Reconfigurable consumer direct logistics systems
Sébastien Truchat', Alexander Pflaum?

'Department of Computer Science "Computer Networks and Communication Systems"
University of Erlangen-Nuremberg
Martensstr. 3
D-91058 Erlangen, Germany
Sebastien. Truchat@informatik.uni-erlangen.de

*Fraunhofer Applications Centre for Transport Logistics
and Communication Technologies
Nordostpark 93
D-90411 Niirnberg, Germany
pflaum@atl.thg.de

Abstract: The goals of the interdisciplinary project HORN were as well to im-
prove competitiveness of service providers that deliver grocery items as to develop
new hardware and software needed for its realisation. In the first part, we intro-
duce this home replenishment project, and analyse the needs and challenges of
mobile services with similar constraints. In the second part, we introduce our
modular software engineering approach and especially present the adopted recon-
figuration mechanism for autonomous mobile applications, and its profiling con-
cept.

1 Introduction

Today's world of mobile communication and pervasive computing is still characterised
by a bright variety of technical IT devices [BuOl]. Getting an overview of available
software engineering possibilities and hardware platforms is hard. Many problems would
be technically solvable for particular systems, but when it comes to make these different
solutions work together, i.e. interoperate, the lack of clearly defined and widespread
standards makes it impossible to implement durable real platform-independent solutions.

A strategy has to be developed, that can be used continuously from the design phase to
implementation. This kind of system would permit rapid software prototyping to obtain
an open interfaced reconfigurable mobile device. In that same way, the infrastructure
installed for mobile services would be dynamically reusable for new services. The idea
is to take a home and office replenishment project, and to use it as basic system to ana-
lyse the needs for interoperability.

104

Service Provider Household

y 4 -
SMS on
mobile phone

Barcode!

scannin
JE @

soret @ Residential DECT

erw;gregw er Gateway HORN

Terminal /
\ Delivery box

Professional Shopper /4

terminal > Transport

Professional shopper

Fig.1: HORN infrastructure

2 HORN: Home and Office Replenishment Nuremberg

The Home and Office Replenishment service in Nuremberg (Figure 1) supplies consum-
ers with dry packaged and fast moving consumer goods (FMCG). The consumer buys
his stock of products to be replenished once at the beginning of the service process and
defines maximum and minimum stock as well as the medium range for each product
using a Pocket PC that is equipped with an identification module (barcode scanner) and a
module for wireless communication (DECT) that provides the connection to the service
provider's data base via a residential gateway that is connected to the internet through the
standard public telephone network. After consumption of a product, the EAN article
number that is printed on the product package is scanned and a message is generated
automatically to be sent to the service provider using absolutely secure communication
lines. Here the consumption messages are gathered and stored in a data base. Once each
day, a special decision support software algorithm that takes various system and cus-
tomer specific restrictions into account, checks the data base, and generates picking &
packing orders and shopping lists that are sent to a professional shopper who is also
equipped with a wireless pocket PC with integrated GSM module and barcode scanner.
The shopping is done, products are packed into transport boxes, carried to the consumer
and put into delivery boxes for unattended delivery. The consumer is supported with an
SMS on his mobile phone that contains dispatch information. An electronic bill of deliv-
ery is sent to his wireless Pocket PC. After taking out the items, the delivery is accepted
or not, an acknowledgement of receipt is sent back to the service provider who then
initiates the invoice. The conceptual idea from an economical and logistical point of
view can be found under [P{03].

105

2.1 An infrastructure for mobile autonomous services

Why do we need this kind of infrastructure? Commonly, mobile services use the internet
model [Ha01]: the application runs on an internet server, while the mobile client has an
access to this service through a standard browser. This client browser is used as a visual
human machine interface, while data are actually processed on the server side. One ob-
vious advantage of this architecture, from the point of view of software engineering and
software maintenance, is that the software only needs to be implemented for the server
platform. Processing power restrictions are to be considered on the server side. Mobile
clients only need a browser to use the service. One drawback of this strategy is that there
must be a browser implementation for every new mobile platform, and the system must
agree with the restrictions of this browser, but the major problem is that the service ac-
cessibility depends on the communication to the server: it must be fast enough, reliable,
and always available. As the consumer wants to be mobile everywhere in his house, even
e.g. in the cellar where there is no reception of any kind, to manage his beverage stock
for example, the mobile service has to be an autonomous application on the mobile ter-
minal. This is one essential characteristic why HORN should be considered as an m-
commerce initiative rather than e-commerce: most of the transactions are made by the
customer in an offline situation [Zo01]. Furthermore, the price of the communication to
the internet can be restrictive, and battery life is reduced by a higher power consumption
of the communication interface that has to be powered during the time of connection to
the server. So the idea is to use local applications and short range wireless networks.

