
Improving Service Availabiliy with Rule-Based Adaptation

Marc Adolf Reiner Jung Lars Blümke
{mad,rju,lbl}@informatik.uni-kiel.de

Kiel University, Germany

Abstract

Self-adaptive software systems change their deploy-
ment and configuration to address changing user be-
havior and workloads. Such systems follow a MAPE-
K approach to observe and analyze the system, and
subsequently plan and execute changes. They use
operations, like the (de-)replication and migration of
components, to reconfigure the system. During an
adaptation, some services might become unavailable
when services are replicated or migrated arbitrarily.
This can cause interruptions to cross service transac-
tions and temporary service malfunctions.

While some E-commerce platforms consider this ac-
ceptable, it is irritating to the consumer. In case of
safety critical systems, like medication systems, the
system must be serviceable during the transition from
the old to the new configuration.

In this paper, we present a rule-based approach for
adaptation actions. Our approach allows to address
adaptation constraints on a abstract level and decou-
ples the constrains from setup scripts – often used in
container environments. Furthermore, we evaluated
the feasibility of our approach and illustrate its abil-
ity to adapt a component based web system safely.

1 Introduction

The operation of cloud applications relies on adaptive
mechanisms to react to varying workloads and other
external effects. Modern cloud provider often provide
automatic scaling facilities for software services. How-
ever, they do not use the software architecture when
scaling services. Hence, they cannot anticipate the ef-
fect on the complete software system. Furthermore,
their performance predictability is limited and they
are, therefore, merely reacting to load changes.

MAPE-K approach [1] allows to address these limi-
tations, as it uses design-time and runtime knowledge
to steer adaptation. It divides the process of adap-
tation in four phases Monitoring, Analysis, Planning
and Execution. Existing implementations, like SLAs-
tic [3], use runtime observations to forecast utiliza-
tion and subsequently adapt the system to meet ser-
vice level agreements. Others address dynamic feature
provisions using runtime model updates [4] and learn
adaptations with an adaptive knowledge base [14].

Unfortunately, these approaches do not address ser-
vice availability during adaptation. This may lead in

complex software systems to temporarily unavailable
features. Furthermore, approaches, like SLAstic, do
not explicitly address state and activity of services,
which can lead to information loss. Similarly, past
planning and adaptation services in iObserve [8] did
not address these requirements [11, 12].

In this paper, we present a solution to these chal-
lenges with a rule-based approach, ensuring data
preservation and services availability during adapta-
tion. We divide the planning phase into Candidate Ar-
chitecture Selection and Adaption Planning. The for-
mer computes a new candidate architecture. The lat-
ter derives complex adaptation actions from the candi-
date architecture and transforms them into atomic ac-
tions. Subsequently, the execution phase maps these
actions to cloud-API specific operations. Thus, we can
keep adaptation rules, composed and atomic adapta-
tion actions technology agnostic.

Section 2 introduces the iObserve service architec-
ture. Section 3 describes the adaptation and execu-
tion phases. Section 4 presents preliminary evaluation
results. And Section 5 summarizes our finding and in-
troduces potential future work.

2 The iObserve Approach

The iObserve approach integrates design-time evolu-
tion and runtime adaption utilizing the same architec-
tural models for both processes [7, 8]. The adaptation
process is automated, but supports operator interven-
tions, e.g., introduction of workload characteristics,
planning rules and candidate architecture selection.

iObserve follows MAPE-K loop [1] to address adap-
tation (cf. Figure 1). We split the loop in different
microservices [9] and each phase is represented by at
least one service. This supports the deployment of
iObserve alongside the monitored cloud application.
We monitor the cloud application with Kieker [6] sup-
plemented by additional probes for (un)deployment,
(de)allocation and utilization. As the overarching
model for design-time and runtime, we use the Pal-
ladio Component Model (PCM) [10]. At runtime the
PCM is used in all services to ensure explainability
through all phases supporting human intervention.
The runtime model is updated based on monitoring
events utilizing a correspondence model to map im-
plementation level events to model level information
[7]. Based on the updated model, iObserve analyzes



