
Object-oriented application development
with MeVisLab and Python

Frank Heckel, Michael Schwier and Heinz-Otto Peitgen

Fraunhofer MEVIS
Universitaetsallee 29

28359 Bremen, Germany
frank.heckel@mevis.fraunhofer.de

michael.schwier@mevis.fraunhofer.de
heinz-otto.peitgen@mevis.fraunhofer.de

Abstract: MeVisLab is a research and rapid prototyping platform for medical image
processing developed by MeVis Medical Solutions AG and Fraunhofer MEVIS. We
present an object-oriented approach for developing applications using MeVisLab and
Python. Our approach simplifies the development of scripting intensive and complex
applications for medical image processing. The program flow becomes clearer and the
resulting modules are easier to maintain compared to the common functional approach
thus making development less error prone.

1 Introduction

MeVisLab is a research and rapid prototyping platform for medical image processing
[MeV09]. It has been developed by MeVis Medical Solutions AG and Fraunhofer MEVIS1.
MeVisLab is written in C++ and uses Qt2 for graphical user interfaces. It is available for
Microsoft Windows, Linux and MacOS X. MeVisLab comes with a comprehensive set
of image processing and visualization methods via the MeVis Image Processing Library
(ML) and Open Inventor. Furthermore, it also includes both the Insight Segmentation and
Registration ToolKit (ITK) and the Visualization ToolKit (VTK) [RJS+05, KSR+06]. Al-
gorithms and applications are developed in a visual programming manner by building a
network of functional units (modules) where a module represents an algorithm or visu-
alization method for example. Networks can be hierarchically encapsulated into macro
modules to form new algorithms or reusable parts of an application (see Fig. 1).

Moreover, MeVisLab offers the possibility to create a graphical user interface (GUI) for
an application consisting of various modules using an abstract module definition lan-
guage (MDL). Dynamic functionality can be added to an application via scripting using
JavaScript and Python. This way it is for example possible to react on user interactions,
to manipulate the processing pipeline (modules, networks or the user interface) or even

1http://www.mevis.de
2http://www.qtsoftware.com

Figure 1: A simple example for visual network based programming using an alpha version of MeVis-
Lab 2.0. The network consists of a image processing module (blue), some visualization modules
(green) and some macro modules (orange).

to calculate and save results. Furthermore, the application logic is typically implemented
using scripting.

A comprehensive introduction to MeVisLab’s predecessor, ILAB 4, is given by Hahn et
al. in [HLP03]. An introduction to application development with MeVisLab is given by
Rexilius et al. in [RKHP06] and Merkel et al. in [MHK+08]. A comparison between
MeVisLab and other integrated development environments and libraries that use ITK is
given by Bittner et al. in [BvUW+07].

In this paper we focus on MeVisLab’s scripting capabilities. We will outline the drawbacks
of the common functional development approach. After that, we present a novel object-
oriented approach for scripting of complex applications in Python which overcomes those
drawbacks. Our programming concept simplifies scripting of large and complex applica-
tions. Communication between modules becomes easier and the program flow becomes
clearer. Thus, the resulting code is less error prone and easier to maintain.

We will neither give an introduction to Python nor to object-oriented programming. For
an introduction to both topics have a look in the official Python documentation [Pyt09].

Figure 2: A simple application where the user can load a baseline scan, a follow-up scan or both.
The GUI contains various viewer configurations to show the user the data in an appropriate way.

2 Motivation

In the following sections we give a brief overview on application development and script-
ing in MeVisLab based on Python and the common functional approach. Moreover, we
introduce an example application using this development method which, although being
simple, already shows the advantages of our object-oriented approach.

2.1 A simple example application

Consider the following, simple scenario: An application is able to load a baseline scan,
a follow-up scan or both. First, the clinician specifies the filenames for baseline and/or
follow-up in the GUI. Then he presses the load button. As soon as all the data is loaded, the
application should automatically switch to a layout that contains the appropriate viewers
which allows the clinician to view the single scans or both in parallel. Figure 2 shows
the GUI of such an application. The application should be implemented by the modular,
hierarchical structure shown in Figure 3 which allows to reuse certain functional units.
The orange boxes represent the various macro modules (i.e. parts of the application).