Some approaches, not constrained with local applications, combine the advantages of a
server based solution with short range charge-free wireless communication such as the
Flower framework [HLS02]. Some others combine server based services with some
client specific software pieces using existing WSDL standards [HMMO04].

The "HORN architecture" would reveal expensive for the operators of the residential
gateways and servers, and as a consequence for the consumer, if it could only be used for
this one single service, so the goal of our research is to enhance the reusability and inter-
operability of existing infrastructures of that kind. In our research infrastructure, the
mobile device has no direct contact to the service provider but can start a communica-
tion to a residential gateway. Our "residential gateway" can rather be considered as an
association of a local server that stores data for the mobile terminal and a residential
gateway to access the internet on demand (no permanent connection to the internet).
Since the mobile device has only sporadically a connection to a (local) server, the appli-
cations must run directly on it. So the "service provider", who offers applications for the
mobile clients, must implement software modules for every spectrum of devices on
which he wants his application to run. Moreover, he may want to update some of these
modules sometimes. Once the infrastructure is standing, and when there is a possibility
to update or reconfigure the mobile devices, there might be other service providers who
could want to use this infrastructure to offer their services. Thus our goal is to find a way
to reconfigure most mobile devices in that infrastructure, independently of their operat-
ing system, and to improve the software development process for such mobile applica-
tions.

106

The introduction of new mobile services could be made more efficient by dedicated
business models, as shown by the example of "B4U" [HR03]. Our approach would like
to design a model for interoperability in order to allow the operators of existing infra-
structures to offer the use of these to new service providers.

3 Modular software-engineering for interoperative systems

The goal of the Mo.S.I.S. (Modular Software-engineering for Interoperative Systems)
project is to make the development of mobile services in general, and especially for
HORN?-like architectures and systems with few resources, more cost efficient [Tr04].
First of all, there is a need for a generic reconfiguration framework for the mobile de-
vices and residential gateways (i.e. local servers), since there does not exist a standard
for software deployment that works for every combination of hardware and operating
system platform, especially very lightweight devices. To achieve this, an ontology to
relate the profiles from devices to software modules with regard to the description of
application profiles has been developed. These reconfiguration rules can be considered
as the necessary clear invariants that govern the entire system (known as volatility prin-
ciple [KF02]). A middleware solution may be the best approach to achieve interoperabil-
ity between software components [GB03], and for exchanging components or download-
ing new ones. In the case of Mo.S.I.S., the presence of such a middleware on every mo-
bile device is not assumed: the fast implementation of services through design patterns is
being considered less time consuming than the implementation of a complete middle-
ware for every new device, since devices are considered to have a "short" life. Besides,
not every mobile device may have enough resources to host a mighty middleware.

3.1 Reconfiguration and communication

For the first tests, the local server part is played by a standard PC connected to a WLAN
access point. In the future, this part might be embedded in the residential gateway plat-
form, which assumes of course much less memory resources and computing power. In
the following section we use indifferently "local server" or "residential gateway". The
mobile terminal can try to connect to any accessible local server over WLAN on request
of the user. This approach has been preferred to a periodical scanning in order to save
battery life, though it assumes the user must be aware of the presence of a potential local
server. The reconfiguration process can be described as follows (figure 2): 1) the user
asks the mobile terminal to try to connect to some local server. 2) if successfully con-
nected, the mobile terminal sends its profiles to the local server. 3) the local server
matches these profiles with those of available software modules in its repository. 4) as
soon as there is a module that matches, it is offered for download. 5) if the user ac-
knowledges, the module can be downloaded. 6) the module is being downloaded. 7) the
connection is being terminated. 8) after successful download, the software profiles of the
mobile terminal can be updated according to the new modules.

107

Mosis_App.€; Mosis_GUL.dIl

Mosis_App.exe N
t /3.0

(V2.0, ARM) AN Profiles
£ Downlzd N\ wode o
i Local Server . . .
Profiles e 5) Confirmation

7) Terminate connection 8) Update profiles

erotie| 3) Profile matching

Fig.2: Reconfiguration process of the first prototype

The core of this reconfiguration concept is implemented in two "reconfiguration man-
ager" classes (Figure 3): CRecoMaLS (stands for reconfiguration manager on the local
server side) and CRecoMaMT (reconfiguration manager on the mobile terminal side).
Basically, the reconfiguration mechanism and also diverse data exchange mechanisms
rely on RPC (remote procedure call).

