
Towards a Cloud Service for State-Machine Replication
Alexander Heß
Franz J. Hauck

alexander.hess@uni-ulm.de
franz.hauck@uni-ulm.de

Institute of Distributed Systems, Ulm University
Germany

ABSTRACT
State-machine replication (SMR) is a well-known technique
to achieve fault tolerance for services that require high avail-
ability and fast recovery times. While the concept of SMR has
been extensively investigated, there are still missing build-
ing blocks to provide a generic offer, which automatically
serves applications with SMR technology in the cloud. In
this work, we introduce a cloud service architecture that
enables automatic deployment of service applications based
on customer-friendly service parameters, which are mapped
onto an internal configuration that comprises the number
of replicas, tolerable failures, and the consensus algorithm,
amongst other aspects, The deployed service configuration is
masked to large extent with the use of threshold signatures.
As a consequence, a reconfiguration in the cloud deployment
does not affect the client-side code. We conclude the paper
by discussing open engineering questions that need to be
addressed in order to provide a productive cloud offer.

KEYWORDS
State-Machine Replication, Byzantine Fault Tolerance, Cloud
Computing, Service Provisioning

1 INTRODUCTION
In recent years, major tech companies such as Google and
Facebook have reported observations of so-called soft errors
in their infrastructure [6, 14]. This term is used to describe
arbitrary data corruption in memory cells, introduced by
electromagnetic interferences or cosmic x-rays [12]. On the
other hand, an increasing amount of public and critical in-
frastructure has been outsourced to the cloud for variety of
reasons, which led to the creation of tailored cloud-service
models [15]. While cloud-service providers rely on periodic
backups to prevent data losses at larger scales, the recovery

Except as otherwise noted, this paper is licensed un-
der the Creative Commons Attribution-Share Alike
4.0 International License.

FGBS ’23, März 06–07, 2023, Dresden, Germany
© 2023 Copyright held by the authors.
https://doi.org/10.18420/fgbs2023f-02

from a backup after a server failure can take multiple min-
utes up to hours. During recovery time the system will be
unavailable, which could lead to severe consequences if the
deployed service is crucial for work flows in the health care
or public transportation domain.
For this reason, we aim to research building blocks that

could be used to create a cloud-service model that guarantees
fault-tolerant deployment of critical applications using State-
Machine Replication. Hereby, we envision a Framework-as-a-
Service cloud offer [17], where candidate applications have to
adhere to the framework API, which provides an abstraction
to the underlying fault-tolerance mechanisms. Similar to
other cloud offers, required performance or availability fig-
ures of the service could be tweaked during the deployment
process depicted in Figure 1, using customer-friendly param-
eters. The remainder of this paper is structured as follows:
Section 2 provides a brief introduction to State-Machine
Replication and Section 3 covers a selection of relevant pre-
vious work. In Section 4, we provide an overview of the
internal architecture of our envisioned SMRCloud service,
highlight the potential for parameterization of the proposed
architecture, and finally discuss promising research ideas. Fi-
nally, we will briefly touch some open engineering problems
in Section 5 and conclude in Section 6.

2 BACKGROUND
2.1 State-Machine Replication
State-Machine Replication (SMR) is a technique to achieve
fault tolerance by deploying an application on a set of redun-
dant servers [21]. It ensures two important service properties:
safety, which means that clients are always able to obtain
correct results, and liveness, which means that clients are
actually able to retrieve service responses even in the pres-
ence of failures. This approach is based on three assumptions
about the system: (i) the same shared initial application state
throughout all replicas, (ii) a well-defined order imposed on
the client requests, and finally (iii) deterministic execution of
the received requests. While the first assumption is straight-
forward to realize in practice, ordering of client requests can
be achieved with a variety of different approaches. Here, the
most common approach is to use a consensus protocol [19],

1

https://orcid.org/0000-0001-6837-2861
https://orcid.org/0000-0002-7480-9617
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/fgbs2023f-02