This simple functionality already requires some communication between the modules. In
particular, parameters and results have to be passed between them.

Figure 3: The hierarchical structure of the simple example application consisting of some macro
modules (orange boxes).

2.2 Functional application development in MeVisLab

2.2.1 Scripting in MeVisLab

Scripting in MeVisLab is done by reacting on certain events (e.g. application initializa-
tion) or on field changes via so called field listeners. Fields are basically parameters of
various types, triggers (e.g. “buttons”) and input/output elements of a module. If such an
event occurs, a user defined scripting function is called where the event is handled. This
functionality is achieved using the following MDL module definition which is typically
located in a module’s .script file:

Code Listing 1: MDL module definition example

Commands {
// tell MeVisLab where additional Python modules are located
importPath = "$(LOCAL)"
// tell MeVisLab which file contains the Python script functions
source = "$(LOCAL)/Module.py"
// tell MeVisLab to call the "init" function on initialization
initCommand = init

// tell MeVisLab to call "reactOnFieldChange" if "someField" changes
FieldListener someField {

command = reactOnFieldChange
}

}

The module’s Python script file Module.py might look like this:

Code Listing 2: Python script example

def init():
do some initialization ...

def reactOnFieldChange(field):
do something based on the new field value ...

Figure 4: Typical communication between modules and their scripts using the common functional
development approach: Field listener calls (red arrows), field connections (dashed black arrows) and
scripting commands (blue arrows). For simplicity reasons the figure only shows the baseline scan.

Furthermore, MeVisLab offers the possibility to pass values between fields via so called
field connections which means that the value of one field is automatically forwarded to the
connected fields.

2.2.2 Implementing the example the common way

In the common functional approach parameters and results are passed between modules
by fields. These fields can therefore be seen as “communication” fields. The functionality
described in Section 2.1 would be implemented by setting the values of those fields and by
defining field listeners on the trigger (loadButton), some parameters (filename) and
some “result fields” (LoadData valid in BaselineScan and FollowUpScan).
This way scripting functions of other modules will implicitly be called by setting the val-
ues of the fields for which a field listener has been defined. Furthermore, some part of
the communication might be done via field connections (e.g. between filename and
LoadData filename). Figure 4 shows the communication between the modules using
the described implementation. The .script and .py files for this implementation might
look as follows. Notice that one logical coherent step (loading the files) is split into three
scripting functions on GUI level.

Code Listing 3: Functional LoadData MDL definition

...
FieldListener filename {

command = filenameChanged
}
...

Code Listing 4: Functional LoadData Python script

def filenameChanged(field):
loadSuccessful = False

load the file and set loadSuccessful ...

setting valid results in an implicit field listener call
ctx.field("valid").value = loadSuccessful

Code Listing 5: Functional GUI MDL definition

...
FieldListener loadButton {

command = loadButtonPressed
}

FieldListener BaselineScan.LoadData_valid {
command = baseline_LoadDataDone

}

FieldListener FollowUpScan.LoadData_valid {
command = followup_LoadDataDone

}
...

Code Listing 6: Functional GUI Python script

the state of the GUI (BL, FU, BL_AND_FU)
state = ""

called if the load button has been pressed
def loadButtonPressed(field):

global state

if ctx.field("baselineFilename").value != "" and \\
ctx.field("followupFilename").value != "":
state = "BL_AND_FU"
setting the filename results in an implicit field listener call
ctx.field("BaselineScan.LoadData_filename").value = \\
ctx.field("baselineFilename").value
setting the filename results in an implicit field listener call
ctx.field("FollowUpScan.LoadData_filename").value = \\
ctx.field("followupFilename").value

elif ctx.field("baselineFilename").value != "":
state = "BL"
setting the filename results in an implicit field listener call
ctx.field("BaselineScan.LoadData_filename").value = \\
ctx.field("baselineFilename").value

