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CCS CONCEPTS
• Human-centered computing → Participatory design; HCI
theory, concepts and models; Visualization theory, concepts and
paradigms.

1 INTRODUCTION
Promoting participation by non-technical stakeholders in the de-
sign and development of socio-technical systems is increasingly
recognised as a necessity, particularly in what has been called the
“third-wave” human-computer interaction (HCI) research [9]. How-
ever, with regards to the increasing implementation of machine
learning (ML) algorithms in everyday systems, design researchers
are faced with multiple challenges. One is that ML technologies
require distinct, and as yet unelaborated, ways of prototyping to
reflect the dynamics of “statistical intelligence” [7] at work in ML.
Another challenge presents itself as a matter of methodological
pacing: researching abstract issues such as opacity, interpretability
or fairness is complicated with regards to data-driven technologies;
where exact effects are hard to apprehend before the technologies
are already implemented. A third is that, while ML andHCI research
in fields such as Explainable AI and Interpretability has generated
many ways of representing ML outputs (e.g. [8, 10, 17]), the meth-
ods proposed are almost exclusively oriented at stakeholders with
formal ML education [16], or at designers using ML in their prac-
tice (e.g. [1]). In summary, a substantial gap exists regarding how,
in the development of an actual ML-driven system, non-technical
stakeholders may be enabled to articulate interpretability needs
through design research methods.

In this workshop contribution, we present our participatory
interpretability methodology, which we generated while developing
an ML-driven visualization system over three years at a natural
history research institution. Our goal was to understand the specific
ways in which particular non-technical stakeholders interpret the
representation of institution data (in our case, research projects) by
ML, and thereby learn how we may support a multitude of possible
interpretations.
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2 DEVELOPING OUR PARTICIPATORY
INTERPRETABILITY METHODOLOGY

The methodology we will present at the workshop took shape over
the course of a three-year research project in which we cooper-
ated with a major German research institution, the Museum für
Naturkunde in Berlin1. The goal of the research project was to find
a way to foster knowledge exchange and collaboration between
institution employees by means of data visualization of research
activities. For the institution, this was an ongoing challenge due to a
multiplicity of factors; for instance the haphazard distribution of fa-
cilities throughout various buildings, the lack of communal spaces,
and the absence of communication measures for the large and di-
verse staff (approximately 250 permanent members of staff with at
least 400 temporary members such as students and visiting fellows)
across 4 major research departments. Additionally, not all stake-
holders at the institution are directly involved in research activities
in the main domain of natural science–for example, activities such
as Citizen Science initiatives, lectures and field tours. Therefore, the
visualization of research activities in our use case would have to be
oriented not only at one specific group of stakeholders and their
way of doing things, but rather diverse communities-of-practice
[19] that envelope various socio-material practices [11].

2.1 Preparatory Research into Stakeholder
Perspectives

As initial steps in the development of our methodology, we con-
ducted participatory data modelling workshops and semi-structured
interviews. The former were conceptualized to understand what
stakeholders saw as the ‘formal’ prerequisites for what constitutes
research activities at the institution, whereas the latter was deemed
necessary for a more foundational understanding of the actual lived
experience of various stakeholders with research activities.

2.1.1 Participatory Data Modelling. In order to gain an initial in-
sight into the context and the most relevant types of data for re-
search activities, we conducted participatory data modelling work-
shops with institution employees from various organizational posi-
tions in three iterations. This method allowed us to discern what
specific ‘formal’ attributes exist for research activities in the mind
of stakeholders. By way of successive iterations, we could integrate
multiple stakeholders in defining what data model should drive our
data visualization. For each workshop, we provided paper prototype
for a data entry interface. By simulating entering data for an actual
research activity, groups of stakeholders were able to review and

1https://www.museumfuernaturkunde.berlin/en, accessed 06/05/2020.
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critique the chosen categories for the interface, and by extension,
the hypothetical data model underlying those categories.

2.1.2 Semi-Structured Interviews. To discern the actual lived ex-
perience of being implicitly or explicitly involved with research
activities, we subsequently carried out semi-structured interviews
with stakeholders from a variety of organizational departments
and positions. Based on an analysis of these interviews, we could
form hypotheses on how research activities integrated into the
day-to-day practices of employees at the institution, and, more
importantly, what kind of visualizations may promote discovering
potentials for knowledge exchange and collaboration.2 Among our
main observations, we found that the hierarchical organization
was seen as a hindrance to knowledge exchange, with stakehold-
ers pointing out that research groups rarely know about activities
within their own department, let alone those of others. Therefore,
while the hierarchy was identified as a key attribute for research
activities (i.e., what department a research project ‘belongs’ to) in
the prior workshops, the findings from our interviews implied that
we should find different ways to visualize the activities.