FGBS ’23, März 06–07, 2023, Dresden, Germany Alexander Heß and Franz J. Hauck

Figure 1: The envisioned application deployment process with SMRCloud.

which either provides a total ordering for all requests or a
partial ordering for interfering requests, and requires col-
laboration among replicas. Finally, deterministic execution
is required to prevent the replicas’ application state from
diverging. Here, the naive approach would be to simply use
sequential execution, but this would drastically limit perfor-
mance and would leave computational resources unused. A
more sophisticated approach would be the use of a scheduler
that enforces deterministic access on shared variables.

2.2 Failure Models
The most common failure models used in recent literature
are the crash–fault-tolerance (CFT) and the Byzantine fault-
tolerance (BFT) model. In an asynchronous environment, a
CFT systems has to be composed of at least 2𝑓 + 1 replicas,
where up to 𝑓 replicas are allowed to crash within a given
time window while the system still remains operational [18].
Typically clients issue their requests to all replicas of the
system and accept the first result returned by any replica. In
contrast, a BFT system requires at least 3𝑓 + 1 replicas [4]
in general, without relying on a hybrid fault-model. BFT
systems typically incorporate more complex internal com-
munication patterns as well as cryptographic functionality,
which makes them less efficient than CFT systems. However,
these systems can tolerate up to 𝑓 arbitrarily misbehaving
nodes, while ensuring that clients are able to retrieve correct
results by performing a quorum-based voting. The voting
process requires that the client is aware of the correct quo-
rum size 𝑞 for the system, which depends on the consensus
protocol and the failure model, the number of replicas and
the number of faults that can be tolerated.

3 RELATEDWORK
The first practically-usable approaches for CFT [18] and
BFT [4] SMR-Systems have already been proposed multiple
decades ago. While the adoption of BFT SMR approaches in
production systems is still relatively low due to the relatively
large performance and resource overhead, there are quite
a number of domain-specific approaches such as Apache

Zookeeper [16] and etcd [5] which are already in use in pro-
ductive systems. They build on SMR technology internally
and can be used as a basis to build other highly-available
services. However, since their SMR support is not application-
agnostic they cannot be used to build generic applications.
On the other hand, there are publicly available frameworks
that can be used to build general-purpose BFT applications
such as BFT-SMaRt [1] and Concord-BFT [10], although these
frameworks require significant knowledge regarding the
underlying fault-tolerance mechanisms in order to be used
correctly. Further, none of these approaches provide func-
tionality for automatic service deployment, which is also a
crucial part for building a fault-tolerant production service.
While orchestration tools like Kubernetes [3] could be used
for the automatic deployment of the developed applications,
their centralized node management and unsecured crypto-
graphic key provisioning makes them unsuitable for BFT
systems out of the box. Hence our goal is to bridge the func-
tionality gap between these existing approaches and provide
a straightforward way to deploy SMR systems in the cloud.

4 THE CLOUD SERVICE ARCHITECTURE
This section will provide insights into the proposed internal
architecture of our envisioned cloud service SMRCloud. First,
we will list a set of assumptions regarding the deployed
application and the underlying components, then continue
with a brief description of the individual components, and
finally conclude with a set of promising research ideas that
could advance our theoretical concept into a production
system.

4.1 System Model
In ourmodel, we assume that the deployed application is well-
defined and uses the API provided by our framework as it is
intended. This ensures that fault-tolerance mechanisms and
the recovery procedure are able to ensure a consistent state.
Further we assume, that the application does not contain
security vulnerabilities or concurrency bugs, which could be
used to bypass the fault-tolerant architecture by allowing an

2



Towards a Cloud Service for State-Machine Replication FGBS ’23, März 06–07, 2023, Dresden, Germany

attacker to compromise more than the tolerable number of
machines. Finally, we assume that a future SMRCloud ser-
vice provider is considered as a trusted party that relies on
Infrastructure-as-a-Service (IaaS) components [17] for replica
deployment. The reason for this assumption is the fact that
the components that make up a fault-tolerant distributed
system should only be affected individually in case of a hard-
ware failure, an interrupted internet connection, or a power
outage. As a consequence, the individual components should
be deployed in different datacenters or availability zones to
prevent a cascading effect of a single source of failure.