Monitoring Probes

Candidate
Architecture

Selection

Adaptation
Planning

Execution
Monitoring

<<service>>

Analysis

<<service>>

PAM

PAM

PAMCAM

CAM

Ex.-
Plan

Monitoring Events

Execute Adaptations

<<service>> <<service>> <<service>>

TCP HTTP

HTTP HTTP

Planning

Application

Figure 1: iObserve Architecture - Each MAPE-K phase is represented by an independent service

quality properties of the software system, like, perfor-
mance and data privacy. Subsequently, in case quality
requirements are not met, the Analysis service sends
the Present Architecture Model (PAM) to the plan-
ning services. The planning is performed by two sep-
arate services (cf. Figure 1). The Candidate Selec-
tion service evaluates architecture alternative utilizing
PerOpteryx [5] and automatically selects an optimal
Candidate Architecture Model (CAM). This selection
can also be deferred to an operator. The second ser-
vice, Adaptation Planning creates the execution plan
by deriving composed adaptation actions (migration,
replication) and subsequently computing and ordering
atomic adaptation actions of the execution plan to en-
sure service availability and data preservation during
adaptation. Finally, the Execution service maps the
atomic actions to implementation level and technol-
ogy specific cloud API operations.

3 Planning and Execution

Our core contribution is rule-based adaptation plan-
ning adhering service availability and data preserva-
tion, alongside an execution service which transforms
model level adaptations to specific cloud-APIs.

The Adaptation Planning services performs two
tasks computing composed adaptation actions and
transforming them into atomic adaptation actions for
the execution plan. We use production rules for the
Drools rule engine [2] to compute the composed adap-
tation actions from the inputs PAM and CAM. Using
rules has the benefit that the adaptation process can
be expressed in a concise and clear way without imple-
mentation details, like loops and recursion. Further-
more, it allows to modify the adaptation process to
include additional constraints and new adaptation ac-
tions. The present rule set includes actions for migra-
tion, (de)replication, (de)allocation and the exchange
of repository components, following the SLAstic ap-
proach [3] and preceding work in iObserve [11, 12].

These composed adaptation actions might need
multiple atomic adaptation actions executed the right
order to ensure availability and data preservation.
They are generated by an extensible model transfor-
mation. We conceived eleven atomic adaptation ac-

tion types based on existing cloud-APIs, like, Kuber-
netes, their limitations (e.g. cannot detect availability
of a service), and previous work [11, 12, 13] They com-
prise service (un-)deployment, (dis-)connecting ser-
vice, migration, request blocking, finish and resource
(de-)allocation. While deployment and allocation
are self-explanatory, (dis-)connecting service, request
blocking and finish need more details. Connecting ser-
vice is necessary in replication and migration cases
where, e.g., load balancer reconfiguration must be per-
formed explicitly. Request blocking ensures that a ser-
vice does not receives new requests. And finish halts
the execution plan until a service becomes available
omitting unresponsive services is omitted.

The resulting execution plan is ordered to ensure
service availability and data preservation, and then
send to the Execution service. At present this ser-
vice performs the actions in sequential order. Each
action is mapped from model level to implementation
level utilizing the correspondence model, i.e., the ser-
vice identifies the correct cloud API and provider, and
subsequently maps the action to specific operations.
For example, in Kubernetes explicit connecting ser-
vices is not necessary in replication scenarios, as this
is automatically done by the Kubernetes, where plain
Docker infrastructure and virtual machine infrastruc-
ture requires specific operations. The mapping is pro-
vided by multiple API specific action executors, which
address the needs of each cloud API.

4 Evaluation

To prove the feasibility of our approach, we con-
duct several experiments on our local Kubernetes clus-
ter. This cluster includes one master and four worker
nodes. We test our approach with a distributed vari-
ation of the JPetStore [15]. It represents a simple
web shop for animals. Thereby, we want to check the
creation, application and result of the execution plan.

Here, we present a migration and (de-)allocation
experiment that we conducted along others [13]. In
this scenario, the component which controls the ac-
counts is migrated to a new node and the correspond-
ing CAM is send to the adaptation service. Thereby,
the (de-)allocation of the new node, (de-)replication

2



Name Desired Available Up-To-Date
account 1 1 57s
catalog 1 1 57s

account2 1 0 1s
catalog 1 1 58s

account2 1 1 2s
catalog 1 1 59s

Table 1: Excerpt of the following states in Kubernetes
in the experiment.

and connection of the component have to be in the
right order. We check all three described phases. The
resulting the execution plan contains the expected ac-
tions. In Table 1, we see the actual application as
following states of the Kubernetes cluster. Here, we
only display the account components and the catalog
component. The attributes describe the amount of
the components and their state. As one can see, the
first account service is shut down and a new one is
created. There is a slight delay between the termi-
nation of the first one and the availability of the new
one. Nevertheless, the replacement is already created
and starting and there is no state in which there is no
account component.