2.2 Participatory Interpretability Design
Workshop

Based on our findings, we hypothesized that an ML-driven visu-
alization system would be most promising for the use case. By
connecting research activities based on their thematic similarities
as discerned via Natural Language Processing (NLP), we developed
a scatter-plot cluster-visualization of research projects in which the
proximity and grouping of points would indicate thematic similar-
ity. By foregoing the hierarchy as a visual and semantic structure
for our visualization, we sought to offer an alternative view on
the research institution that the multiplicity of stakeholders may
interpret given their own presuppositions. However, as indicated
above, promoting this exact dynamic is an open challenge in HCI
and ML research, which are predominantly expert-oriented [13, 16]
and often studied in crowd-working settings (e.g., [5]), which do
not map to the particularities of real life socio-material contexts.
Building on recent discussions regarding its applicability in the
development of ML-driven systems (e.g., [4, 14, 15]), we therefore
looked at participatory design research for inspiration in develop-
ing a method for understanding interpretability for non-technical
stakeholders in our specific use case context.

In developing our participatory design method, which forms
the main part of our contribution to the workshop, we asked our-
selves: how can we discern and support the specific ways in which
non-technical stakeholders interpret ML outputs? Reviewing recent
participatory design research in the area of Internet of Things [3, 6],
we wanted to make sure that design artefacts for our participatory
method would represent the actual NLP pipeline we developed
rather than abstract and potentially misleading proxies. We there-
fore firstly searched the technical literature for ‘interpretability
techniques’, which are algorithmic methods which extract infor-
mation from ML pipeline steps [12]. Reflecting on related work in
design research, specifically Vallgåda and Redström’s "computa-
tional composites" [18], we transformed interpretability techniques

2We published all findings in a technical report [2].

suitable for our NLP pipeline into tangible artefacts: transparen-
cies which were printed with visual indicators of specific steps
(e.g., indicating the most important words for a specific cluster),
and could be overlayed onto a print-out of our ML-driven cluster
visualization.

We chose to deploy the artefacts in a participatory design work-
shop with non-technical stakeholders from varying institutional
positions and fields of expertise. We recruited six participants (2
female, 4 male, self-reported) which formed two groups. In the first
part of the workshop, participants would interact with the designed
transparencies to solve typical visual analytics tasks in order to
familiarize themselves with the material. Subsequently, we asked
participants to emulate the NLP pipeline by using transparencies
as they saw fit to place two new projects, i.e. not represented in
the cluster-visualization, within the cluster-visualization. In the
second part of the workshop, participants were given prototyping
material kits and were asked to represent research activities at the
institution in a ‘self-explanatory’ manner.

We found that the use of physical artefacts and the interplay
between the two workshop parts led to significant insights into
what constitutes interpretability in our use case. The interplay is
particularly noteworthy: in the second part, we came to under-
stand explicit presuppositions for interpretation at work within
the organizational context, which we could then relate back to
the actual interactions with interpretability techniques in the first
part. Among our main findings, we found that participants with
diverse institutional backgrounds could use a technique visualizing
uncertainty of cluster assignments to great effect, reflecting on
how technological decision-making maps to the ‘natural’ assump-
tions of socio-material relations at the institution. We furthermore
found out exactly which of the latter could potentially enrich inter-
pretations of the ML-driven visualization, prompting us to adapt
our visualization design. The insights from the workshop have
directly informed the prototype of our ML-driven visualization sys-
tem. Therefore, we argue that this approach is highly promising for
future work in ML interpretability for non-technical stakeholders,
and suggest that presenting our work at the workshop will lead to
promising research directions.

3 CONTRIBUTION TO THEWORKSHOP
Due to our experience of pursuing participation in the development
and design of an ML-driven visualization system over a long period
of time, we are particularly eager to discuss how our approach
could be transferred to other contexts. Furthermore, we aim to
reflect on the degree of participation we were able to promote
throughout the diverse and longitudinal deployment of research
methods. Lastly, we will also discuss how our approach to ML
interpretability for non-technical stakeholders could also be used
in participatory design of likewise emerging technologies, such as
Internet of Things.
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