4.2 Replica Internals
The internal architecture and the communication channels
between the individual components of a single SMRCloud
replica are depicted in Figure 2. It can be observed that this
multi-tier architecture includes a hardware layer, which is
made up of IaaS components and serves as the basis for the
runtime layer, composed of the replica’s operating system, a
container engine, and a replica management component. The
use of a container engine allows us to create an abstraction
layer from the underlying software and hardware stack in
the uppermost layer, and as a consequence, a heterogenous
set of replicas with similar performance numbers can be used
to compose service instances. This approach increases ser-
vice resilience against exploitable security vulnerabilities in
individual software or hardware components. On the upper-
most layer, the configurable SMRCloud components and the
deployed application can be found. The deployed application
is tightly coupled with a deterministic scheduler, and is con-
nected to the SMRCloud components through a well-defined
API. The individually displayed SMRCloud components have
the following intended functionality:
The Connection Handler serves as the endpoint for the

replica-to-replica communication, as well as the client com-
munication where it serves as an entry point that masks the
replica’s internal configuration. While it is not feasible to
hide the presence of the fault-tolerance mechanism without
sacrificing safety and liveness guarantees of the system, it is
possible to construct the communication handler such that
configuration-agnostic client-side code can be utilized.

The Cryptographic Module is the major building block for
achieving configuration-agnostic client communication. The
idea is to use BLS threshold signatures [2] which enable a
subset of replicas to aggregate their individual signatures into
a single signature, which can be verified with the service’s
public key. This approach can not only eliminate the majority
voting process on the client side, which is dependent on the
consensus-related quorum sizes, but also reduce the number
of signature verifications at client side.

Figure 2: The Envisioned Internal Architecture of a
Single SMRCloud Replica.

The Consensus Module could embed different consensus
protocols which are based on the extensive preliminary work
on optimization for specific use cases [8, 10]. This module
could provide the largest space for parameterization, since
there is no one-fits-all solution with outstanding perfor-
mance in every possible use case [22].

The Recovery Module shall be responsible for the periodic
creation of checkpoints, whereby the application state and
consensus logs are stored on disk. While a naive approach
would require to halt the replica’s execution in order to cre-
ate a consistent snapshot of the application state, recent
research has shown that this process can be optimized based
on certain assumptions [7]. This module also provides the
option for parameterization, since the chosen checkpointing
strategy provides a trade-off between the system’s perfor-
mance during normal operation and during the actual system
recovery.

4.3 Research Questions
The above described SMRCloud architecture has a lot of po-
tential for research ideas. One challenging aspect, which is
typically omitted in recent publications, is the initial boot-
strapping of the replica group and the distribution of the
cryptographic keys. The cryptographic keys for the thresh-
old signature scheme have to be generated with a distributed
algorithm [9], because otherwise a single malicious instance
could forge valid signatures. A rejuvenation or reconfigu-
ration step of the system might require a regeneration of
the cryptographic keys, if a certain number of replicas is
removed or replaced. Although this might sound like we
introduce an additional problem to the system, it actually en-
ables us to hide the system reconfiguration from the clients
to a large extent, as long as a majority of physical machines
is kept during a single reconfiguration step.
Another interesting area of research is the design of the

SMRCloud framework API, which is used for the commu-
nication between the application and consensus module, as
well as the recovery module. Since the containerization ap-
proach would allow to deploy applications developed in any
programming language, the SMRCloud API should also be

3



FGBS ’23, März 06–07, 2023, Dresden, Germany Alexander Heß and Franz J. Hauck

provided in a language-agnostic form. In this case, gRPC
[11] could be a suitable candidate since it provides both high
performance and code-generators for the most popular pro-
gramming languages. Further, the deterministic scheduler
might also be part of the SMRCloud framework API, since it
has to be tightly integrated with the deployed application,
and as a consequence it can not be part of the modular ar-
chitecture. However, a configurable scheduler like UDS [13]
could be used to provide further parameterization options.

