change in the underlying storage structure, e.g., column

stores or Data Dwarfs, leads to a significant computational performance increase. First

analyzes of the WEKA implementation reveal a high integration effort. However, the

benefits are very promising.

5 Conclusion

We present some ideas on improving model quality and computational performance for a

classification problem. This work is a starting point to enhance the process with respect to

optimize computation times in a biometric scenario. Additional use cases, e.g., indicator

simulation [KL05], other data mining techniques [HK00], or operations in a privacy secure

environment [DKK+14], can be applied to our main idea and have to be considered for

filtering and reduction techniques. With our evaluation study we show that performance

with respect to computation times as well as model quality can be optimized. However, a

trade-off between both targets has to be achieved due to inter-dependencies.

In future work, we want to improve the process by integrating and optimizing the different

steps. We assume, an efficient data access structure is beneficial for model computation

times and therefore, increases the application scenario. However, this computational im-

provement relies on the information space, especially on dimensional cardinality and num-

ber of involved dimensions. With an easy to apply algorithm, a data processing enables a

fast transformation of the feature space and smooth the way for more efficient data mining

for forensic scenarios.
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6(14):1654–1665, 2013.

[WB97] Roger Weber and Stephen Blott. An Approximation-Based Data Structure for Simi-
larity Search. Technical Report ESPRIT project, no. 9141, ETH Zürich, 1997.
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