In our test case using Kubernetes, we could not ob-
serve failures in the modification of the deployments.
All resulting software architectures were as we ex-
pected. For further details refer to [13].

5 Conclusion

We presented our rule-based adaptation approach to
create a set of ordered composed adaptation actions
that are translated to atomic adaptation actions for
the execution phase. Through the microservice archi-
tecture and the rule-based system, we achieve a loosly
coupled system that can be easily reconfigured and
extended. This allows to include different strategies
for adaptation planning and support different cloud
provider APIs within the iObserve approach. Finally,
we conducted a feasibility evaluation in our own Ku-
bernetes cluster with an instance of the distributed
JPetStore. The result was successful and as expected
except in the migration. We encountered an issue
where the first account component was already termi-
nated while the second one was still starting and not
available, while this should be avoided by the finish
action, the initial implementation of the action only
tested if the container is reachable.

In the future, we will address this issue and provide
more specific finish actions. In addition, we want to
evaluate the approach with a larger software system
and changing demands to determine if the expecta-
tions hold in complex environments. External changes
that occur during the adaptation also have to be re-
garded. For this, we need to check if the system is
changing during other phases beside the monitoring

phase. In the rule system, smarter rules and an com-
prehensible rule overview may improve its usability.

References

[1] A. Computing et al. “An architectural blueprint
for autonomic computing”. In: IBM White Pa-
per 31 (2006), pp. 1–6.

[2] M. Proctor et al. Drools. 2007.

[3] A. van Hoorn et al. “An Adaptation Framework
Enabling Resource-efficient Operation of Soft-
ware Systems”. In: Proc. of WUP 2009 at ICSE
2010. ACM, Apr. 2009, pp. 41–44.

[4] B. Morin et al. “Taming Dynamically Adaptive
Systems Using Models and Aspects”. In: Proc.
of ICSE 2009. ICSE ’09. IEEE Computer Soci-
ety, 2009, pp. 122–132.

[5] A. Koziolek, H. Koziolek, and R. Reussner.
“PerOpteryx: Automated Application of Tactics
in Multi-Objective Software Architecture Opti-
mization”. In: Proc. of QoSA and SIGSOFT.
ACM. 2011, pp. 33–42.

[6] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: Proc. of ICPE 2012. ACM, Apr. 2012,
pp. 247–248.

[7] R. Heinrich et al. “Architectural Run-Time
Models for Operator-in-the-Loop Adaptation of
Cloud Applications”. In: Proc. of MESOCA.
IEEE, Sept. 2015, pp. 36–40.

[8] R. Heinrich et al. Run-time Architecture Models
for Dynamic Adaptation and Evolution of Cloud
Applications. Tech. rep. Kiel, Germany, 2015.

[9] S. Newman. Building Microservices. O’Reilly
Media, Inc., 2015.

[10] R. H. Reussner et al. Modeling and Simu-
lating Software Architectures – The Palladio
Approach. Cambridge, MA: MIT Press, 2016.
408 pp.

[11] T. Pöppke. “Design Space Exploration for
Adaption Planning in Cloud-Based Applica-
tions”. Master Thesis. KIT, 2017.

[12] P. Weimann. “Automated Cloud-to-Cloud Mi-
gration of Distributed Software Systems for Pri-
vacy Compliance”. Master Thesis. KIT, 2017.

[13] L. E. Blümke. “Planning and Execution of
System Adaptations in Cloud-Based Environ-
ments”. Master Thesis. Kiel University, 2018.

[14] V. Klös, T. Göthel, and S. Glesner. “Com-
prehensible Decisions in Complex Self-Adaptive
Systems”. In: SE 2018. Gesellschaft für Infor-
matik, 2018, pp. 215–216.

[15] MyBatis JPetStore application. http://www.

mybatis.org/spring/sample.html. 2017.

3

http://www.mybatis.org/spring/sample.html
http://www.mybatis.org/spring/sample.html

	Introduction
	The iObserve Approach
	Planning and Execution
	Evaluation
	Conclusion