To make sure that this mechanism can be used even on lightweight mobile platforms, a
special simple and extensible XML based RPC protocol has been designed:

<MOSIS V0.1>
<Befehl> order </Befehl>
<Empfaenger> addressee </Empfaenger>
<Laenge> length in byte </Laenge>
<Daten> data </Daten>

</MOSIS_VO0.1>

In the basic version, order can be "Daten_senden" in the case of a simple data exchange
between two applications, or "File senden" in the case of a file (e.g. software module)
transfer. When order is "Daten_senden", the addressee is the function that has to process
the sent data. When order is "File_senden", the addressee is the memory place where the
file has to be stored (e.g. path and filename when the OS allows it). The length in byte of
the transmitted data is an important information, when the communication is not inter-
rupt driven, so the raw data has to be parsed and filtered.

The essential idea in XML based RPC frameworks is to use XML to define a type sys-
tem that can be used to communicate data between clients and servers [MSO03]. In this
case, it is useful to transmit information such as the length of transmitted data, or a
checksum (to verify that the software module has been transmitted uncorrupted) inde-
pendent of the receiver platform, as long as it possesses an elementary XML parser.

108

CCommuLS

1 CCommuMT

[+Open() —

+Close() [+Open()

+Connect() +Close()

[+Disconnect() [, |+Connect()

+Write() |+Disconnect()

+Read() 1 +Write()

CRecoMalLS [+Read()
1 CRecoMaMT
+Verify_Commu() 4 CCommParLs|
+Acceptigommu()) Gl
+Accept_(ion(. — Wt 1
-Manage_Request() |qp. initiaise(! Find.Commu)
|#Compare_Profiles() " - ontact()
+Offer() 1 [CCommParMT| [+Load_Data()
* ctualise()
) . — -Manage_Request
IR . Finfialise() o o 0 !
1 1 0.1 ICC tLS|
cc] d '1
CReconfProt CHWProfilLS| [CContextProfile]
1
1 ICHWProfileMT]| [CSWProfileMT] CUserProfile

CProfile_c i SW- i SW-Profile
+Profile_Matching() f 1

Fig.3: Class diagram of the reconfiguration part on the local server and mobile terminal side

As communication mediums can be very diverse from one device to another, a special
attention has been spent to the development of generic (or reusable) communication
classes to shorten development time even on this side. The interface of these classes
keeps the same, but there are mainly two kinds of implementations to cover most of the
current communication devices: a socket based communication (if the appropriate API
exists in an appropriate programming language for the communication device and the
OS used on the mobile terminal), and a modem based communication. Concerning this
latter, lots of devices can be controlled through a (virtual or not) serial port interface, that
allows to communicate directly with the device through its AT protocol. This technique
becomes more interesting, when the communication device itself is still a prototype (as it
was the case during the HORN development phase) the firmware of which may change,
so that existing modem based APIs do not always work. In our model, parameters like
the AT protocol of the device can be encapsulated in a dedicated communication-
parameter-class (CCommProtMT and CCommProtLS) so that the developer does not
need to change the code of the communication class when something changes in the AT
protocol (e.g. the device identification answer changes, which is needed to detect the
presence of a specific communication device).

3.2 Profiling

Our reconfiguration environment has the following features: there are diverse mobile
terminal platforms with potentially several users (technically skilled or not), there are
several local server platforms, and it should work with any combination of user, mobile
terminal, and local server, without assuming deep technical knowledge and complicated
operations by the user. Besides, it must work and be quickly implementable for (almost)
any new platform. To make this "any-to-any reconfiguration" possible, we need some
rules to classify hardware platforms, to structure the software modules of applications,
and finally to set them all in relation. This "reconfiguration ontology" is a kind of profil-
ing, which is most often used for content adaptation problems.

109

In a nutshell, the mobile terminal has a hardware profile, a software-library profile, and a
user profile. The hardware profile contains information like processor type, operating
system, memory, display type and communication means. The software-library profile
consists of the profiles of the applications, and the profiles of the software modules (that
are already on the mobile terminal). The application profile contains the name of the
application, its version, and the names of all the software modules that compose this
application. A module profile contains information like name, version, processor type for
which it has been compiled, memory needed and so on. The user profile contains prefer-
ences such as the language (e.g. German or English).

Context awareness can be achieved when the local server first transmits its context pro-
file to the mobile terminal, so that this last one can make context dependant decisions
such as if it wants to transmit its profiles to the local server or not, or if it wants to acti-
vate some tasks in this context (not implemented yet).