elif ctx.field("followupFilename").value != "":
state = "FU"
setting the filename results in an implicit field listener call
ctx.field("FollowUpScan.LoadData_filename").value = \\
ctx.field("followupFilename").value

else:
print "invalid filenames"

called if the baseline scan's LoadData module finished loading
def baseline_LoadDataDone(field):

global state

successful = field.valid

if state == "BL_AND_FU":
if not successful:

print "unable to load baseline"
the followup is still loaded although it is not necessary

elif state == "BL":
if successful:
switch to bl layout ...

else:
print "unable to load baseline"

called if the follow-up scan's LoadData module finished loading
def followup_LoadDataDone(field):

global state

successful = field.valid

if state == "BL_AND_FU":
if successful:
switch to bl+fu layout ...

else:
print "unable to load followup"

elif state == "FU":
if successful:
switch to fu layout ...

else:
print "unable to load followup"

2.2.3 Drawbacks for development of large applications

The functional approach has some drawbacks for development of large applications. The
modules of an application consist of many fields and field listeners of which most are
for communication purposes only. Because of the way parameters and results are passed
between modules, the program flow of the application is driven by implicit function calls
via field listeners. This results in both, a program flow that is hard to track and in spreading
logical coherent processes over various functions. In conclusion the resulting code of an
application becomes confusing and unreadable. Moreover, it gets hard to maintain and
extending it is very error-prone.

3 Object-oriented application development

To overcome the drawbacks of the functional approach for development of large and com-
plex applications, we developed an object-oriented approach that we will describe in the
following sections.

Figure 5: Communication between modules and their scripts using our object-oriented development
approach: Field listener calls (red arrows) and scripting commands (blue arrows). For simplicity
reasons the figure only shows the baseline scan.

3.1 Concept

In our approach a unique instance of a Python class is assigned to a module. The class en-
capsulates a module’s scripting functionality in its member functions. By assigning unique
class instances to modules it is possible to save references to other modules (respectively
their Python class instances). These can be:

• Parent (a module’s “surrounding” macro module)

• Children (modules within the macro module)

• Siblings (other modules within the parents internal network)

Using these references it is possible to perform communication between modules directly
on the Python script level via explicit member function calls instead of using fields and
field listeners (see Fig. 5). Parameters and results can now be passed as parameters and
return values of functions. As a consequence, using this concept the indirection in com-
munication between modules is resolved. Furthermore, communication-only-fields are
avoided and fields are only used where they are necessary: for parameterization of algo-
rithms or application modules.

3.2 Implementation

For implementing the object-oriented concept in MeVisLab a module’s class definition
looks like this:

Code Listing 7: Module class definition in Python

class Module(object):

the constructor
def __init__(self, ctx, child1, child2):

the context of this module
self.__ctx = ctx
reference to the parent of this module
self.__parent = None
reference to the 1st child module
self.__child1 = child1
reference to the 2nd child module
self.__child2 = child2
reference to a sibling
self.__sibling = None

set the parent in the child modules
self.__child1.setParent(self)
self.__child2.setParent(self)
the parent also tells its children about siblings
self.__child1.setSibling(self.__child2)
self.__child2.setSibling(self.__child1)

set the parent
def setParent(self, parent):

self.__parent = parent

set the sibling
def setSibling(self, sibling):

self.__sibling = sibling

return the field of the given name
def getField(self, fieldName):

return self.__ctx.field(fieldName)

a field listener callback
def _reactOnFieldChange(self, field):

do something based on the new field value ...

For generating, saving and accessing the module’s unique class instance the following code
has to be added to the Python script. For avoiding confusion with the self-reference used
in Python, we call a module’s class instance “this”.