5 FUTUREWORK
Solving all the research ideas that have been presented in
this paper will not be sufficient for building a real-world
SMR cloud service. Instead, the following open questions
from the software and cloud engineering domain, need to
be considered also. Firstly, in our system model we assume
that the application code does not provide attack vectors
against our fault-tolerant architecture. Although it is not
feasible to erase all possible attack vectors in software, a
Fuzzing framework could be leveraged to test the submitted
application image in order to minimize the risk of a success-
ful attack [20]. Further, a monitoring mechanism should be
introduced in order to perform pro-active recovery or reju-
venation of individual machines to prevent an attacker from
compromising a criticial amount of malicious nodes. Finally,
a recovery procedure has to be designed that serves as a last
resort to bridge the gap between theory and practice if the
assumptions of the implemented fault models are violated.

6 CONCLUSION
In this work, we presented the potential of a symbiosis be-
tween state-machine replication, a well-established theoret-
ical concept that can be leveraged to build fault-tolerant
systems, and cloud computing, which is the state-of-the-art
technology for service deployment. We outlined promising
research aspects based on a conceptual cloud service model
termed SMRCloud, and indicated some initial ideas that could
lead towards the realization of such a model in the near
future. Finally, we briefly discussed some remaining open
questions which have to be solved in order to bridge the final
gap between theoretical work and a production system.

REFERENCES
[1] Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson

Alchieri. 2014. State Machine Replication for the Masses with BFT-
SMART. In 44th Annual IEEE/IFIP Int. Conf. on Dep. Syst. and Netw.
(DSN). IEEE Comp. Soc., 355–362. https://doi.org/10.1109/DSN.2014.43

[2] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short Signatures
from the Weil Pairing. J. Cryptol. 17, 4 (2004), 297–319. https://doi.
org/10.1007/s00145-004-0314-9

[3] Eric A. Brewer. 2015. Kubernetes and the path to cloud native. In 6th
ACM Symp. on Cloud Comp. (SoCC). ACM, 167. https://doi.org/10.
1145/2806777.2809955

[4] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault
Tolerance and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4
(2002), 398–461. https://doi.org/10.1145/571637.571640

[5] CoreOS. 2013. etcd. https://etcd.io/docs/
[6] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Ma-

son, Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar. 2021.
Silent Data Corruptions at Scale. CoRR abs/2102.11245 (2021).

[7] Michael Eischer, Markus Büttner, and Tobias Distler. 2019. Determin-
istic Fuzzy Checkpoints. In 38th Symp. on Rel. Distr. Sys. (SRDS). IEEE,
153–162. https://doi.org/10.1109/SRDS47363.2019.00026

[8] Michael Eischer and Tobias Distler. 2021. Egalitarian Byzantine Fault
Tolerance. In 2021 IEEE 26th Pacific Rim Int. Symp. on Dep. Comp.
(PRDC). 1–10. https://doi.org/10.1109/PRDC53464.2021.00019

[9] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
1999. Secure Distributed Key Generation for Discrete-Log Based Cryp-
tosystems. In Advances in Cryptology – Int. Conf. on the Theory and
Appl. of Crypt. Techn. (EUROCRYPT) (LNCS, Vol. 1592). Springer, 295–
310. https://doi.org/10.1007/3-540-48910-X_21