The rules are as follows. Is there any application profile on the local server that is not
present on the mobile terminal? If yes, the system checks if all the needed software
modules composing this application are present on the local server, and if these modules
fit to the mobile terminal. If yes, these modules including their profiles and application
profile are offered to be downloaded for the mobile terminal. If a newer version of an
existing application profile is available, the procedure is the same but only the necessary
modules are proposed to be downloaded. For every module of the mobile terminal, the
system checks if there is a newer version of this module available on the local server. If
yes, this newer version is offered for download. A software module fits to a mobile ter-
minal when it has been compiled for the right type of processor, for the right operating
system, if memory resources are sufficient, the display matches to the GUI and so on. To
keep the system flexible and extensible, the rules and profiles must be capable of being
modified with little inconvenience for the developer (better software maintenance).

The first profile matching prototype has been implemented in the frame of a Diplomar-
beit [Fu04] in Erlangen. The selected solution was a symmetric attribute based matching
with external rules. That means the vocabulary used is the same for all the profiles, and
the rules that explain how properties have to meet requests are edited separately. The
language chosen for the implementation of the profiles was CC/PP (composite capability
/ preference profiles) because it seemed to be the most used standard.

4 Conclusions and further work

The result of our work should be a kind of design process handbook to make the devel-
opment of new mobile services more cost efficient by helping to choose the right infra-
structure, by reusing existing infrastructures with new services and devices through
interoperability and reconfiguration, and by shortening development time thanks to de-
sign patterns.

110

As for the evolution of home replenishment, it seems an evidence that scanning manu-
ally the consumer goods is a fastidious task, but it was the best way to realize the HORN
pilot project yet. The future in this domain belongs obviously to "smart labels", so that a
sensor in the fridge or pantry could notice the input and output of goods in order to make
the process really pervasive. The mobile device would only serve to manage and super-
vise the desired stock of goods, and to use context specific services and information.

Literaturverzeichnis

[Bu01]

[Fu04]

[GB03]

[Ha01]

Jochen Burkhardt, Horst Henn, Stefan Hepper, Klaus Rindtorff, Thomas Schick , "Per-
vasive Computing, Technologie und Architektur mobiler Internetanwendungen", Addi-
son-Wesley 2001, 241-264.

Gerhard Fuchs, "Mobile autonome Dienste und ihr Profiling", Diplomarbeit am Lehr-
stuhl Informatik 7, Friedrich-Alexander Universitit Erlangen-Niirnberg, July 2004.

Paul Grace, Gordon S. Blair, "Interoperating with Heterogeneous Mobile Services",
ERCIM News Number 54, July 2003, 24-25.

Uwe Hansmann, Lothar Merk, Martin S.Nicklous, Thomas Stober, "Pervasive Comput-
ing Handbook", Springer 2001, 327-340.

[HLS02] Tero Hakkarainen, Ali Lattunen, Vespe Savikko, "Flower - Framework for Local Wire-

less Services", ERCIM News Number 50, July 2002, 51-52.

[HMMO04] Markus Hillenbrand, Paul Miiller und Kristian Mihajloski, "A Software Deployment

[HRO3]

[KF02]

[MS03]

[Pf03]

[Tr04]

[Z001]

Service for Autonomous Computing Environments", International Conference on Intelli-
gent Agents, Web Technology and Internet Commerce, July 2004.

Timber Haaker, Oscar Rietkerk, "Introducing New Mobile Services Faster", ERCIM
News Number 54, July 2003, 44-45.

Tim Kindberg, Armando Fox , "System software for ubiquitous computing", IEEE Per-
vasive Computing, January-March 2002, 70-81.

Friedemann Mattern, Peter Sturm, "From Distributed Systems to Ubiquitous Computing
- The State of the Art, Trends, and Prospects of Future Networked Systems", in: Klaus
Irmscher, Klaus-Peter Féhnrich (Ed.): Proc. KIVS 2003, pp. 3-25, Springer-Verlag, Fe-
bruary 2003.

Alexander Pflaum, "Die Zukunft des "E-Fullfillment" fiir Lebensmittel: Versuch einer
Prognose", Logistik Management, 5.Jahrgang 2003, Ausgabe 1, 25-39.

Sébastien Truchat, "Interoperative Systems for Replenishment" (doctoral colloquium of
the Pervasive 2004 conference, April 2004) In: Alois Ferscha, Horst Hortner, Gabriele
Kotsis (eds.) : Advances in Pervasive Computing. Osterreichische Computer Gesell-
schaft. 161-166.

Jorg Zobel, "Mobile Business und M-Commerce", Hanser, 2001, 3-4.

111