Code Listing 8: Class access and instantiation in Python

global reference to this modules unique instance
this = None

access method to the global this object
def getThis():

global this
return this

the init method creates the unique global class instance
def init(ctx):

global this

Functional Object-oriented
initCommand optional initCommand =

”*py: init(ctx)*”
FieldListener command = function command =

”*py: this. function(args[0])*”
Function definition def function(...): def function(self, ...):
Function call function(...) self.function(...)
ctx access ctx. ... self. ctx. ...
Fields of internal
modules

ctx.field(”module.field”) self.moduleReference.
getField(”field”)

Table 1: Comparison between functional and object-oriented application development in MeVisLab

access the children's unique class instances
child1 = ctx.module("Child1").call("getThis")
child2 = ctx.module("Child2").call("getThis")
create this modules class instance and tell it about children
this = Module(ctx, child1, child2)

In addition the module’s MDL definition has to be adapted to the object-oriented imple-
mentation. In the following code args is the parameter list given by MeVisLab when a
field listener is called where args[0] is the field.

Code Listing 9: MDL module definition for object-oriented implementation

Commands {
// tell MeVisLab where additional Python modules are located
importPath = "$(LOCAL)"
// tell MeVisLab which file contains the Python script functions
source = "$(LOCAL)/Module.py"
// tell MeVisLab to call the "init" function on initialization
initCommand = "*py: init(ctx) *"

// tell MeVisLab to call "reactOnFieldChange" if "someField" changes
FieldListener someField {

command = "*py: this._reactOnFieldChange(args[0]) *"
}

}

The above implementation assumes that internal modules are created before the parent’s
init command is called which applies to MeVisLab. Because MeVisLab instantiates the
scripts of each module and because Python is a dynamic programming language, no import
statements are necessary in the script files of the modules for accessing other modules
functions or variables.

A comparison between functional and object-oriented development of applications using
MeVisLab is given in Table 1.

3.3 Calling conventions

There are typically three types of functions: interface functions, internal helper functions
and field listener callbacks. Interface functions are “public” by definition because they
shall be called by other modules. In contrast internal functions are “private” because they
shall only be called within one module. In Python a function (or variable) is defined as
private by putting “ ” in front of its name. Field listeners are logically private, because
they shall not be called by other modules but only if the modules field has changed. How-
ever, by making them private MeVisLab would not be able to call them, because a private
function can only be called from within the class in which it has been defined. The solu-
tion is to make them “protected” which is done by putting “ ” in front of the name. This is
only a convention which is not checked by Python. Thus, the function can still be called
by other modules and by MeVisLab, but its name indicates that it actually should not be
used by other modules. Using this convention a developer can easily see the purpose of a
function based on the prefix of its name.

Code Listing 10: Calling conventions

class Module(object):
...
a private helper function
def __helperFunction(self):

pass

a "protected" field listener callback
def _fieldListenerCallback(self, field):

pass

a public interface function
def interfaceFunction(self):

pass

3.4 Implementing the example the object-oriented way

Using the object-oriented approach, most of the fields can be removed from the internal
modules because communication is now done via member function calls (see Fig. 5). For
example the LoadData module now has a function loadFile(self, filename)
that can be called by the parent to load the given file. When finished, the function simply
returns True if loading was successful or False otherwise. Moreover, loading the data
and switching to the proper layout is now done in only one function.

Code Listing 11: Object-oriented LoadData Python script

class LoadData(object):
...
load the given file
def loadFile(self, filename):

loadSuccessful = False

load the file and set loadSuccessful ...

return loadSuccessful

Code Listing 12: Object-oriented DataProcessing Python script

class DataProcessing(object):
...
load the given file
def loadFile(self, filename):

return self.__loadData.loadFile(filename)

Code Listing 13: Object-oriented GUI MDL definition

...
FieldListener loadButton {

command = *py: this._loadData() *
}
...