[10] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,
Benny Pinkas,Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir,
and Alin Tomescu. 2019. SBFT: A Scalable and Decentralized Trust
Infrastructure. In 49th Annual IEEE/IFIP Int. Conf. on Dep. Sys. and Netw.
(DSN). IEEE, 568–580. https://doi.org/10.1109/DSN.2019.00063

[11] Google. 2016. gRPC – A high performance, open source universal RPC
framework. https://grpc.io/docs/

[12] Qiang Guan, Nathan DeBardeleben, Sean Blanchard, and Song Fu.
2015. Empirical Studies of the Soft Error Susceptibility OfSorting
Algorithms to Statistical Fault Injection. In Proc. of the 5th Worksh. on
Fault Tol. for HPC at EXtreme Scale (FTXS) (FTXS ’15). ACM, 35–40.
https://doi.org/10.1145/2751504.2751512

[13] Franz J. Hauck and Jörg Domaschka. 2016. UDS: A Unified Approach
to Deterministic Multithreading. In 36th IEEE Int. Conf. on Distr. Comp.
Sys. (ICDCS). IEEE, 755–756. https://doi.org/10.1109/ICDCS.2016.73

[14] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju,
Parthasarathy Ranganathan, David E. Culler, and Amin Vahdat. 2021.
Cores That Don’t Count. InWorksh. on Hot Topics in Oper. Sys. (HotOS).
ACM, New York, USA, 9–16. https://doi.org/10.1145/3458336.3465297

[15] Wei Huang, Afshar Ganjali, Beom Heyn Kim, Sukwon Oh, and David
Lie. 2015. The State of Public Infrastructure-as-a-Service Cloud
Security. ACM Comp. Surv. 47, 4, Article 68 (jun 2015). https:
//doi.org/10.1145/2767181

[16] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In USENIX Ann. Techn. Conf. (ATC).

[17] Steffen Kächele, Christian Spann, Franz J. Hauck, and Jörg Domaschka.
2013. Beyond IaaS and PaaS: an extended cloud taxonomy for compu-
tation, storage and networking. In IEEE/ACM 6th Int. Conf. on Utility
and Cloud Comp. (UCC). 75–82. https://doi.org/10.1109/UCC.2013.28

[18] Leslie Lamport. 2002. Paxos Made Simple, Fast, and Byzantine. In Proc.
of the 6th Int. Conf. on Princ. of Distr. Sys. (OPODIS) (Studia Informatica
Universalis, Vol. 3). Suger, Saint-Denis, rue Catulienne, France, 7–9.

[19] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The
Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3
(1982), 382–401. https://doi.org/10.1145/357172.357176

[20] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: a survey. Cy-
bersecurity 1, 1 (2018), 6. https://doi.org/10.1186/s42400-018-0002-y

[21] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Comp. Surv. 22, 4 (1990),
299–319. https://doi.org/10.1145/98163.98167

[22] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timo-
thy Roscoe. 2008. BFT Protocols Under Fire. In 5th USENIX Symp. on
Netw. Sys. Des. & Impl. (NSDI). USENIX Assoc., 189–204.

4

https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/571637.571640
https://etcd.io/docs/
https://doi.org/10.1109/SRDS47363.2019.00026
https://doi.org/10.1109/PRDC53464.2021.00019
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1109/DSN.2019.00063
https://grpc.io/docs/
https://doi.org/10.1145/2751504.2751512
https://doi.org/10.1109/ICDCS.2016.73
https://doi.org/10.1145/3458336.3465297
https://doi.org/10.1145/2767181
https://doi.org/10.1145/2767181
https://doi.org/10.1109/UCC.2013.28
https://doi.org/10.1145/357172.357176
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1145/98163.98167

	Abstract
	1 Introduction
	2 Background
	2.1 State-Machine Replication
	2.2 Failure Models

	3 Related Work
	4 The Cloud Service Architecture
	4.1 System Model
	4.2 Replica Internals
	4.3 Research Questions

	5 Future Work
	6 Conclusion
	References