Code Listing 14: Object-oriented GUI Python script

class GUI(object):
...
called if the load button has been pressed
def _loadData(self):

if self.getField("baselineFilename").value != "" and \\
self.getField("followupFilename").value != "":
call the loading function and react on returned value
if self.__baselineScan.loadFile(\\
self.getField("baselineFilename").value):
call the loading function and react on returned value
if self.__followupScan.loadFile(\\
self.getField("followupFilename").value):

switch to bl+fu layout ...
else:

print "unable to load followup"
else:
print "unable to load baseline"

elif self.getField("baselineFilename").value != "":
call the loading function and react on returned value
if self.__baselineScan.loadFile(\\
self.getField("baselineFilename").value):
switch to bl layout ...

else:
print "unable to load baseline"

elif self.getField("followupFilename").value != "":
call the loading function and react on returned value
if self.__followupScan.loadFile(\\
self.getField("followupFilename").value):

switch to fu layout ...
else:

print "unable to load followup"

else:
print "invalid filenames"

Using this implementation, the developer can easily see which functions of which modules
are called and which parameters they need. Moreover, the script can directly react on the
returned value of the internal module without the indirection of fields.

4 Conclusion

Our novel object-oriented approach simplifies development of large, complex applications.
By holding references to class instances of other modules communication between mod-
ules becomes easier, because it can be done via explicit function calls which makes the
program flow easier to read for the developer. Parameters and results are passed via func-
tion parameters and return values. Thus, the modules “field-interfaces” are reduced. Using
object-oriented development, the resulting code is less error-prone, a module’s functional-
ity is clearer and it is easier to maintain and to extend.

The main drawback of our novel approach is the additional slight overhead in module de-
velopment. But this overhead is small compared to the overhead of communication via
fields and field listeners. Another disadvantage is that MeVisLab’s callLater function-
ality cannot handle class member functions. Here the functional approach still has to be
used. But this might change in future version of MeVisLab.

Our object-oriented development concept is already used in various applications and proto-
types based on MeVisLab. Although it is rather a programming concept than a framework
by now, i.e. it does not offer common functionalities used in medical applications itself, it
is a suitable base for such a framework in MeVisLab and there are efforts in building an
application framework based on the proposed programming approach.

References

[BvUW+07] I. Bitter, R. van Uitert, I. Wolf, L. Ibáñez, and J.M. Kuhnigk. Comparison of Four
Freely Available Frameworks for Image Processing and Visualization That Use ITK.
IEEE Transactions on Visualization and Computer Graphics, 13(3):483–493, 2007.

[HLP03] H.K. Hahn, F. Link, and H.-O. Peitgen. Concepts for Rapid Application Prototyping in
Medical Image Analysis and Visualization. In SimVis – Simulation und Visualisierung,
pages 283–298, Ghent, 2003. SCS.

[KSR+06] M. Koenig, W. Spindler, J. Rexilius, J. Jomier, F. Link, and H.O. Peitgen. Embedding
VTK and ITK into a visual programming and rapid prototyping platform. In Proc.
SPIE Medical Imaging, volume 6141 of Image Processing, pages 796–806, 2006.

[MeV09] MeVisLab homepage, 2009. http://www.mevislab.de.

[MHK+08] B. Merkel, M.T. Harz, O. Konrad, H.K. Hahn, and H.-O. Peitgen. A novel software
assistant for clinical analysis of MR spectroscopy with MeVisLab. In Proc. SPIE
Medical Imaging, volume Vo. 6915 of Progress in Biomedical Optics and Imaging,
pages 69152R–1 – 69152R–9, 2008.

[Pyt09] Python documentation, 2009. http://www.python.org/doc.

[RJS+05] J. Rexilius, J. Jomier, W. Spindler, F. Link, M. König, and H.O. Peitgen. Combining a
Visual Programming and Rapid Prototyping Platform with ITK. In Bildverarbeitung
für die Medizin, pages 460–464, Bvm 2005, 2005. Springer-Verlag Berlin/Heidelberg.

[RKHP06] J. Rexilius, J.M. Kuhnigk, H.K. Hahn, and H.-O. Peitgen. An Application Framework
for Rapid Prototyping of Clinically Applicable Software Assistants. In Proc Work-
shop Softwareassistenten, volume 93 of Lecture Notes in Informatics, pages 522–528.
Springer, 2006.

